Data Modeling Using Entity Relationship Diagrams: A Step-Wise M ethod
Chilton, Michael A

Jougré%l of Information Systems Education; Winter 2006; 17, 4; Research Library

Pg.

Journal of Information Systems Education, Vol. 17(4)

Data Modeling Using Entity Relationship Diagrams:
A Step-Wise Method

Michael A. Chilton
Department of Management
College Of Business
Kansas State University
Manhattan, KS 66506
mchilton(@ksu.edu

ABSTRACT

The concept of designing a relational database can be a difficult one for beginning students to assimilate. Evidence of poor
database design in the past ten to fifteen years seems to suggest that educators might need to take a closer look at the way
these concepts are presented in the hopes that student understanding might improve and hence, database design might also
improve. A method for teaching these concepts that emphasizes a “back to basics” approach is presented to directly address
this problem. The method makes use of a simple framework for helping students learn database design that can be used to
supplement any popular text book. The framework is broad so that general information about the design can be obtained, but
expandable so that increasing amounts of detail can be added as the design progresses from the conceptual stage through the
logical stage, without losing sight of the final goal. The method by which the steps of this process are accomplished within the
framework is explained in detail and it is shown how to develop an entity-relationship diagram (ERD) from the information
obtained from the users. Although the E-R model is considered dated by many educators, the proper way to apply the method
is provided and arguments in favor of its continued use are presented. Examples are included to illustrate the salient points
including some which point out common errors and how to address them.

Keywords: Data modeling, Entity relationship diagram (ERD)

1. INTRODUCTION

A data model is a particular way of expressing facts and
how they are related to one another (Connolly and Begg,
2002). Data modeling is the formulation of the data
structure such that the meaning of the data is clear and it is
easily communicated and shared with those who need to
have access to it. Introductory database students often have
difficulty in understanding the modeling process and as a
result, often develop designs that are either inconsistent
with the users’ needs or satisfy only the users’ current
needs. In the latter case problems may occur in the future
when the users’ needs change. When this happens, the
database must either be completely re-designed or what is
more likely, any problems with inconsistency must be
solved programmatically. Utilizing the front end software to
overcome a poor design in the back end suggests that the
programmer is assuming duties normally performed by the
DBMS itself. This represents a tremendous waste of effort
and increases the likelihood of errors.

Poor database designs often result from the inability to
achieve data independence in the data model. Data
independence prevents or reduces the problem of
modification anomalies and allows new and updated
applications to be written without having to change the
structure of the database. One potential reason for this

difficulty is the departure from, or the lack of use of, a
simplified method for identifying, grouping and relating the
relevant facts that users need. Such a method needs to
emphasize finding the answers to four basic questions:

1) what facts should we store;

2) how should we store them;

3) where should we store them; and

4) how are the facts related?

The purpose of this paper is to present a simple, step-wise
method for data modeling whose output, an entity
relationship model, is consistent with the users’ perceptions
of their own needs for data, is generally in 3" normal form,
complies with the two cardinal rules of database design
(entity integrity and referential integrity), and which can be
used to assist the programmer in the formulation of simple
data manipulation queries. The method utilizes a framework
that tabulates the steps to be performed in each phase of the
design process and allows the student to visualize the
progress of the design. The student can remain focused on
the overall goal of database design, and insert additional
detail as the design progresses so that the final product
correctly mirrors the users’ perceptions of the data storage
requirements. Examples are presented to clarify the
methodology and to illustrate both the difficulties that are
commonly encountered by students and how to deal with
them.

385

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

The paper opens by providing a background of and
discussing the need for a simplified framework for
developing data models that can be used along with most of
the database textbooks currently in use. The framework
itself is then presented and its salient features are addressed.
Next is included a discussion of the result—an ERD that
should satisfy 3™ normal form—along with potential errors
that students might make if they unduly influenced by
business processes and fail to correctly apply the
framework. Because this subject is controversial and the E-
R modeling approach is considered dated by many
experienced academics and practitioners, a comparison is
made with class diagrams, a tool used in techniques that
follow the unified modeling language (UML) standard.
Arguments are presented in favor of the continued use of
the E-R approach along with a discussion of the proper use
of class diagrams.

1.1 Background

Recently published evidence shows that database design has
been average to poor in the last decade, when in fact
relational database design, which has now been with us for
long enough to work its way into the lion’s share of systems
in use today, should be flourishing. Blaha (2004) published
the results of eleven years of analyzing database quality and
the surprising result was that overall, database quality is
mediocre at best. Academics agree with Blaha’s findings. In
the preface of his 9" edition, Kroenke (2004) reflects that
he has seen too many databases that are poorly designed.
Although Blaha (2004) emphasizes reverse engineering in
his approach to quality checking, this is an after-the-fact
check that does not address the problems that are introduced
early on in the design cycle. In his own words, he believes
that “universities are not teaching students how to model

software. Many universities teach the syntax of modeling,
but they don’t teach the art and thought processes” (Blaha,
2004, p.24). One interpretation of Blaha's message might be
that educators need to renew their emphasis on the
fundamental building blocks used in data modeling in favor
of newer techniques that unnecessarily complicate the
process by including front end interactions in the back end
data model. Kroenke (2004) decided to renew his emphasis
on the ER model and downplay the semantic object model
for the same reasons. This paper introduces a framework for
data modeling based on the ER model first developed by
Chen (1976) that emphasizes the thought processes
involved in obtaining a valid data model the first time.

Research performed on database teaching methods has been
sparse, especially concerning introductory courses aimed at
students who will become database designers and/or
administrators, and with little or no exposure to the subject.
Ahrens and Sankar (1993) evaluated the use of automated
tutors designed to teach introductory level database
concepts to end users. Their empirical research focused on
those end users with no previous knowledge in database
design. They found that tutors were “moderately effective in
closing the gap between skills required and skills learned by
end users” (Ahrens and Sankar, p. 429). They also found
that the tutors were less effective in teaching data analysis
concepts and decision rule discrimination. This result
suggests that another method for learning these skills might
be appropriate, especially for students whose ambition is to
design and administrate databases as an occupation.
Another study that looked into using automated systems to
teach database concepts was conducted by McIntyre, Pu and
Wolff (1995). They investigated the use of expert systems
as tools in database design. Their study was focused on
advanced graduate students who had previously learned

Authorts) Crientation Data Modeling Approach
Connolly & Begg . Focus is on fact finding and user views;
(2002a, 2002b) BUsiNEss/CS | creating an optimal data modd
Date (2000) CS Semantic modeling
Eimasn & Navathe (2004) cs No method prescribed
Lewis, Bemstein & Kifer (2002) CS No method prescribed
Determine requiremerts, specify entties,
, specity relationships, determire Idertifiers,
Kroenke (2003, 2004) BUSINESS | specify attributes, specify domains, validate
maodel
. (Entities are given), Ioentify primary keys,
Mannino Business | aad retationships, refine the initial design
?’;‘Cg';g?de”- Hoffer & Prescott Business | No method prescribed
Past (2002) Business | No method prescribed
Riccardi (2001) Business | No method prescribed
Rob & Coronel (2002) Business | No method prescribed
Underiine nouns to idertify entities, find
Watson (2004) Business descriptors of entities (attributes), determine
relationships

Table 1: Data Modeling Approach in Current Texts

386

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

relational database design. The focus of this paper is on
introductory database students, and so a different approach
is used.

There are quite a few excellent textbooks that can be used
for teaching an introductory course in database design, all
of which have been written by experienced authors and
academics, yet one shortcoming that seems to be persistent
is the lack of simplicity and clarity in explaining how to
take the information received from the users and transform
it into a data model. Table 1 shows several current
textbooks reviewed in this analysis and the method
presented in each for data modeling.

Although the table indicates that some textbooks have no
prescribed method, these texts do have good discussions of
what entities, attributes and relationships are and how they
interact. In many cases, an example is provided with a given
set of entity types and a discussion regarding their
attributes. Discussion is also provided for enhancing and
improving the design in a second iteration by taking into
account such things as generalization/specialization and
adhering to certain database rules, such as entity and
referential integrity. In many cases these textbooks provide
a thorough discussion of how to obtain documents that
contain data and how to interview users to obtain their
perspectives on information collected by the organization,
but they do not specify a clear method that helps the data
modeler move the extracted data from its raw form into a
finalized database design. In short, they do not provide a
step-wise method that links the thought processes involved
in discovering the facts that the organization and its users
need to store with the resulting data model.

The E-R model was developed by Chen to take advantage
of the strengths of the network model, the relational model
and the entity set model by achieving data independence
and capturing the important semantic information found in
the real world and doing so in a way that produces a more
natural view (Chen, 1976). The E-R diagram is less
confusing and easier to follow for introductory database
students because it provides a pictorial representation of the
data structure. In addition, it allows a programmer to
quickly formulate queries by visually mapping a query to
the data. The E-R approach has been cited as the premier
model for conceptual database design (Teorey, Yang & Fry,
1986), but has fallen out of favor over the years as newer
approaches are developed. The framework introduced here
makes an excellent supplement to current textbooks because
it helps the student to remain focused on the final goal,
while adding increasing amounts of detail as he or she
proceeds through the modeling process. It emphasizes the
processes involved in data modeling and not just the syntax
of data definition, as advocated by Blaha (2004).

The production of an E-R diagram does not guarantee a
good database design, however, because the student must
know how to form entities that correctly mirror the data that
each user is exposed to and how to relate these entities. This
process can break down if the student allows the processes
that are inherent in any system to affect the database design.

These processes are used by the system analyst in his
design. They are reflected in data flow diagrams and show
the data in motion throughout a system. In database design,
we are concerned with the data at rest. The questions to be
answered are: 1) have we stored the data correctly to
prevent unwanted redundancies (i.e., one fact in one place),
and 2) have we stored the data so that the systems analyst
and programmers can access it and utilize it as either input
or output to the processes that the users execute? To do so,
we simply need to understand that we are interested only in
what facts the users need to capture, retain, manipulate and
view and how these facts are related, not what they are
going to do with them (Date, 2000).

Here is an example to help illustrate this point. It involves a
database for a company that sells, installs and services air
conditioning, ventilation and heating systems. Let’s assume
that in order to perform certain types of maintenance work
on these systems, workers are required to be certified on
that system. How can a manager be assured that an
automated system will correctly schedule only certified
workers to be sent on service calls such that their
certifications match the equipment to be worked on? The
answer to this question from a database design point of
view is that it doesn’t matter. This is an issue for the
programmers and systems analysts to work out, because it
represents a process within the system and therefore reflects
the data in motion, not the data at rest. If the database
designers capture the necessary data to track employee
certifications, certification requirements and service calls,
the alignment of workers, certifications and jobs is easily
captured by joining the tables in a query. However, if the
database designers become overly concerned with this
requirement, it might compel them to include an additional
entity in the design to match certifications with the
scheduling of service calls. This entity would be
unnecessary and may introduce some modification
anomalies that the programmers will have to deal with. To
design a proper data structure the database designers must
ensure that all the appropriate data is captured and captured
in the correct format and in the correct place and must not
allow system processes to unduly influence their design.

In order to accomplish this, introductory database students
need a process to produce an effective ERD in a step-wise
fashion which they can refer back to as they proceed
through a database design. This process needs to emphasize
data structures and de-emphasize system processes to
prevent an unnecessary influence on the database design. It
should also be expandable so that the additional details of
database design (e.g., determining primary keys) can fit
neatly into the framework. The approach provided here
presents such a framework that has been successful and
helps the student to address the important details in the
design without losing sight of the overall goal of producing
an accurate data model.

2. THE FRAMEWORK

2.1 The Process
Building an effective ERD begins as a simple three step

387

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

process. It consists of: 1) determining the data requirements;
2) grouping the data together to form entities; and 3)
relating the entities. The database designer must iterate
through these three steps until all of the data is accounted
for. Steps 1 and 2 can easily be reversed if there are entities
that are fairly obvious in the organization for which the
database is being designed. However, if the database
designer is not familiar with the business entities or there
exists some confusion in the way entities and the facts
which describe them can be combined, then the steps should
be performed in the order listed. Regardless of the order in
which steps 1 and 2 are performed, there should almost
always be some left over facts—data that doesn’t quite
match well with other entities, yet these facts are still
important and must be retained. These additional “orphan”
facts can be set aside in the first iteration of steps 1 and 2
and re-visited in step 3. Some of these facts may be the
result of relationships between entities and should therefore
be handled somewhat differently than others. An additional
fourth step, verifying that the design reflects the users’
perceptions of the data requirements, may be necessary, but
it should come after several iterations of the first three steps.
This process is so simple that students can lose sight of it as
they become involved in it, and so they must be re-focused
occasionally to get back on track.

The steps just presented provide the broader framework that
the data modeler uses in the conceptual design stage. As the
design moves into the logical phase, additional important
steps that provide greater detail are performed. Table 2
provides the modeling framework with the steps listed in
order from top to bottom and left to right. It includes a
fourth step, verifying the design, but this step should be
performed just prior to the physical design phase. It is
divided into the three design phases with the steps
appropriate to each stage listed in their respective columns.

The data modeler should proceed from the upper left comer
in the conceptual design phase with step 1, determining the
data requirements, complete all steps listed in that column
in sequential order from top to bottom. The bottom of this
first column represents the completion of the logical design
phase and the result from this phase should be the ERD
(Mannino, 2004). Once satisfied that all facts have been
collected, the designer should move to the top of column 2
and begin the logical design phase. The tasks listed in this
column should also be completed in sequential order from
top to bottom. While working in this phase of the project,
the designer may discover some facts that have not yet been
included and must therefore refine the ERD that resulted
from the conceptual phase. In addition, if the project was
divided and a series of smaller ERDs were produced from
the users’ views of the data, now is the time to integrate
these views into a single, overall ERD. The final column
has listed a few of the steps that should be included in an
introductory database course, but it is not complete. For
continuity, the steps listed in the final column relate only to
those steps performed in the previous two columns. There
are of course, additional steps that must be performed
during the physical design phase, but these are beyond the
scope of this paper.

2.2 An Example

“Few things are harder to put up with than the annoyance
of a good example.” (Twain, 1903, p. 164). We now use a
simple but non-trivial example to demonstrate the use of
this method, how students can get side tracked while in the
midst of a complex design, and what to do about it. The
example concerns itself with parts as they flow through a
machine shop. It is simple because it focuses only on one
section of a business that is dedicated to supplying parts to
either internal or external customers. Much of the rest of the
business is eliminated from this example in order to
simplify it and highlight the pedagogical goals of the
framework introduced herein. This example is however,
non-trivial because it involves a scheduling operation,
which can be difficult for beginning database students to
visualize and which contains processes that the system
analyst must use to develop a computerized tracking and
scheduling system. These processes only get in the way of
our database designers and can cause them to make some
bad decisions about the database design. The goal of
showing this example is to 1) work through the framework
to demonstrate its effectiveness, 2) highlight some areas in
which students might get sidetracked, show the decisions
they might make as a result and demonstrate how to get
them back on track with the framework, and 3) show how
the processes used within this shop might exert a negative
influence that would further skew the database result. Let us
first provide a narrative and a few business rules and
assumptions to set the stage.

The shop receives raw stocks that it must machine into parts
for use by either internal or external customers. Within the
shop there are several machines that are operated by
qualified machine operators and each machine can perform
several operations such as milling, shaping, drilling, cutting
and so forth. As an example a large piece of aluminum
stock might be milled to a certain thickness, cut into several
pieces, shaped to form the skin of an aircraft (e.g. a wing
root), and pre-drilled with holes for fasteners during
assembly to an aircraft frame. The finished parts then exit
the system where they are packaged and delivered to
customers. In order to accomplish this on a daily basis,
operators are assigned using a schedule that details a) what
must be done, b) by whom it must be done, and c) which
machine must be used. Joe, a machinist qualified on several
machines is given a schedule of tasks for a day in August as
shown in table 3.

Several assumptions are necessary in the development of an
adequate data model for this example. First and foremost,
we need to assume that the schedule is produced by a
management application that interfaces with the database.
Such an application would control and optimize the flow of
work through the machine shop and ensure that machines
are not assigned to more than one operator/operation at
once. We can also assume that the start and end times listed
on each machinist’s daily schedule include enough time to
acquire new stock, set up the machine for the intended
operation(s) and reset it to its original condition (if
necessary) at the end of a job. Finally, we can assume that

388

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

Step Conceptual Design Phase Logical Design Phase Physical Design Phase
1 < Determine the data requirements >
Identify the facts required by
1.a users Decide on DBMS
1.a1 Integrate views Decide file structures
Determine data types
1.a.2 (formats and length) Data dictionary entries
1.a3 Specify domains Data masking
2 < Determine the entities. >
Group facts based on
2.a commonalities
Identify unique identifiers
2.a.1 (primary keys) Identify additional indexes
2.a.2 Identify strong entities
2.a.3 Identify weak entities
2.b Set aside any left over facts
3 < Determine relationships between entities >
3.a Find all direct relationships
3b Determine cardinality
Resolve many-to-many
3.b.1 relationships
3.b.2 Identify foreign keys
3.c Re-visit any left over facts
Can they be combined to
3.c1 form a new entity?
Do they result from the
3.c.2 relationship itself? Create DDL scripts
4 < Verify the design >
Does the design mirror (the
4.2 user's) reality?
4.b Normalization checks

Table 2: The Data Modeling Framework

templates and other specifications for each operation are in
some way given to the machinist and are not a part of the
database design (as yet).

Each operator is given a schedule similar to the one shown
in table 3. In Joe’s schedule we see that he is scheduled to
move from one machine to another throughout the day. At
11:20, he interrupts his work, takes a lunch break, and then
continues with another job immediately after tunch.

We now apply our 3-step method to this report. First we
look for facts on the report that need to be collected and
stored. This report makes it quite easy because they are all
labeled with column headings. We then group together
those facts that share something in common and form
entities. We end up with a list that might look like table 4.

389

Arranging the facts based on commonality produces 5
separate groups: the schedule itself, the operator, the
machine, the operation and the part. Forming entities from
these groups produces the result shown in figure 1. We have
added the attributes to the entities for clarification.

Schedule date Operation to be performed
Operator name Nachine used

Start time of each operation | Pari(s) needed

End time of each operation | Quantity of parts needed

Table 4: Facts from the Schedule Report

From other sources of information in the machine shop, we
should discover additional facts that need to be collected
about each entity. Once we have these facts, we can modify
the diagram in figure 1 to include these facts and we can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

Daily Schedule for Aug 6, 2003
Times
Operator | Start End | Operation | Machine | Part [Qty
Joe 8:00 10:16 Milling M1 P1 4
P9 1
P76 3
10:16 | 11:20 Drilling M2 P2 4
P10 1
P77 3
11:20 | 11:50 =========Lunch break========>
11:50 | 12:45 | Sanding M2 P3 4
P11 1
P78 3
12:45 | 1:40 Buffing M3 P4 4
P12 1
P79 3
1:40 3:56 Milling M1 P1 6
P9 2
P76 4
3:56 5:00 Drilling M2 P2 4
P10 1
P77 3
< =End-of-Day >
Table 3: Typical Daily Work Schedule
Machine Operation step. Finally, it should become clear that each operation can
include a specification of some sort but that each part may
include an additional specification for a particular operation.
Machine_name Job_Schedule Operation_name We can call this a part-specific specification and place it with
our left over facts as well.
Part
Schedule_date Operator Our next step is to relate the entities together. Our database
Time_start design steps are proceeding smoothly, but this is now the
Part_name Time_stop point at which a student might allow processes to interfere
Qty_needed Operator_name with the design. For example, a potentially confusing aspect

Figure 1: Entities & Attributes, Steps 1 & 2

create some attributes as necessary to serve as primary keys.
The diagram should now look like figure 2'. Note that the
fact, “Qty_needed” has been set aside for now and that a
different attribute in the Part entity, “Qty_on_hand” has
replaced it. Students may have difficulty understanding why
this must be so the first time they see this example, but it
should become clear to them when they are led to the third
step, relating the entities. An additional fact that the student
may discover is that each operator must be qualified on each
machine for each operation to be performed. This might
present additional difficulty to the student, and can also be
treated as left over facts that must be dealt with in the next

' There may be more facts required for each entity than is
shown. We add only enough for this example to serve an
illustrative purpose.

of the facts thus far collected is that the quantity of parts
needed is a subset of the work schedule and not of the part
entity. This is where the 3-step method becomes so useful,
because it compels us to group like facts together and form
entities. Looking at the fact, “qty_needed,” the student must
ask himself if this is a fact that truly describes a part that we
have on hand to be machined or does it describe something
else’. Clearly the answer is that it describes the work
schedule because it relates directly to the amount of work
that each operator must perform and has nothing to do with
describing a part or an operation on the part.’ The student
has just discovered that the commonality shared by facts are

? During class discussion regarding this example, most
students wanted to place this attribute in the Part table.

3 We assume that each operation is performed on only one
part at a time for the sake of simplicity in this example. If
this is not the case, then the fact, “qty needed,” would
describe an operation as well as the work schedule.

390

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

not always obvious and may require some thought, but as
long as the 3-step process is strictly adhered to, this
discovery can easily be made.

We now draw the relationships in the diagram to connect the
entities. Each of the four strong entities—machine, part,
operation and operator—are directly related to the
job_schedule entity, and so we connect these tables with
job_schedule. As we look at our left over facts, we can see
that qty_needed should be included in the job_schedule
entity and that machine_quals and part_specific_specifica-
tions result from the relationships between machine and
operator and between part and operation respectively.

Machine
Serial_number Job_Schedule Operation
Machine_name Schedule_ID Operation_ID
Manufacturer .
Schedule_date Operation_name
Date_purchased Time_start Operation_Specs
Time_stop
Part QA_Check
Time_begun
Par_ID Time_finished Operator
Part_name Operator_ID
Qty_on_hand
Part_description Left facts: Operator_name
Material eft over tacts: Additional_operator_data
Qty_needed

Machine_quals
Part_specific_specs

Figure 2: Enhanced Entities

We should therefore connect these tables and include these
facts as relationship attributes. This is shown in figure 3.

Applying the rules for resolving many-to-many relationships,
we add two intersection tables to our diagram and include
the relationship attributes within these tables. An additional
relationship is extended from the Operation entity to the
Machine_Quals entity because operators are qualified on
operations and machines.

lot Sorwcui
Machine Srhedule 10 Opersior
Sonal_nombar Shedble. dnie Cpmrietnon ti

[T 4 Tomn saat prt=om o m e H

Macture_rsime Tine_stop Cparatos_rame
Macylactiee v nmednd Oparatiot: SOBCE
Daie puichasec GA Chech

T begur

Time_ tristod

Pact 0 F

Sewta

Macting {quals Part_speafic| spacifications

P 9

H o5
beceeneenid %3

a Par 10
Oemratin © :
Meveemmmmmant Memacecseecammanan apan_ravs
Opariator_rime Oty oi band
Adrioral_opacaicn_ats Pan descrpica
Blsiannl

Figure 3: Entity Relationship Diagram, 1* Draft

Otherwise, our final ERD takes a shape very similar to the
first draft depicted in figure 3. Although there may be more
than one solution to the machine shop, a working solution is
presented in figure 4. To the facts listed above we have
added a few others that were discovered through additional
means such as other input forms, interviews with users,
operators and managers and the like. In this diagram strong

entities are depicted as rectangles, weak entities have
rounded corners, and identification dependencies are shown
with solid lines. Crow’s foot notation is used to document
minimum and maximum cardinalities. A visual check of the
ERD reveals that there are no violations of 3" normal form
(and consequently, by definition, no violations of 2" or 1%
normal form as well).

Formal normalization checks can be performed once the
designer is satisfied that all the data requirements have been
met. As shown in table 2, normalization is included as part of
the logical design phase, verifying the design. However, the
beauty of this modeling technique is that if the steps are
performed with care, the model should already adhere to 3¢
normal rules, and any checks for functional dependencies
should indeed simply verify that this is true.

The utility of this method of data modeling is further
illustrated by looking at a potential mistake (and its cause)
that students can make during the design of this example
database. In an analogous manner to the air conditioning
example provided earlier, students may see a need to track
the scheduled machinists so that only those who are qualified
on a particular operation and machine are scheduled to do so.
This is a process within the business that must be controlled
programmatically and not by the database directly. If the
students allow this process to influence their database design,
then they might create additional tables to maintain this
information and not utilize a simpler design as depicted in
figure 4. This will bring about modification anomalies that
will require the programmers to ensure that they have
updated information in all the tables that it appears; clearly a
labor intensive effort that will need to be reflected in all
applications written that interface with this database.

Earlier we assumed that the schedule is produced by an
application that interfaced with the database and not the
database itself. Although many DBMSs allow the
development of stored procedures in which a scheduling
application could be developed, such a technique is normally
beyond the scope of an introductory class. Additionally, a
scheduling application might include linear programming
algorithms in order to optimize workflow that the database is
not capable of, If the students do not recognize this fact and
attempt to include a scheduling component in their design,
they may produce additional tables that contain data which is
already stored in other tables or they may create tables that
incorrectly categorize the data. Students may also attempt to
include attributes that prevent machines from being
scheduled to perform multiple jobs at one time. While this
may be a necessary constraint on the physical work flow, it
need not be included in the database design.

The machine shop example was used as an assignment in a
class of 20 introductory students. Although the students had
been taught the method discussed here, no mention was
made of separating the processes from data storage
requirements, but the narrative included the necessity of
scheduling only qualified machinists on certain machines (a
process).

391

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

The result was that over half the students attempted to define
an entity that tracked the scheduled activities, but failed to
properly relate this table to the others in their design.

Opwrason
s"-"-‘. --------------------------------------- Ko Opetisbon_t0
' Machwe_ID Operaton_name
H Operalion_iniermnon
¢ I Machos_name Operation_tuenpiats
Lo T
1 1Daw_purchoses :
I el h
E R J0u,_sitvedie I
¢ . i i
¢ v Job,_Schea_1D '
1 3 '
H HEERTEC TR <4 Dae_Schuduied 1
H H Laty H Work_flow
iodw,wds Schead_ time_start H vt ot 10 (FRY
X Schad_me_ siop ! Operaton_10 (FK)
Qual_10 Date. SR, H X
Time_bequn —'
Operstion_ID (FK) Ting_ Mushed -y
Operator_{0 (FK) pommee e 0‘:‘ Chack Spechcation
Mactone_tD (FK) H Mochwe_1D (FK) Y
Date. ! Part_ID (7K
Date_ngiees H Opecation_iD (FK) Prim=w=ewnmnnenn ,
Y H Opavator_ID (FK) H
P :
s . ‘
+ 13 ’
H ' s
13 1]
' v)
‘ v '
' ! :
Opsutor bt
tid Pan 10
Operator_name
" sty Part_nume
Oporsx. Par_ doscripton
Qty_on_hisnd

Figure 4: Completed ERD for the Machine Shop

Most of the students were able to correctly identify the facts
that needed to be stored, but were unable to place them
properly within the set of relations they had included in their
data model. None of these designs would have allowed a
query to extract a schedule that prevented machinists from
being assigned to tasks for which they were not qualified.
This is a classic example of allowing the processes to
obscure the correct data storage requirements and properly
relate the resulting tables. The question they needed to ask
was, “Do the facts regarding the schedule relate directly to
the worker, the machines being used, the parts used or to the
operations being performed, or do they relate solely to the
relationship between the worker, the machines, the parts and
the operations?” Students who utilize the 3-step method and
ask themselves how the facts are related to one another
quickly realize that the latter is true. They soon become
aware that the processes serve only as a hindrance in their
data modeling process.

Figures 5 and 6 show two examples of student-produced
ERDs that attempt to model the machine shop. The first
example shows how the student can allow the processes to
adversely influence the data model design. Here, the
certifications of each machinist are maintained in the
work_schedule table in an attempt to ensure that only
certified machinists are allowed to perform the required
tasks. This requires that the certifications be entered for each
operation that is scheduled and does not follow the “one fact
in one place” rule. As such, each time the certifications
change, they must be changed in every tuple in which they
are recorded. The second example demonstrates what might
happen when a student fails to correctly categorize the
necessary facts. Here the certifications are stored with the
machinist in the Operator table. Since we don’t know exactly
how many certifications each machinist will have, we will
have to over-estimate to ensure that there are enough fields

to capture them all. If we assume some number, say 10, and
the average for all machinists is 6, then we have an average
of 40% of our certification attributes with null values.

Naches
Mactwse, 155
D otbtar il & 7T
Meantactiawe '
Uite_pxachased (
Com H
Part Work_Sched_ 0
Pat 10 ¥ g OPRH O (K
Matow O Pont_iame m‘_’g&m Opaiwx
Mazs 10 FK:) g‘:"‘."z"" Dnen, Sctwechied |, _ [opmamor 10
Opmtchn 2 54 | Y. o Pant oty . "
oo Sched_ tene_siait Opersor_name
Shtg; tom Schud_ tmw_ st Opacwrur sutun.
Toms down Hme Dite_coropieted
e Toerw _begon
Opueation Time_Soanwd
S L
“ " 406 cen’
Oparution_nanu ‘
Operadon_toerance
Opetaton_ tevgiate

Figure 5: Certifications Stored with the Schedule

Machion
Mazhinu 10

Machioe nante
Maralachunr
Date_purchasect
Comt

6

H Pan Operioc

; Pa 0 Cparmioe 1
Macrioe, Ops & " Wk sthwdiie

haire bge e P
[om. Schedulect {FK} Pact descriphon | 1= "4 Dale._Scheduies u?v;t:n-m
Opecaton 10 (FKY : on hand 1.0
i Jperaton 10 (Qty, oo) PIST Mz cort
Sew, oy Sched_ i siop M3 con
o Yo o tkng o
Taar,_cowe: e 4+ Oparatoe I (FX) s
frim 10 (% i Do cert

Machinn I 6K Part 1} iFK) X

- Fan_qty Sancing_cer

Bifing_cort

Figure 6: Certifications Stored with the Operator

2.3 Class Diagrams

The UML is a standard adopted by the Object Management
Group for object oriented applications that provides several
diagramming tools for systems analysts. The class diagram is
one of these tools and it closely parallels the ERD because it
can include data objects and show their relationships. It is
primarily used for application development (Kroenke, 2004)
and has not seen much use in database development as yet.
Although it offers promise and extensibility, it also
introduces several problems that may serve to confuse
beginning database students. Methods for each class are
depicted directly on the diagram. These methods are the
operations that the class is supposed to perform when asked
to do so by other classes or by themselves in response to
internal requests. Thus, instead of separating business
processes from the data stores as is advocated in the 3-step
method, the UML integrates them within the class diagram.
It also does not identify the primary key for each
instantiation of a class on the diagram. These two
characteristics can make it more difficult for the beginning
student (and those new to class diagrams) to properly
visualize, design and implement the data structure.

Shoval and Shiran (1997) compared the ER technique to
object-oriented data modeling and found that the ER
technique results in higher quality, less time to design and is
preferred by most designers. Class diagrams should be used
primarily by systems analysts for the front end development

392

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

because their strength is that they clearly identify how the
data structure blends in with the front end applications. The
data modeler should remember that the data structure is not
cleanly isolated in a class diagram as it is in an ERD. This
latter fact is of paramount importance for beginning students
who are just beginning to discern the data structure apart
from the business processes in the system. Siau and Cao
(2001) investigated the complexity of the UML and found
that the “UML can be daunting to the novice users” (p. 32).
For experienced data modelers who also have experience in
object-oriented techniques, it may provide a more integrated
view of the system that might help in refining and tuning a
database that is already in production.

2.4 The Framework in Action

When the instructor observes the students using the method,
its value becomes apparent. Recently a class was assigned a
project in which they were to produce a data model for a
publication that reproduced television listings. A newspaper,
for example, runs the daily television schedule that includes
information regarding times, channels and shows that are
televised both locally and on cable channels. It sometimes
also includes a short synopsis of the show and lists the cast
of characters for both regularly broadcast and special
occasion shows. News shows, sporting events, movies and
public broadcast shows are all included in the mix. The
designs of two of the student groups are included in this
discussion to amplify what can happen when the technique is
not used or applied incorrectly. Each group was assigned the
project as a semester long class project in which the first
steps were to design the data model based on information
found in a local newspaper. The groups were to look at a
newspaper listing of daily television shows and attempt to
design a data model that could be easily transformed into a
database and respond to queries. A set of business questions
was given to the groups after they had settled on a data
model. By converting these questions into SQL queries,
running them against a populated database and checking the
results, the groups could test the effectiveness of their design.
The first group became pre-occupied with the TV listing in
the newspaper and allowed it to skew their design. The
newspaper provided a tabular list that included the day, the
time, the channel and the show scheduled for that time slot.
Because the team became overly concerned with the format
of the output, they focused more on the results than on the
entities themselves. It seemed as if they had abandoned the
framework in favor of a “shotgun™ approach and ended up
with a few massive tables that contained a mixture of
redundant and null data. The team quickly discovered that
they could not construct the queries in SQL from the
business questions that became a part of the project. These
questions were simple ones (e.g., produce a listing of all sit-
coms on Saturday night between 6 and 11 pm), yet the team
struggled with the problem of matching the shows to the
times they were broadcast to the channels on which they
were broadcast. After reviewing their design and re-visiting
the 3-step process of the framework presented here, the team
correctly categorized the facts that they needed to store and
began to assemble a better set of related entities. Once their
design improved, they discovered that the business questions

were quite easily formed into SQL queries through simple
table joins.

The second group worked independently on the same project.
This group noticed that the TV shows were different with
respect to the types of facts that needed to be collected about
each, but failed to relate them together correctly. Their
resulting design included an entity for each type of show and
all of these entities were related to a single entity in which
the schedule was recorded. This table had a foreign key for
each of the other tables, but since only one table could be
referenced at a time, it contained a large number of null
values. In order to produce the answer to a query that
requests a list of all shows scheduled for a particular date and
time, their SQL included several UNION operators, one for
each pair of entities. This team failed to properly apply the
process and the result was a design that had to be
programmatically “adjusted” to obtain the correct output.
After establishing a super-class for the broadcast shows, the
team was able to perform the same query using much simpler
syntax.

In both of these cases, the first result was a poor data model.
The first team was unable to formulate SQL queries against
their data model at all. They became sidetracked because
they allowed the process of producing an output to interfere
with their design. The second team managed to formulate
their queries only after performing some research into more
advanced SQL techniques, which they later found were not
necessary. This team did not notice the common features in
the data and failed to correctly categorize them.

4. SUMMARY

This paper has presented a framework for logical database
design that can be used in all of the stages of the design and
has shown to be successful in a teaching environment geared
toward introductory database students. It helps students
clarify the process of the conceptual and logical design
phases and provides them with a step by step procedure to
follow as they uncover the facts which must be managed
(i.e., stored, retrieved, modified and related) in an
organization. This method is simple yet can be used on
complex systems, it can complement any database textbook
in use, and it is expandable so that additional detail can be
added as the design progresses without losing sight of the
overall goals of the design. The end result of the application
of the method is an E-R diagram, the fundamental building
block of database design and visual tool that can be used in
formulating queries. Using this particular method, the
resulting design should generally satisfy 3 normal form
upon completion of the conceptual design stage, although a
formal test of normalization is performed later during the
logical design stage. This diagram has significant utility
because it can help the database administrator visualize the
structure of the data, it can allow the programmer to quickly
develop a script in SQL that will create all entities either
manually or through the use of software, and it can provide
an easy way to formulate queries from business questions.

393

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

Database educators should find the method useful for
teaching introductory database classes, because it emphasizes
the basic concepts of database design and helps students
avoid some of the pitfalls that might adversely affect their
design. Two of these pitfalls, improper categorization of data
and allowing business processes to skew the design, were
discussed with actual examples provided. Newer methods,
such as class diagrams that accompany UML notation,
include the business processes directly in the diagram as
methods, and may have an undue negative influence on the
final design. This is not to say that the UML cannot be used,
but it should be reserved for more advanced students, after
they have had practice in separating the data at rest, which
should be stored in the database, from the data in motion
through the organization, which is captured in the business
processes. Because introductory students often have
difficulty seeing this, it is important that they first be exposed
to techniques which help them achieve a state of data
independence in their design to help prevent and minimize
modification anomalies. The evidence of poor database
design in the last 10 to 15 years (cf. Blaha, 2004; Kroenke,
2004) overwhelmingly supports this conclusion.

Practitioners should find the method useful because it can
help them clarify the steps leading to a logical database
design. Provided the method is followed with care and
subjected to an iterative process, all data should be accounted
for and correctly captured in the design. The result will be a
better and more efficient conceptual database design.

The real test of this method can be seen in the semester
projects of students who are required to design a database for
an organization, develop the ERD that results from their
design, and create the tables and populate them with sample
data. This has been a resounding success in my own classes
where I have seen improvement in the quality of the
students’ designs as I began to incorporate the method
introduced here. The success can be seen in improved ERDs,
in parsimonious SQL queries and in the time savings that
accrues from not having to correct data modeling mistakes
programmatically. The approach used here, which
emphasizes the basic concepts of the relational database
technique, should provide productivity gains in future
database designers.

5. REFERENCES

Ahrens, J. D. and Sankar, C. S. (1993). “Tailoring Database
Training for End Users,” MIS Quarterly, (17:4), pp. 419-
439.

Blaha, M. (2004). “A Copper Bullet for Software Quality
Improvement,” IEEE Computer, (37:2), pp. 21-25.

Chen, P. P. (1976). “The Entity-Relationship Model—
Toward a Unified View of Data,” ACM Transactions on
Database Systems, (1:1), pp. 9-36.

Connolly, T. and Begg, C. (2002a). Database Systems: A
Practical Approach to Design, Implementation and
Management, 3™ Ed., Addison-Wesley, Harlow, U.K.

Connolly, T. and Begg, C. (2002b). Database Solutions: A
step-by-step guide to building databases, Addison-Wesley,
Harlow, UK.

Date, C. J. (2000). An Introduction to Database Systems, 7
Ed., Addison-Wesley, Reading , MA.

Elmasri, R. and Navathe, S. B. (2004). Fundamentals of
Database Systems, 4" Ed., Addison-Wesley, Boston.

Kroenke, D. M. (2003). Database Concepts, Prentice-Hall,
Upper Saddle River, N.J.

Kroenke, D. M. (2004). Database Processing:
Fundamentals, Design and Implementation, 9" Ed.,
Prentice-Hall, Upper Saddle River, N.J.

Lewis, P. M., Bernstein, A. and Kifer, M. (2002). Database
and Transaction Processing, An Application-oriented
Approach, Addison-Wesley, Boston.

Mannino, M. V. (2004). Database Design, Application
Development, & Administration, 2 Ed, Irwin, McGraw-
Hill, Boston.

McFadden, F. R., Hoffer, J. A. and Prescott, M. B. (1999),
Modern Database Management, 5" Ed., Addison-Wesley,
Boston.

Mclntyre, D.R., PU, H. and Wolff, F.G. (1995). The use of
software tools in teaching relational database design,
Computers and Education, (24), pp. 279-286.

Post, G. V. (2002). Database Management Systems:
Designing & Building Business Applications, 2™ Ed.,
McGraw-Hill, Boston.

Riccardi, G. (2001). Principles of Database Systems with
Internet and Java Applications, Addison-Wesley, Boston.

Rob P. and Coronel, C. (2002). Database Systems: Design,
Implementation, & Management, 5" Ed., Course
Technology, Boston.

Siau, K. and Cao, Q. (2001). “Unified Modeling Language
(UML)—A Complexity Analysis,” Journal of Database
Management, (12:1), pp. 26-34.

Shoval, P. and Shiran, S. (1997). “Entity-relationship and
object-oriented data modeling—an experimental
comparison of design quality,” Data Knowledge and
Engineering, (21), pp. 297-315.

Teorey, T. J., Yang, D, and Fry, J. P. (1986). “A logical
design methodology for relational databases using the
extended Entity-Relationship model,” Computing Surveys
(18:2), pp. 197-222.

Watson, R. T. (2004). Data Management: Databases and
Organizations, 4* Ed., Wiley and Sons, New York.

AUTHOR BIOGRAPHY

Michael Chilton is an Assistant Professor in Management
Information Systems at Kansas State
University, where he teaches database
design and telecommunications and
networking. His teaching and research
interests are in database modeling and
design, management of IT personnel and
computer communications and
networking. He has published in the
Database for Advances in Information
Systems and other journals. He is a guest editor for an
upcoming special issue of this journal which will foster
debate between the ERD and the UML diagramming
methods.

394

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

