

Journal of
Information
Systems
Education

Volume 30

Issue 4
Fall 2019

Invited Paper
A Generalized, Enterprise-Level Systems

Development Process Framework for Systems
Analysis and Design Education

Heikki Topi and Gary Spurrier

Recommended Citation: Topi, H. & Spurrier, G. (2019). Invited Paper: A Generalized,
Enterprise-Level Systems Development Process Framework for Systems Analysis and Design
Education. Journal of Information Systems Education, 30(4), 253-265.

Article Link: http://jise.org/Volume30/n4/JISEv30n4p253.html

Initial Submission: 3 May 2019
Accepted: 8 October 2019
Abstract Posted Online: n/a
Published: 12 December 2019

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume30/n4/JISEv30n4p253.html
http://jise.org/

A Generalized, Enterprise-Level Systems Development
Process Framework for Systems Analysis and Design

Education

Heikki Topi
Bentley University

Waltham, MA 02452, USA
htopi@bentley.edu

Gary Spurrier
University of Alabama

Tuscaloosa, AL 35487, USA
gspurrier@cba.ua.edu

ABSTRACT

Current academic and industry discussions regarding systems development project approaches increasingly focus on agile
development and/or DevOps, as these approaches are seen as more modern, streamlined, flexible, and, therefore, effective as
compared to traditional plan-driven approaches. This extends to the current pedagogy for teaching systems analysis and design
(SA&D). However, overemphasizing agile and DevOps neglects broader dimensions that are essential for planning and executing
enterprise-level systems projects. Thus, a dilemma may arise: do we teach agile and DevOps techniques that may be inadequate
for enterprise-level projects or do we teach the wider range of plan-driven skills and techniques that may conflict with the tenets
and benefits of agile and DevOps? In this paper, we advocate for resolving this dilemma by adopting a generalized process
framework that both fully supports enterprise-level projects but can also be selectively scaled back toward increased agility for
smaller, less complex projects. In its full realization, this framework combines extensive project planning and up-front requirements
with iterative delivery – an increasingly popular approach today for enterprise projects. In scaling back toward agile, the framework
carefully accounts for system, environment, and team characteristics. Further, the model emphasizes issues frequently
underemphasized by agile approaches, including the use of external software such as commercial-off-the-shelf (COTS), Software-
as-a-Service (SaaS), and open source products and components; the need for business-oriented project planning and justification;
and support for change management to ensure successful system adoption. The framework thereby flexibly accommodates the full
range of activities that software projects must support to be successful.

Keywords: System development life cycle (SDLC), Agile, Enterprise systems development, Pedagogy, Systems analysis & design

1. INTRODUCTION

Systems analysis and design (SA&D) has been a central
element of information systems education from the early days
of the discipline. For example, the first curriculum
recommendation for undergraduate degree programs in
information systems (Couger, 1973) includes 2 related courses
(out of 11) in this space, one called Information Systems
Analysis and the other one System Design and Implementation.
Likewise, Nunamaker, Couger, and Davis (1982) include a two-
course sequence that “covers the application system
development process” (p. 798), consisting of Information
Analysis and Systems Design Process. In practice, these two
courses provide a solid introduction to systems analysis and
design plus the management of the software development
process. Jumping almost 30 years forward to the latest

curriculum recommendations, IS2010 (Topi et al., 2010)
includes systems analysis and design as one of its seven core
courses; in addition, IT project management is another core
course that is closely related to SA&D. In the same way, one of
the core competency areas in the graduate level curriculum
recommendation MSIS 2016 (Topi et al., 2017) is systems
development and deployment, and another one – innovation,
organizational change, and entrepreneurship – is closely
connected with it. Together, these areas cover capabilities
typically associated with systems analysis and design and
project management. Throughout its history, our discipline has
consistently recognized the importance of SA&D and project
management as core requirements at the same level as
data(base) management; IT infrastructure; and IT policy,
strategy, and management. The names of these key areas may

Journal of Information Systems Education, Vol. 30(4) Fall 2019

253

mailto:htopi@bentley.edu
mailto:gspurrier@cba.ua.edu

have varied over time, but the core elements have stayed
surprisingly constant.

The IS discipline needs to continually ask whether or not
the topics covered and competencies enabled in our core
curricula are aligned with the long-term needs of the
organizations hiring our students, the foundation that our
graduates need to build for lifelong learning, and the
expectations associated with the latest technological and
methodological fashions. In recent years, issues surrounding
this question have been sharpened by both academic and
industry discussions regarding systems development
methodologies and approaches that increasingly focus on
replacing plan-driven methodologies – such as the traditional
Systems Development Life Cycle (SDLC) or “waterfall”
approach – with agile methods and/or DevOps (the latter
defined as the extension of general agile principles to
continuous integration and deployment; Gruver and Mouser,
2015). This is true both for the small, relatively simple projects
for which agile was originally targeted but also, increasingly,
for large, complex projects applicable to the enterprise. This is
evidenced by extensive literature reviews concerning agile
development in MIS journals (Dybå and Dingsøyr, 2008;
Chuang, Luor, and Lu, 2014), as well as extended treatments by
key practitioner authors pertaining to scaling agile methods to
large-scale projects (Leffingwell, 2007; Ambler and Lines,
2012; Gruver and Mouser, 2015; Larman and Vodde, 2017;
Knaster and Leffingwell, 2018).

It is, however, premature to claim that agile and/or DevOps
are the best choice under all circumstances. Building on our
earlier and ongoing work in this area (Spurrier and Topi, 2017)
and recognizing ways in which pure agile methods and DevOps
are misaligned with the reality of the development of
administrative enterprise-level systems, we encourage the
academic IS community to reconsider a broad range of
questions related to the fit between systems development
project characteristics and systems development approaches
and methodologies. We also believe that identifying and
acknowledging the importance of the factors affecting this fit is
essential for success in educating the next generation of SA&D
professionals.

As such, overemphasizing agile and DevOps neglects
broader dimensions that are essential for planning, executing,
and delivering enterprise-level systems projects. Thus, a
dilemma may arise: do we teach agile and DevOps techniques
that may be inadequate for enterprise-level projects or do we
teach the wider range of plan-driven skills and techniques that
may conflict with the tenets and benefits of agile and DevOps?

In this paper, we advocate for resolving this dilemma by
adopting a generalized process framework for SA&D education
that both fully supports enterprise-level projects and can be
selectively scaled back toward increased agility for smaller, less
complex projects.

By enterprise-level systems development, we refer to
projects exhibiting several key characteristics (building on
Fowler, 2003, pp. 2-4):

• Scope of significant size and complexity
• Supporting a large number of users in a variety of user

actor roles

• Providing mission critical functionality and frequently
also being a key to meeting the host organization’s
strategic objectives

• Utilizing a large number of user interface screens and
complex business logic, implying large code bases,
often measured in millions of lines of code

• Utilizing persistent databases measured in millions of
rows and multiple gigabytes of data (or potentially
significantly larger – billions of rows of data and
terabytes of data is not uncommon)

In its full realization to support such enterprise-level

systems development, this framework combines extensive
project planning and up-front requirements specification with
iterative delivery. It, therefore, represents a hybrid approach
combining aspects of plan-driven and agile approaches. The
framework also includes key planning dimensions of systems
deployment that are not typically emphasized in DevOps, such
as creating business policies and procedures, training materials,
user acceptance testing, and data preparation.

In scaling back toward agile, the framework carefully
accounts for system, environment, and team characteristics.
Further, the model emphasizes issues frequently neglected by
agile approaches, including the use of external software such as
commercial-off-the-shelf (COTS), Software-as-a-Service
(SaaS), and open source products and components; the need for
business-oriented project planning and justification; and
support for change management to ensure successful system
adoption. The framework thereby recognizes the impacts and
outcomes that all software projects have on their corresponding
organizations.

We believe that following this framework would equip
students with a broad toolkit that they could readily adapt to be
effective in a wide range of project situations. Further, this
approach would help position the information systems
discipline better in the context of other, technology-centric
computing disciplines (particularly computer science,
information technology, and software engineering) and develop
the specific, distinctive strengths of our degree programs.
Specifically, our approach transcends the traditional, narrowly
conceived definition of “systems development” referring
mostly to “software construction,” meaning technical design,
coding, and testing. Rather, in this context, we define systems
development to refer to not only construction but also
configuration and integration of third party products and
components, as well as extensive upfront requirements and
project planning and backend change management/deployment
tasks.

At its core, we argue that it is more effective to assume a
broader, enterprise-level perspective that can be selectively
simplified for smaller, less complex projects than to teach a
narrow set of agile techniques that then need to be expanded in
ad hoc ways to support larger and more complex projects. For
example, we advocate teaching formal requirements techniques
such as business process modeling and domain modeling that
can be simplified as appropriate, rather than assuming an agile-
style “barely sufficient” approach (Boehm and Turner, 2004, p.
18; Rubin, 2013, p. 57). Similar arguments apply to project
planning and execution techniques. As such, we emphasize that
our proposed approach would not ignore agile methods and
approaches to systems development. Indeed, enterprise systems

Journal of Information Systems Education, Vol. 30(4) Fall 2019

254

development techniques and processes based on the hybrid
approach include all the techniques and processes of agile plus
a whole series of additional techniques for managing
requirements, projects, and organizational change.
Additionally, in a world where the great majority of teams do
software construction iteratively, there is no fundamental
conflict between agile and hybrid approaches. The main
dimension of variability is the degree of project planning and
requirements performed prior to construction and
configuration: low amounts in agile and high amounts in
hybrid.

Thus, enterprise software development represents a
superset of systems skillsets, including those related to agile
software construction. As such, a student schooled in
enterprise-level techniques can easily learn to scale down those
techniques to the needs of small, simple projects. In contrast, a
student schooled in only agile techniques would struggle to
successfully scale up those techniques to the enterprise level.

We originally developed this process framework for
pedagogical purposes to be used as an organizing structure for
systems analysis and design courses. We have also found it to
be valuable for identifying areas where current pedagogical
practices in the context of SA&D are not aligned with
organizational needs and practices.

2. PRINCIPLES UNDERLYING THE PROPOSED
FRAMEWORK

This section presents the underlying principles and beliefs that
form the foundation for the proposed framework. Our
motivation to propose a new framework rises from the belief
that no existing approach captures and enables all these
essential factors simultaneously and that existing SA&D
courses frequently do not guide students to consider these

factors in a comprehensive, systematic, and, above all, adaptive
manner.

2.1 Development Approach Selection
We believe that all SA&D courses should recognize that every
systems development project, however small, deserves
dedication of time and resources to identify a development
approach that best fits the characteristics of that project. It is
important to note that there is no single, best, one-size-fits-all
approach; sometimes a relatively agile approach will work best,
and, in other situations, a more plan-driven approach will be
more appropriate. Further, the same organization may need to
utilize different development methodologies across its portfolio
of projects. This would be determined by multiple factors,
including characteristics of the system, the environment, and
the team.

When analyzing the factors determining the positioning of
a project on the plan-driven <–-> agile spectrum, we are
depending and building on the “home grounds” theory
articulated by Barry Boehm and Richard Turner (Boehm and
Turner, 2004) in which software, scope, organization, and team
characteristics play determinative roles. For example, per that
prior work by Boehm and Turner (2004) and our extensions of
that model (Spurrier and Topi, 2017), Table 1 summarizes a
broad series of dimensions that determine the optimal approach
to any given software project. A project that exhibited all of the
characteristics in the Agile Home Ground column would be best
served by utilizing a highly agile approach. Conversely, a
project that exhibited all of the characteristics in the Plan-
Driven Home Ground would be best served by a highly plan-
driven approach. Further, specifically in our proposal, we
reiterate that hybrid projects utilize a combination of formal,
upfront requirements and project planning, iterative

Characteristic Agile Home Ground Plan-Driven Home Ground
Overarching context: Industry/Organization Characteristics

Goals & Values • Rapid, responsive delivery of value • Predictable, high assurance delivery
Industry • Turbulent/rapidly evolving • Stable/mature
Organization • Agile organization valuing

freedom/empowerment/chaos
• Plan-driven organization valuing

policies/procedures/control
IT Team contends with: Project/Application Characteristics

Customers/
Product Owners

• Customers/Product Owners:
Few, dedicated, co-located

• Customers/Product Owners:
Many, not dedicated, not co-located

Software
Requirements

• Small/flexible scope
• Low development interdependence
• Low clarity
• Low stability over time
• Single project focused

• Large/fixed scope
• High development interdependence
• High clarity
• High stability over time
• Project portfolio/organization-focused

Software
Application

• “Greenfield” or small code base
• Non-strategic/non-mission-critical
• Low security/safety risk
• No need for intentional architecture

• Large code base and/or “legacy” app
• Strategic/mission-critical
• High security/safety risk
• High need for intentional architecture

IT Team • IT Team:
Small, generalists, co-located, high-
performing, stable/cohesive, using
tacit/shared informal knowledge

• IT Team(s):
Large, specialists, multiple locations and time
zones, few assumptions regarding performance
levels, unstable/new, needing documentation for
knowledge transfer

Table 1. Agile versus Plan-driven Extended Home Grounds Model

Journal of Information Systems Education, Vol. 30(4) Fall 2019

255

construction, and carefully planned change management and
deployment.

The key point is that systems development can and should
take on a broad variety of different forms. Indeed few, if any,
systems development projects will optimally fully align with a
specific, “pure,” predefined development approach.
Particularly, there are relatively few situations where a pure
agile or a pure plan-driven approach to systems development
provides the best fit. Rather, most projects would exhibit a mix
of these characteristics, implying an approach that is neither
“pure agile” nor “pure plan-driven.” It follows that the proposed
model is based on the assumption that some permutation of the
two “pure” approaches will generally be found to be optimal.

Consequently, following a specific approach simply
because it is required by group culture (e.g., “we are agile”) or
company policy is unlikely to lead to an optimal outcome.
Instead, a specific system development approach should be
formulated based on the key characteristics of the project.
Understanding the factors affecting the development approach
selection and the process used for selecting the approach are
key capabilities that SA&D courses should cover.
Unfortunately, many current courses do not recognize the
essential role of development approach selection in SA&D
projects.

2.2 Internal Development vs. Packaged Software and
Components
Agile approaches to systems development projects tend to
implicitly assume that a given systems project will involve a
high degree of new software construction. Indeed, some
observers have pointed out that agile approaches and
methodologies tend to be code- or developer-centric, focused
on software construction (meaning technical design, coding,
and testing) and, conversely, paying relatively little attention to
key questions outside software construction (Turk, France, and
Rumpe, 2005; Leffingwell, 2007; West et al., 2011). This focus
on software construction means that there is a relative lack of
focus on projects where utilizing and integrating packaged
software and components is (or could be) a central issue. Only
recently has the academic literature started to pay attention to
these essential questions (Petersen et al., 2018), and current
textbooks appear to pay only occasional and superficial
attention to the issues related to the use of purchased or other
externally-sourced software capabilities in systems projects.
Furthermore, few practitioner agile software methodology
books provide any significant treatment of evaluating, utilizing,
configuring, or integrating with third-party systems or
components (Leffingwell, 2007; Ambler and Lines, 2012;
Gruver and Mouser, 2015; Larman and Vodde, 2017; Knaster
and Leffingwell, 2018).

For teaching SA&D, this is a serious omission. Systems
development projects today almost always involve the
integration of new software capabilities with existing ones.
New software capabilities can either be developed from scratch
or acquired from external sources through a variety of
mechanisms, such as Software-as-as-Service (SaaS),
Commercial-Off-The-Shelf (COTS) systems, use of modular
components, open source capabilities, etc.

Of course, the use of commercial products, open source
application projects, and/or pre-packaged software components
may move a given project away from software construction and

toward a significant emphasis on configuration, with software
construction often limited to supplementing pre-written code
with “surround code” extending its user interfaces and “glue
code” integrating various systems and components with each
other. This recognition of the importance and richness of a
broader definition of “systems development” needs to be
supported in our practice and teaching frameworks. Again, a
key point is that enterprise-level systems projects take on a
broad variety of different forms, and the extent to which new
software development is part of it varies significantly.

We further note that the fundamental question of
determining the extent to which a given systems project should
depend on internal development versus external software
capabilities implies the need to provide process support for
evaluating sourcing approaches and selecting third-party
products and components. This “build versus buy” decision is a
familiar one in the general arena of defining and evaluating
investment decisions, especially at the enterprise level.
However, it is also one that is oddly absent from most of the
agile practitioner literature and textbooks cited above. Thus,
this is another key issue arguing for adopting and teaching a
systems project approach that starts with the broader,
enterprise-level perspective.

2.3 Meaningful Estimation and Valuation via Planning
As illustrated, for example, by the extensive literature on
business-IT alignment (see, e.g., Luftman et al., 1999), systems
are typically developed to enable a goal or a set of goals that are
important for individuals, organizations, or societies. Goals for
organizational systems, particularly those developed for the
enterprise level, are typically expected to be aligned with the
overall goals of the organizational unit(s) the system serves.
When a software system is developed to serve an organizational
goal or a set of organizational goals, the organization funding
the development of the system is typically interested in ensuring
a sufficient return on investment. This involves estimating
reasonably accurately in advance how much the development
of the system is going to cost. Further, it requires an estimation
of the value of the business benefits that will be realized.

While acutely important in enterprise-level projects, this is
true even in highly agile projects, where fixed time and fixed
budget are nominally linked to a flexible definition of scope.
Even in these cases, however, for systems targeted for
production use, a certain minimum level of functionality – the
“Minimum Viable Product” or MVP – needs to be delivered for
the system to deliver meaningful value (Rubin, 2013, p. 295).
In contrast, projects that are executed to develop a proof of
concept or in some other way to explore the technical feasibility
of a possible solution are by definition highly uncertain in terms
of their outcomes. But even with these projects, it is important
to articulate in advance the exploratory purpose of the work and
the amount of time and talent the organization is willing to
invest in that exploration.

Thus, all projects require a degree of estimating both costs
and benefits. Further, it is impossible to accurately estimate the
costs of developing systems capabilities that are not specified
at all or that are specified only at a very high level of abstraction
(McConnell, 2006, pp. 35-7). For agile projects, the implication
of this point is that there should be sufficient time and budget
to make it likely that (at least) the MVP can be delivered.
Further, the only way to ensure this is to engage in more, on-

Journal of Information Systems Education, Vol. 30(4) Fall 2019

256

going refinement of requirements, designs, and estimations than
is typically specified in “pure” agile approaches based on an
early evaluation of short expressions of features, such as a
product backlog consisting of user stories and value rankings
(Cockburn, 2001, p. 187).

We argue, therefore, that a process to determine an
appropriate degree of planning is a necessary part of all systems
development projects. The extent to which it is formally
performed and documented will be a matter of degree, but
without any planning, no project is likely to succeed.

To reiterate, agile approaches tend to give short shrift to the
level of formal requirements analysis needed to generate
accurate estimates. Further, many existing SA&D courses and
textbooks appear to consider questions related to software cost
estimation and the relationship between planning and
estimation too advanced to consider, particularly in
introductory courses. This is unfortunate because without
understanding the relationship between planning and
estimation, our students will have difficulties understanding
one of the key factors affecting the success of their systems
projects. We, therefore, advocate teaching an enterprise-level
approach that explicitly considers issues of estimation,
including at multiple points during the systems project.

2.4 Understanding the Need for Requirements Analysis and
Design Artifacts
From the above discussion, it follows that requirements
specification (articulation of system capabilities before they are
constructed) is a necessary part of all systems development
projects. Again, the extent to which requirements are formally
documented in detail varies depending on the project, but the
functional and technical artifacts that enable the achievement of
a beneficial human goal via a system do not appear randomly
without the articulation of the key ideas of the system’s role in
advance. It is, however, possible and increasingly common (in
agile projects) that requirements are not formally documented
in detail (or at all, other than in the form of brief user stories)
and that they literally may be specified informally and in real-
time right before construction. This approach, typical of agile
techniques, is often called “emergent requirements” (Boehm
and Turner, 2004, p. 29), as opposed to the “Big Design Up
Front” (Boehm and Turner, 2004, p. 55) typically associated
with plan-driven approaches.

Furthermore, all systems have an internal technical design.
The quality of the design and the extent to which the design is
preconceived and formally documented before technical
implementation varies significantly, but, whether the design is
planned or emergent, it exists.

Projects exist for which highly emergent requirements and
design are the best or at least perfectly reasonable choices. It is,
however, essential for students to learn to understand the factors
determining the degree to which a project should utilize formal,
documented specification of requirements and design choices
as well as anticipating the consequences of not engaging in
formal specifications.

For example, it is essential that our students understand the
relationship between the agility of the project approach, the use
of formal requirements and design artifacts, and the role of the
scope concept: plan-driven projects utilizing a traditional SDLC
(e.g., “waterfall”) have a fixed scope based on pre-specified
formal requirements, agile projects have moderately emergent

requirements and flexible scope (beyond a core minimum
viable product), and hybrid projects have a semi-flexible scope
based on “guardrails” type requirement specifications that
specify the minimum viable product and also a maximum scope
bounded by explicit “won’t have” specifications with room for
requirements changes during construction within those
guardrails.

Beyond teaching only agile emergent requirements
techniques (user stories supplemented with “barely sufficient,”
informal models), we believe it is essential for business/systems
analysts to be able to understand this range of scope definition
approaches, including the selection of an optimal scoping
approach for any given project. This includes developing
formal modeling skills to document the key concepts of the
domain of practice for which the system is developed, the
relationships between these concepts, and their relevant
characteristics. Business/systems analysts also need to
understand the organizational processes that the system under
construction is expected to enable. The understanding of the
target systems and organizational transformation developed
through domain/conceptual data modeling (Topi and Ramesh,
2002) and business process modeling (Rosemann and vom
Brocke, 2015) forms an essential foundation that would be
useful for all systems development initiatives.

Further, as described below, students need to understand
the appropriate level of requirements modeling at various stages
of a project, including a preliminary level of modeling needed
to execute a “buy versus build” decision, per the discussion
above, leading to more extensive modeling (including,
especially, technical design) in circumstances where a decision
has been made to proceed with internal development.

With this toolkit of scoping approaches, requirements
techniques, and timing principles in hand, students will be
equipped with the skills that they will need for a broad range of
systems projects, ranging from the enterprise level to the level
where highly agile approaches are appropriate.

2.5 Need for a Broad Range of Competencies
The proposed framework and guidance regarding its use
demonstrate that developing software-based systems requires a
broad range of human competencies. Broadly speaking, these
competencies can be divided into systems/business analysis
(focused on understanding what goals the system should enable
its users and user organization to achieve and what the
functional system characteristics should be to enable those
goals), sourcing of software components (essentially buy versus
build), systems construction (focused on creation and
modification of technical artifacts), configuration (focused on
aligning the flexible capabilities of third party software to an
organization’s needs), and project management (focused on
choosing and executing a project approach). These competency
categories are different, and the number of individuals who
exhibit all these types of competencies at a high level of
achievement is small. Some methods (specifically agile ones)
expect individuals involved in the development process to
possess a general, minimum level of competence in all major
skillset areas (Rubin, 2013, pp. 201-203), but this is unlikely to
be feasible with large teams engaged in enterprise-level
software development projects (Boehm and Turner, 2004, pp.
46-49). It is essential for students to understand how the
competencies they acquire in an SA&D course fit in a project

Journal of Information Systems Education, Vol. 30(4) Fall 2019

257

as a whole and how their competencies are aligned with
different approaches to systems development.

With respect to software construction, systems
development projects often bring together human resources
from a variety of sources, including internal salaried
employees, long-term contractors, consulting organizations,
etc. In enterprise-level projects, development resources are in
many cases not all co-located. Any generalized framework
needs to address these team characteristics, and any SA&D
course needs to help students understand the variety of demands
and mechanisms of support that different methodologies create
for personnel working on the projects. To illustrate briefly,
consider a project with a relatively small, cohesive, and talented
on-shore team. Further, assume that the team had been
delivering software successfully in a relatively agile fashion
from a requirements perspective. Now, if management decides
to augment or replace these team members with a new, offshore
group of developers, then all other things being equal it is likely
that there would need to be a shift toward a more plan-driven
requirements approach to compensate for the loss of ability to
establish and communicate requirements informally.

2.6 Enabling Planned Organizational Change
Particularly when SA&D courses are built around the agile
principles, SA&D courses and current textbooks frequently
omit the important discussion on the importance of preparing
the user organization to successfully implement the changes
that the deployment of the new capabilities require. Emergent
requirements, iterative construction, and continuous testing do
not necessarily mean that it is reasonable or even possible to
assume continuous deployment of the constructed software
capabilities to the target organization, per DevOps principles
(Gruver and Mouser, 2015, p. 52). Delivering software
capabilities is only one component in the change process that
enables successful organizational transformation.

Rather, equally important are changes to the organizational
processes that new software capabilities may enable but that
will not be complete without changes in human behavior and
organizational preparation. These typically include user
acceptance testing, data cleansing and preparation, updated
organizational policies and procedures, and training. It is
frequently the case that organizational processes cannot, in
practice, be changing continuously or in an unpredictable way.
Instead, the degree of organizational change required needs to
be proactively planned, managed, and supported. Therefore,
even in agile projects, the deployment of new systems
capabilities needs to be carefully evaluated and ultimately
structured into planned releases that are completed much less
frequently than DevOps-oriented construction iterations (e.g.,
major production releases twice a year and minor releases every
three months). Carefully planned releases make it possible to
prepare the organization for change through training, data
preparation, changes in formal organizational roles,
negotiations regarding contracts particularly in unionized
environments, etc. It is essential that SA&D courses emphasize
the importance of this preparation as part of the overall systems
project process.

3. OVERALL STRUCTURE OF THE FRAMEWORK

Having introduced the areas that we believe will need additional
focus compared to the existing typical practice in SA&D
courses – including those emphasizing agile approaches – we
are specifically proposing a highly generalized development
approach framework that addresses the following key needs:

• Development projects need to be based on an
articulation of organizational goals and the
organizational target/future state that the target system
needs to enable. The goals set for the organizational
change enabled by the system should be understood by
all actors in the development process. Detailed project
planning is not possible until the core business
transformation needs of the client organization have
been articulated. Even highly agile organizations
generally need an articulated goal for the change
initiative enabled by the project. This future state
analysis is typically supported by current state analysis,
which fundamentally helps define incremental scope by
contrasting the future visions with existing capabilities
and may help the project find inconsistencies and
technical problems that the organization was not aware
of earlier.

• Increasingly, many systems development projects use
systems and systems components acquired from
external sources as components of the target system.
These may include commercial-off-the-shelf (COTS)
products, open source projects, components, and so on.
Planning a development project is not possible without
a solid understanding of the role these external systems
and systems components play in the process. This, in
turn, depends on developing a solid understanding of
requirements to determine which components of the
solution should be externally versus internally sourced.
Equally important is to understand the sources and costs
of human resources that will need to be used in project
implementation from the perspective of configuration
versus development. For example, a project
emphasizing the configuration of third-party software
would tend to need relatively more business analysts
and fewer developers.

• Despite the recognized strengths of agile approaches to
systems development, they still suffer from the key
challenge that the underlying philosophy of promoting
flexible scope, when fully implemented, may conflict
with ensuring that a project should be able to deliver a
minimum fixed scope (minimum viable product, or
MVP, or minimum viable solution, or MVS) in
conjunction with a fixed budget and fixed schedule.
Further, the need to manage customer expectations by
explicitly limiting maximum scope is also often
neglected. In case a combination of minimum fixed
scope, budget, and schedule is required, an organization
needs to be able to make methodological choices that
allow this. Students taking an SA&D course need to
learn to understand the close linkage between
development approach options and the relationship
between scope, budget, and schedule.

Journal of Information Systems Education, Vol. 30(4) Fall 2019

258

• The target organization adopting new systems
capabilities needs to implement them effectively using
change management techniques. This needs to be
considered carefully when planning the mechanisms
through which the new software is introduced to the
organization. The software construction schedule
should not dictate the system release schedule.

• Provide multiple opportunities to assess the return on
investment, either explicitly in financial terms
comparing development costs versus business benefits
or else conceptually in general terms of supporting the
organization’s mission. This will provide an ability to
make “go/no-go” decisions as the project progresses
and costs and benefits estimates are progressively
refined for greater accuracy.

Given the principles specified in the previous section and

the needs articulated above, we propose a framework depicted
in Figure 1 which consists of the key, high-level activities
described below. Note that a) these are intentionally not called
stages to avoid the impression that they are all required and
always executed in the same order and b) the size of the
graphical elements does not reflect the relative length of the
activities – for example, an agile project with emerging
requirements could consist almost entirely of the iterative
construction activity.

3.1 Initial Visioning
Within this activity, the idea of the project is identified and
articulated in the form of an initial vision (typically a brief
narrative document articulating the key business problem or
opportunity to be addressed, potentially paired with early, high
abstraction-level visual models describing system requirements
and associated anticipated business benefits). Based on this
initial articulation of the project characteristics and associated
screening-level cost and benefit estimates, the project is either
deemed to be sufficiently important to justify immediate further
exploration, set aside to wait, or abandoned. It is also possible
that a project is found to be interesting but not at a level that
would justify enterprise-level attention and resources; in these
cases, the idea could be explored further in a Proof of Concept
type of project. The nature of the project as envisioned within
this activity contributes also to the initial determination of the
most appropriate project approach on the spectrum from plan-
driven to agile.

From the pedagogical perspective, a discussion regarding
initial visioning will allow the students to learn about multiple
potential sources of project ideas; the concepts of incremental,
gradually increasing funding commitments and go/no-go
decisions; high-level articulation of project goals and
implementation ideas; and the alignment between project
approach and other key characteristics of the project.

Figure 1. Proposed Development Process Framework

Journal of Information Systems Education, Vol. 30(4) Fall 2019

259

3.2 Business Analysis
In the proposed model, the business analysis activity consists of
four primary sub-activities: 1) analysis and articulation of the
current state characteristics of the target area (at least from
domain and process modeling perspectives); 2) identification
and articulation of the key changes that the system should
enable within the target area; 3) analysis and articulation of the
future state characteristics of the target area (again, both from
domain and process modeling perspectives); and 4) the initial
system requirements specification with high-level user stories
and user interface prototypes. The importance of current state
analysis and future state analysis may be established by noting
that initial requirements – capabilities that do not yet exist and
therefore need to be built or acquired – are generated by
conceptually subtracting the current state capabilities from the
overall future state capabilities. By the time of completion of
the business analysis activity, the organization and the
development team have developed a much better understanding
of the domain of interest, its key business processes, the
relevant organizational actors within the domain, and the ways
in which the system to be developed will enable the various
organizational roles to achieve their goals. The goals are
articulated with user stories that form the core requirements
specification for the system of interest.

Importantly, note that this level of requirements analysis is
not a direct predecessor to systems construction. Rather, it is
preparation for key project planning activities, as described in
the next section. Naturally, the results of this activity will later
guide functional design (if conducted) and construction. Any
decisions made by this time regarding the project approach will
have an impact on the level of details of business analysis. For
example, if the organization has decided to use an agile
approach to systems development, it is likely that the project
will expend less time and focus on requirements specification
given the agile projects’ focus on emergent requirements.

Pedagogically, this activity enables the coverage of a
number of essential concepts and skills, including:

• Process modeling: typically with the Unified Modeling

Language (UML) activity diagram or Business Process
Modeling Notation (BPMN)

• Domain modeling or conceptual data modeling:
typically with the UML class diagram grammar or
Extended Entity-Relationship diagram (EER)

• Deriving epics and user stories
• Early-stage, low-fidelity user interface models: with

wireframes, mock-ups, or prototypes (but not yet for UI
design purposes; the intent is to provide customers with
illustrations that are easier to understand than textual
descriptions).

3.3 Project Planning and Implementation Approach
Selection
The results of the business analysis activity form a foundation
for project planning, with the assumption that the systems
development project is driven by the desired changes in the
human activity of interest articulated in the future state analysis.
Project planning is divided into multiple sub-activities in the
model, including the following:

1. Before moving forward with the implementation
approach selection, the first needed action is to evaluate
the project’s initial feasibility based on the results of
business analysis. At this point in the process, it should
be possible to create an early stage economic analysis,
determine whether or not the project is technically
possible to implement, analyze the implications of a
reasonable project schedule, consider the legal and
political implications of the project, and establish the
availability of funding, all typical elements of project
feasibility. Again, a go/no-go decision process will be
considered. It is possible that at this point the results of
the analysis suggests that the project should not
continue because it is likely that its implementation is
not feasible, leading to discontinuation of the project.

2. Selecting key characteristics of the implementation
approach, including buy versus build and sourcing of
implementation resources. Increasingly, the chosen
approach integrates system components from multiple
sources and uses many different types and sources of
resources. Thus, buy versus build is not, in practice,
merely a decision between internal development and
procuring an external software package; instead, the
analysis might lead to the conclusion that the ultimate
systems solution will utilize elements from
commercial-off-the-shelf (COTS) and/or open source
offerings integrated with or augmented by internal
development. Components acquired from external
sources may be available as a cloud-based solution or
provisioned on-premises, or both. Similarly, the model
chosen for sourcing of resources may lead to a complex
integration of salaried employees, individual
contractors, and contract employees from consulting
firms.

3. Assuming the previous analysis suggests the use of one
or more externally sourced products or components,
then a selection process may be needed to evaluate
and select those external possibilities. This, in itself,
may amount to a small project, including soliciting
information from vendors or open source project
groups, for example: requests for proposal (RFPs),
requests for information (RFIs), demonstrations,
sandbox implementations, Proof-of-Concept
integrations, pricing negotiations, and so on. More
generally, the mix of externally and internally sourced
capabilities will provide the basis for overall resourcing
decisions: external software code, software
construction labor resources, software configuration
labor resources, and so on.

4. Based on decisions regarding the characteristics and
sources of a project’s software components, sourcing of
the project’s creative resources, and the development
approach, creating a draft set of key project documents,
including a refined articulation of project vision
incorporated into a statement of work and an analysis
of business benefits and systems costs, building on the
findings of business analysis. Also at this point, it will
be possible to make further decisions regarding the
optimal development approach. As discussed above,
some projects justify the use of a highly agile approach,
others a hybrid approach incorporating significant up-

Journal of Information Systems Education, Vol. 30(4) Fall 2019

260

front requirements analysis and functional designs with
iterative construction, and still others (although less
frequently) a highly plan-driven (traditional SDLC)
approach. This complex decision should be evaluated
based on all of the factors shown in Table 1. Based on
all this work, another go/no-go decision is made to
either move on with the project or discontinue it.

Pedagogically this activity will introduce a number of

highly important concepts and skills: a more detailed
understanding of key project elements (feasibility analysis,
statement of work, and early cost-benefit modeling); a rich
description of the options available in the buy versus build
decisions; a recognition that creative resources for software
development, configuration, and deployment come from a
variety of sources, which have to be carefully selected; an in-
depth understanding of the factors that impact the selection of
an appropriate development approach; a process for selecting a
specific approach; and an enforcement of the concept of
increasingly detailed cost-benefit analyses.

3.4 Functional Design Specification
Based on the results of the project planning and implementation
approach selection activity, the project may or may not decide
to engage in detailed functional design specifications,
depending on the selected methodological approach.

The functional design process specifies in a manner visible
and meaningful to business users the details of how the system
will solve the business problem. The deliverables of functional
design are clearly distinct from technical design artifacts such
as design class diagrams and sequence diagrams, which are
typically only utilized by IT staff members.

If the organization has decided to use a highly agile
approach for the construction phase of the project, functional
design specifications are not necessary because agile
requirements specification is emergent and takes place right
before construction based on the initial ideas generated by user
stories. Furthermore, the extent to which certain functional
design documents are needed also depends on the software
solution sourcing approach. For example, in the case of a
project that is entirely based on a SaaS or COTS solution,
functional design specification in the form of use cases or
detailed UI/UX prototypes might be much less important than
in a project in which software is developed largely from scratch.

When conducted, functional design uses output from
business analysis as its foundation: the purpose of the systems
solution is, after all, to enable the business transformation
envisioned in business analysis. In addition, the business
analysts responsible for the creation of the functional
specification conduct further requirements discovery and
structuring activities. The primary deliverables from this
activity for internal development or integration code include
use cases and/or use case slices. In this context, “slices” refer to
refinements of use cases intended to groom the backlog so that
it can be constructed in a series of non-overlapping sprints and
consisting of a single software technology per slice (Jacobson,
Spence, and Kerr, 2016). Cockburn (2001, p. 169) refers to a
similar concept with the term use case “splitting.” User
interface mock-ups or prototypes are also used to clarify the
specification and make it more concrete, especially for
capabilities developed internally. The mock-ups and prototypes

developed as part of the functional design are significantly more
detailed than those created earlier as part of business analysis.

In general, at the enterprise level, the functional design
artifacts will be completed ahead of the construction sprints,
although the exact degree and sequencing of up-front planning
will differ from project to project, depending on the earlier
decisions regarding the level of agility of the project: some
projects engage in significant “Big Requirements Up-Front,”
others may elaborate requirements in “shadow sprints” one to
two iterations ahead of construction, while in others, the
requirements may be fully emergent, determined right before or
concurrently with construction without any pre-specification.
The choice between plan-driven and agile is not binary but
varies on a scale. For example, Serrador and Pinto (2015) used
the extent to which the project’s overall requirements planning
was conducted prior to starting software construction as one of
the measures of the agility of the project.

Pedagogically, the functional design activity addresses an
important set of concepts and skills, particularly those related
to methods of specifying requirements at a detailed level:
detailed use case narratives (fully dressed user goal level use
cases in Cockburn’s (2001) terminology) and detailed user
interface mock-ups and prototypes. It is also possible to
introduce system sequence diagrams here to provide additional
specificity for the fully dressed use cases. Moreover, the
activity introduces the students to the question regarding the
extent to which detailed functional design is necessary,
depending on earlier decisions regarding the nature of the
development approach.

3.5 Specifying Initial Technical Architecture and Technical
Design
This activity recognizes the potential role of the development
of initial technical architecture and high-level technical design
as a foundation for more refined budgeting and, ultimately in a
more detailed form, architecture and design for iterative
construction.

Within this activity, the project addresses key questions
regarding the provision of data storage, processing, and
communication capabilities. Furthermore, it identifies relevant
organizational data resources, shared software component
libraries, and details of user experience technologies, also
finalizing the characteristics of the development and
deployment stack used for the project. Pedagogically, this
activity is an important opportunity to demonstrate to the
students the impact of technical architectural choices on the
business case for the project.

In some cases, this activity does not require any additional
work, for example when a systems project extends an effective,
existing enterprise architecture within the organization. Still, it
is important to at least evaluate possible revisions or extensions
to a technical architecture.

3.6 Final Project Approval and Execution Planning
If the selected development approach requires detailed
functional design, that activity will make a significant
contribution to the development of the final project plan for
software construction: more detailed specifications will enable
more accurate estimation and initial sizing of the construction
backlog items. The need for this kind of planning is a hallmark
of enterprise-level projects, where large budgets in absolute

Journal of Information Systems Education, Vol. 30(4) Fall 2019

261

terms tend to require more documented work to obtain needed
budget approvals. Further, this is needed to combat the specter
of the “planning fallacy,” which is the well-documented risk of
systematically underestimating project costs – this risk is
magnified at the large scales of enterprise-level projects
(Shmueli, Pliskin, and Fink, 2016).

More accurate estimation will, in turn, be an important
contribution to a refined business case. In small-scale, fully
agile projects that skip the functional design activity, there
might not be a need (or any additional information) for any
further action related to the business case. In either case, at this
stage, it is time for the final approval of the project’s budget via
a business case and the development and approval of a project
charter.

Once the project has been approved, it can move forward to
an appropriate level of revised execution planning, including
the preparation for construction, configuration, and the
organizational change that is always part of any substantial
systems development project. In execution planning,
particularly for enterprise-level systems, it is likely that it will
be necessary to map stories to sprints in advance to ensure the
likelihood of delivering an MVP capability in the time and
budget contemplated. The nature of iterative construction
means, in practice, that those mappings will be revised as the
project progresses, which is acceptable as long as the guardrails
specified in hybrid planning are not violated. The intent is to
develop backlog items sized so that they can be implemented in
a single sprint, based on the planned length of the iterations and
an understanding of the development team’s capabilities.

The finalization of the technical execution plan and the
change management plan may lead to an improved cost-benefit
analysis and have an impact on the budget.

One of the most difficult dimensions of an enterprise-level
SA&D project to incorporate successfully into an educational
experience is the actual organizational deployment of systems
capabilities (including planning and preparation for the
deployment). As discussed above, it is essential that the
students understand the essential role of preparing the target
organization for the change that successful software-enabled
organizational transformation requires. The framework
includes planning and preparation of the organization for
deployment for all types of projects, including the highly agile
ones.

3.7 Finalizing Technical Architecture
Execution planning discussed above may reveal characteristics
of the project that require additional refinement of the technical
architecture initially specified before final project approval.
Regardless of the chosen project approach, it is beneficial if
design and construction are based on well-defined architectural
choices for elements such as data management, software
design, inter- and intra-system communication, use of hardware
at premises or cloud-based solutions, services and components,
and systems security. Pedagogically, this activity offers an
excellent opportunity to demonstrate how various elements of
system architecture enable effective design and construction.

3.8 Iterative Design, Construction, and Configuration
The proposed process framework assumes that the construction
and configuration of deployable systems capabilities will take
place using an iterative process. The specific features of

construction vary somewhat depending on the overall process
characteristics: If the overall process approach is highly agile,
construction is naturally integrated into the overall iterative
structure together with emergent requirements and design. In
hybrid projects, however, at least functional requirements and
often also functional design are specified before construction
starts (although, as noted earlier, a degree of revision within the
“guardrails” scope is possible during construction). Unlike
highly plan-driven processes, hybrid processes do not include
one long, monolithic construction stage that leads to a single,
potentially very large deliverable. Thus, most aspects of Scrum
are maintained (excluding emergent requirements) in hybrid
processes: fixed-length, short iterations; self-organizing teams;
active role of a product owner; initial planning, brief daily team
meetings, and a review and retrospective at the end of each
iteration. The main difference between agile and hybrid
approaches is that in hybrid processes, the initial project
backlog has already been elaborated into significant functional
requirements details, allocated to iterations according to
project-level plan, and scheduled for the duration of the project.
This, in turn, allows the specification of expected project
completion time and an upper limit of project costs for a
specific minimum set of system capabilities.

Compared to hybrid, agile processes do exhibit some clear
differences: in them, project teams make decisions regarding
the backlog items they select for each of the iterations,
requirements are not pre-specified but emerge from
communication between the developers and the product owner,
and there are no specific commitments regarding a budget,
scope, and schedule combination. Put more succinctly, agile
utilizes fixed budget and time, but flexible scope beyond MVP.
In contrast, hybrid utilizes fixed budget and time, but semi-
flexible scope guaranteeing a minimum viable product also
constrained by a maximum scope limit (i.e., explicitly
excluding “Won’t Have” features). Pure plan-driven processes
(with a single, lengthy construction and testing stage) are quite
rare today, as the benefits of receiving and incorporating
frequent customer feedback after iterations are manifest. Thus,
we recommend that in SA&D education contexts the focus
should be on agile and hybrid approaches.

In pedagogical contexts, it is important to note and
emphasize that iterative construction may consist of a rich
variety of activities depending on the nature of the project. In
some projects, most of the work consists of configuration (of
COTS and SaaS solutions); in others, externally developed
components are integrated together (“glue code”) with
internally developed modules and extended user interfaces
(“surround code”); and in others all software capabilities
required in a project are constructed fully from scratch.

We believe that SA&D course projects that are sufficiently
long to enable iterative construction combined with
requirements specification and functional design are clearly
more effective in helping students understand the end-to-end
complexities of a systems development project compared with
course projects that are limited to only requirements
specification or only iterative construction. One possible way
to enable iterative construction in a semester-long project is to
use one of the low-code, high-abstraction level development
platforms, such as Mendix or Salesforce. Such low-code
platforms help overcome two barriers to engaging in software
construction in an SA&D course: first, that many SA&D

Journal of Information Systems Education, Vol. 30(4) Fall 2019

262

students lack the low-level programming skills to create
software and, second, that low-level programming languages
require too much time to create reasonably complex and
realistic software in the context of a one-semester SA&D
course.

4. KEY BENEFITS OF THE PROPOSED

FRAMEWORK

The proposed hybrid framework offers many advantages as a
foundation for an SA&D course compared to primarily plan-
driven and primarily agile approaches. These include the
following:

• Recognizes formally the importance of determining an
appropriate level of planning across all types of
projects, including agile ones.

• Recognizes formally the general need to base
requirements specification on business analysis,
including domain modeling, current and future state
business process and domain modeling, and early-stage
user interaction prototypes/wireframes (the latter
especially when internal development is utilized).

• Recognizes that in many contexts it is important to be
able to execute projects with a fixed time, a fixed
budget, and a certain minimum project scope necessary
to deliver business value (the “MVP” or “Minimum
Viable Product”), as well as a maximum scope
definition in some circumstances.

• Supports the determination of internal versus external
sourcing of software, including the use of the same
overall model for projects based on internal
development and projects that focus on the
configuration of system components procured from
external vendors (COTS, SaaS, etc.).

• With respect to the previous point, the framework calls
for extending the base requirements specification to
detailed functional designs only in circumstances
where that is appropriate (i.e., when the software will
be built from scratch rather than sourced from external
products or components).

• Supports appropriate go/no-go decisions at multiple
points in the project. Further, supports the more formal
level of planning and project approvals that are
typically required in enterprise-level projects, including
expanded estimation that is appropriate to mitigate
planning fallacy risks at the enterprise level.

• Addresses the need to evaluate, design, and/or revise
technical architectures at multiple points during the
project.

• Through iterative development, recognizes the
importance of learning that takes place during the
project execution and the changes that occur because of
the changing environment and learnings resulting from
iterative development itself.

• Maintains the demonstrated benefits of agile
development and integrates them with the benefits of
guidance from business analysis–based requirements
specification.

• Provides a balance between the streamlined efficiencies
of agile-style DevOps continuous integration and

deployment innovations with the on-going need at the
enterprise level to engage in needed change
management planning, including addressing business
policies and procedures, training, user testing, and data
preparation.

• Finally and above all, provides students with a unified
and adaptable overall SA&D toolkit, ranging from
highly agile to highly plan-driven, that can be
effectively tailored to work effectively from the
smallest, simplest projects to large, complex, and
highly consequential projects at the enterprise level.

5. CONCLUSION

In this paper, we have proposed a generalized systems
development process framework for SA&D courses that is
based on the key idea that different systems projects need
different project activities and structures and different systems
development approaches. The proposed framework supports
enterprise-level projects fully, but it can also be selectively
scaled back toward increased agility to effectively support
smaller, less complex projects.

The framework addresses several aspects of systems
development projects and SA&D education that most existing
frameworks and approaches either ignore entirely or discuss
only in a cursory way. The most important ones of these include
the following:

1. The framework specifically and intentionally addresses

the role of various commonly used external sources of
software capabilities, including COTS, SaaS, open
source components, and their integration with
internally developed components.

2. The framework recognizes the essential but varying
role of planning at different levels of systems
development. We specifically suggest that every
project should include certain planning activities to
ensure that the development project itself is conducted
using the most efficient and effective approach.

3. The framework takes explicitly into account the
inherent integration between the outcomes of systems
development and the change processes that deployment
of systems capabilities into the organization enables
and/or requires. It also explicitly addresses the need for
planning for organizational change management as an
essential component of systems deployment.

In general, the framework creates a unified pedagogical

foundation for teaching SA&D via a comprehensive, highly
adaptable framework combining the strengths of both agile and
plan-driven approaches.

We hope that this framework will be useful by providing
foundational and architectural support for SA&D courses so
that it will be easier for faculty members to recognize the
diverse modeling and project management needs of different
types of systems development initiatives.

This paper itself is a step in a lengthy process through which
we are introducing these ideas in an integrated form for
feedback and consideration to the academic and practitioner
communities. We hope it will initiate active discussion among

Journal of Information Systems Education, Vol. 30(4) Fall 2019

263

those who teach system analysis and design and design
curricula for IS programs.

6. ACKNOWLEDGEMENTS

An early, materially different version of this article was
published in the proceedings of the 2018 SIGSAND
Symposium. We gratefully acknowledge the valuable feedback
from SIGSAND reviewers and conference attendees.

7. REFERENCES

Ambler, S. & Lines, M. (2012). Disciplined Agile Delivery.

Indianapolis, IN: IBM Press.
Boehm, B. & Turner, R. (2004). Balancing Agility and

Discipline: A Guide for the Perplexed. Boston, MA: Pearson
Education.

Chuang, S., Luor, T., & Lu, H. (2014). Assessment of
Institutions, Scholars, and Contributions on Agile Software
Development (2001-2012). The Journal of Systems and
Software, 93, 84-101.

Cockburn, A. (2001). Writing Effective Use Cases. Upper
Saddle River, NJ: Pearson Education.

Couger, J. D. (1973). Curriculum Recommendations for
Undergraduate Programs in Information Systems.
Communications of the ACM, 16(12), 727–749.

Dybå, T. & Dingsøyr, T. (2008). Empirical Studies of Agile
Software Development. Information and Software
Technology, 50(9-10), 833-859.

Fowler, M. (2003). Patterns of Enterprise Application
Architecture. Upper Saddle River, NJ: Pearson Education.

Gruver, G. & Mouser, T. (2015). Leading the Transformation:
Applying Agile and DevOps Principles at Scale. Portland,
OR: IT Revolution.

Jacobson, I., Spence, I., & Kerr, B. (2016). Use-Case 2.0.
Queue, 14(1), 94-123.

Knaster, R. & Leffingwell, D. (2018). SAFe 4.5 Distilled:
Applying the Scaled Agile Framework for Lean Enterprises.
Boston, MA: Addison-Wesley Professional.

Larman, C. & Vodde, B. (2017). Large-Scale Scrum: More with
LeSS. Boston, MA: Pearson Education.

Leffingwell, D. (2007) Scaling Software Agility: Best Practices
for Large Enterprises. Boston, MA: Pearson Education.

Luftman, J., Papp, R., & Brier, T. (1999). Enablers and
Inhibitors of Business-IT Alignment. Communications of the
Association for Information Systems, 1(3), Article 11.

McConnell, S. (2006). Software Estimation: Demystifying the
Black Art. Redmond, WA: Microsoft Press.

Nunamaker, J. F., Couger, J. D., & Davis, G. B. (1982).
Information Systems Curriculum Recommendations for the
80s: Undergraduate and Graduate Programs.
Communications of the ACM, 25(11), 781–805.

Petersen, K., Badampudi, D., Shah, S. M. A., Wnuk, K.,
Gorschek, T., Papatheocharous, E., Axelsson, J., Sentilles,
S., Crnkovic, I., & Cicchetti, A. (2018). Choosing
Component Origins for Software Intensive Systems: In-
House, COTS, OSS or Outsourcing? – A Case Survey. IEEE
Transactions on Software Engineering, 44(3), 237-261.

Rosemann, M. & vom Brocke, J. (2015) The Six Core Elements
of Business Process Management. In Handbook on Business
Process Management 1, 105-122, Springer Berlin
Heidelberg.

Rubin, K.S. (2013) Essential Scrum: A Practical Guide to the
Most Popular Agile Process. Upper Saddle River, NJ:
Pearson Education.

Serrador, P. & Pinto, J. (2015). Does Agile Work? — A
Quantitative Analysis of Agile Project Success. International
Journal of Project Management, 33(5), 1040-1051.

Shmueli, O., Pliskin, N., & Fink, L. (2016) Can the Outside-
view Approach Improve Planning Decisions in Software
Development Projects? Information Systems Journal, 26(4),
395-418.

Spurrier, G. & Topi, H. (2017). When is Agile Appropriate for
Enterprise Software Development? Proceedings of the
Twenty-Fifth European Conference on Information Systems
(ECIS), Guimarães, Portugal.

Topi, H. & Ramesh, V. (2002). Human Factors Research on
Data Modeling: A Review of Prior Research, an Extended
Framework and Future Research Directions. Journal of
Database Management, 13(2), 3-19.

Topi, H., Karsten, H., Brown, S. A., Carvalho, J. A., Donnellan,
B., Shen, J., Tan, B. C. Y., & Thouin, M. F. (2017). MSIS
2016: Global Competency Model for Graduate Degree
Programs in Information Systems. Communications of the
Association for Information Systems, 40(1).

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K., Nunamaker,
J. F., Sipior, J. C., & de Vreede, G. J. (2010). IS 2010:
Curriculum Guidelines for Undergraduate Degree Programs
in Information Systems. Communications of the Association
for Information Systems, 26(18).

Turk, D., France, R., & Rumpe, B. (2005). Assumptions
Underlying Agile Software Development Processes. Journal
of Database Management, 16(4), 62–87.

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-
Scrum-Fall is the Reality of Agile for Most Organizations
Today. Forrester Research. Retrieved from
https://www.forrester.com/report/WaterScrumFall+Is+The+
Reality+Of+Agile+For+Most+Organizations+Today/-/E-
RES60109.

AUTHOR BIOGRAPHIES

Heikki Topi is a professor of computer information systems at

Bentley University. His Ph.D. in
management information systems is
from Indiana University. His
research focuses on systems
development methodologies,
information systems education, and
human factors and usability in the
context of enterprise systems. His
scholarly output includes journal
articles, conference papers, large-
scale edited volumes, textbooks, and
curriculum recommendations

(including IS2010 and MSIS2016, the latest IS curriculum
revisions as task force co-chair). He is currently Vice President
of Education for the Association for Information Systems.

Journal of Information Systems Education, Vol. 30(4) Fall 2019

264

https://www.forrester.com/report/WaterScrumFall+Is+The+Reality+Of+Agile+For+Most+Organizations+Today/-/E-RES60109
https://www.forrester.com/report/WaterScrumFall+Is+The+Reality+Of+Agile+For+Most+Organizations+Today/-/E-RES60109
https://www.forrester.com/report/WaterScrumFall+Is+The+Reality+Of+Agile+For+Most+Organizations+Today/-/E-RES60109

Gary Spurrier is an assistant professor of management
information systems at the
University of Alabama. He has held
many industry positions in
information technology, including
CIO, COO, project leader for
enterprise-level software projects,
commercial off the shelf (COTS)
software product manager, and IT
and operations consultant. He
earned his Ph.D. in MIS at Indiana
University. His research focuses on
enterprise software development

and systems analysis and design.

Journal of Information Systems Education, Vol. 30(4) Fall 2019

265

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2019 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	1. Introduction
	2. PRINCIPLES UNDERLYING THE PROPOSED FRAMEWORK
	2.1 Development Approach Selection
	2.2 Internal Development vs. Packaged Software and Components
	2.3 Meaningful Estimation and Valuation via Planning
	2.4 Understanding the Need for Requirements Analysis and Design Artifacts
	2.5 Need for a Broad Range of Competencies
	2.6 Enabling Planned Organizational Change

	3. overall structure of the framework
	3.1 Initial Visioning
	3.2 Business Analysis
	3.3 Project Planning and Implementation Approach Selection
	3.4 Functional Design Specification
	3.5 Specifying Initial Technical Architecture and Technical Design
	3.6 Final Project Approval and Execution Planning
	3.7 Finalizing Technical Architecture
	3.8 Iterative Design, Construction, and Configuration

	4. KEY BENEFITS OF THE PROPOSED FRAMEWORK
	5. conclusion
	6. ACKNOWLEDGEMENTS
	7. References

