
Journal of Information Systems Education, Vol. 19(4)

375

Teaching Tip

Tools and Techniques for Simplifying the Analysis of
Captured Packet Data

Thomas P. Cavaiani
Department of Information Technology and Supply Chain Management

College of Business and Economics
Boise State University

Boise, Idaho 83725, USA
tcavaiani@boisestate.edu

ABSTRACT

Students acquire an understanding of the differences between TCP and UDP (connection-oriented vs. connection-less) data
transfers as they analyze network packet data collected during one of a series of labs designed for an introductory network
essentials course taught at Boise State University. The learning emphasis of the lab is not on the capture of the data, but
instead on the analysis that follows. By assisting students in developing techniques to filter large batches of data using open-
source tools, they gain considerable insight into the differences between aforementioned protocols.

Keywords: Effective Instruction, Data Filtering Techniques, Packet Analysis, Networking, File Transfer

1. INTRODUCTION

The introductory networking essentials course that I co-teach
with one of my colleagues includes a weekly lab session. I
have developed a set of thirteen labs for this course (see
http://telecomm.boisestate.edu/itm305l.fall.2008/). This teach
ing tip describes lab 10, which provides students with
experience in capturing and analyzing data transferred over a
TCP/IP network.
 Specifically the lab examines packets transferred from
server to client during the download of a “large” file,
approximately 1 megabyte in size, using FTP and TFTP.
FTP transfers files in a reliable, connection-oriented fashion
using TCP as its transport layer protocol, while TFTP
transfers files using a connection-less approach supported by
the UDP transport layer protocol.
 The purpose of the lab is to allow students to collect and
analyze data so that they can visualize the differences in
complexity of the two transport layer protocols, TCP and
UDP. TCP is more complex than UDP. TCP clients establish
logical connections to TCP servers before data transmissions
take place. All data segments traverse the same logical path
between sender and receiver. TCP segments consist of a TCP
header and a payload that contains application data. TCP
uses a sliding window protocol to determine segment sizes.
Acknowledgements are sent after segments have been
received (Liebeherr and El Zarki, 2004).

 UDP is a very simple protocol. UDP adds a small header
to application data. The result is called a UDP datagram.
When a UDP datagram is transmitted, it is encapsulated with
an IP header and delivered using a connection-less approach,
i.e., datagrams take whichever path is available from sender
to receiver on the network. A separate acknowledgment is
sent for each datagram that is received (Liebeherr and El
Zarki, 2004).
 In general, one might expect that a UDP transfer would
take more time than the equivalent TCP transfer, because of
the additional number of acknowledgements transmitted by
UDP. On the other hand, since TCP must establish a virtual
connection between sender and receiver, and supports
numerous functions that UDP does not, one might expect
that this additional overhead would make TCP transfers
slower than UDP transfers. This lab is designed to instruct
students on the use of tools and techniques that will help
them determine how the features of each protocol affect its
performance. Students learn how to use the Wireshark packet
analyzer and the UNIX grep command to capture and
analyze data to help them determine performance differences
in TCP and UDP protocols. Wireshark
(http://www.wireshark.org/) is a free program that can be
configured to capture all network packets sent to a computer.
The grep command is a filtering program that can quickly
extract data subsets from large data files. Grep was originally
a UNIX utility, but Windows versions are now available at
http://gnuwin32.sourceforge.net/packages/grep.htm .

mailto:tcavaiani@boisestate.edu�
http://telecomm.boisestate.edu/itm305l.fall.2008/�
http://www.wireshark.org/�
http://gnuwin32.sourceforge.net/packages/grep.htm�

Journal of Information Systems Education, Vol. 19(4)

376

2. PROCEDURES

2.1 UDP File Transfers
Students begin by configuring Wireshark to capture all
packets sent to their client computer. While Wireshark runs
in the background, students start a TFTP session and
download a “large” one megabyte file stored on a TFTP
server. After downloading the file, students stop the
Wireshark capture and answer a set of questions pertaining
to the number, size, and content of the packets captured, and
calculate the actual time required to download the file
(Liebeherr and El Zarki, 2004).

2.2 TCP File Transfers
The procedure required for the FTP download is similar to
that used for TFTP file transfers. Students start a Wireshark
capture, login to the FTP server, and download the “large”
file. When the download is complete, students stop the

capture and answer a set of questions similar to the TFTP
question set described above. Detailed instructions for this
part of the lab are available at:
http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/lab_
10__packet_capture_and_anal.htm .

2.3 Captured File Formats
The Wireshark data captures are quite large. Over 35,000
lines are required to display all of the details of the FTP
download. By default, Wireshark provides a summarized
view of the packets captured. The Wireshark interface
supports expansion of the default display so that packet
details can be viewed. The detailed view includes all header
information for all protocols involved in the file transfer,
grouped by Internet Model layer. See Figures 1 and 2 for
samples of these views for the TFTP download session.
Since the detailed listing is extremely long, only a partial
listing of the first frame captured is shown in Figure 2.

Figure 1. Partial Wireshark Summary Display

Figure 2. Partial Wireshark Detailed Display of Frame 1

http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/lab_10__packet_capture_and_anal.htm�
http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/lab_10__packet_capture_and_anal.htm�

Journal of Information Systems Education, Vol. 19(4)

377

2.4 Data Analysis
Visual analysis of packet captures is quite tedious. To simply
the process of packet analysis, Wireshark provides display
filters that allow the user to extract and display specific
subsets of data captured. These tools have a rather complex
syntax, which requires some practice to master. Therefore, in
this lab, emphasis is placed on instruction of filtering
techniques. The task of gaining insight into the
characteristics and performance differences between TCP
and UDP is greatly simplified when these filters are applied.

Listed below are examples of the techniques that
students learn during this lab:

1. Apply display filters to eliminate all packets except
those sent between sender and receiver. The filter ip.addr ==
clientIPaddress && ip.addr == serverIPaddress, eliminates
all packets transferred to client and server by other
computers.

2. Apply a filter to eliminate all protocols except the
protocol of interest. For example, the filter protocol = ftp-
data eliminates all packets that do not include FTP data.

3. Combine filters to further refine the data display – For
example, combining the above two filters eliminates all
packets not pertaining to the FTP download for the two
computers involved. See Figure 3.

4. Check the status bar for packet counts - The
Wireshark status bar displays both the total number of
packets captured and the number of packets displayed as a
result of filtering. See Figure 3.

5. Use the grep command. Wireshark capture files can be
saved as text files, which can be filtered with the grep
command. The grep command keys on substrings to extract
and display different lines of a file. Grep has a very simple
syntax that students learn quickly (an excellent tutorial is
available at http://www.panix.com/~elflord/unix/grep.html).
For example, the command grep "ACK"
ftpSummaryLarge.rtf, displays only those lines in
ftpSummaryLarge.rtf that contain the substring ACK. To
illustrate the power of grep, consider the following question:
How many of the packets exchanged in the transfer carry a
payload? Issuing grep –c “Data” tftpSummaryLarge.rtf,
instantly reduces a file of over 2800 lines into a single
number, 1404, the number of packets that carry a data
payload. Since we know that UDP sends one
acknowledgement for each datagram received, students also
immediately know the number of
acknowledgementsexchanged, as well as the fact that very
few of the packets transferred were control (non-data)
packets.

Figure 3. Wireshark interface with Display Filters

http://www.panix.com/~elflord/unix/grep.html�

Journal of Information Systems Education, Vol. 19(4)

378

Filters based upon the above suggestions permit students to
answer all of the questions posed for this lab, as well as
others. For a list of additional filters that might be used in
this lab see
http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/Lab
%2010%20Answers.htm .

2.5 Evaluating Protocol Performance
This lab also helps students learn how to analyze the
performance of transport layer protocols. The default
Wireshark summary display for the FTP download indicates
that about 25.5 seconds were required to complete the
transfer. The TFTP display reveals that slightly less than 5
seconds were required to complete that download. Students
are initially surprised by this result because they believe that,
in general, TCP is a more efficient protocol that should take
less time to transfer files than does UDP. Students quickly
realize that the summary transfer time for FTP is misleading
because it involves virtual circuit establishment and user
authentication, both processes that the TFTP transfer did not
include.
 Apply filtering techniques to the captured data allows
students to obtain more realistic time values, thus providing
them with the data they need to quantify performance
differences between the two protocols. The FTP file contents
can be filtered to eliminate both authentication and control
packets using a simple grep command. Sorting this listing in
ascending order and then subtracting the beginning time
value from the final time value provides students with a
more realistic download time for the transfer of FTP data. In
this case the time was about 0.8 seconds. Grep filtering of
the TFTP data reveals a time of about 1.2 seconds. These
more realistic values provide evidence to confirm the
assumption that, at least for “large” data files, TCP transfers
are faster than UDP transfers.

3. CONCLUSION

The above results, although anecdotal, appear to support the
initial premise that students can gain insights into the
behavior and performance differences between connection-
oriented and connection-less data transfers, after they have
obtained some experience with selected filtering techniques.
At the very least, understanding how to use these filtering
techniques greatly simplifies the amount of effort that
students must expend to analyze the data obtained from
packet captures of this type.

4. REFERENCES

Liebeherr, Jorg and El Zarki, Magda (2004), Mastering

Networks – An Internet Lab Manual, Pearson/Addison
Wesley, Boston.

AUTHOR BIOGRAPHY

Thomas P. Cavaiani is a Special Lecturer in the Department

of Information Technology and
Supply Chain Management at Boise
State University. He received his
Ph.D. in Mathematics Education
from Oregon State University in
1988. He has published in the
American Technical Education
Association Journal, the Journal of
Information Systems Education, and
the Journal of Research on
Computing in Education. He has

also published two books on computer and operating system
support, and has written and edited numerous computer
application training manuals. His teaching interests include
Java programming, operating systems, networking, and
telecommunications.

http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/Lab%2010%20Answers.htm�
http://telecomm.boisestate.edu/itm305l.fall.2008/Lab10/Lab%2010%20Answers.htm�

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2008 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

