An Approach to Teaching Object-Oriented Analysis and Design
Bataveljic, Pavle;Eastwood, Marian;Seefried, Heinz

Journal of Information Systems Education; Fall 2006; 17, 3; Research Library
pg. 267

Journal of Information Systems Education, Vol. 17(3)

An Approach to Teaching Object-Oriented Analysis and
Design

Pavle Bataveljic
Marian Eastwood
Heinz Seefried
School of Computing, Mathematical and Information Sciences
University of Brighton
Brighton, BN2 4GJ, UK
p.s.bataveljic@brighton.ac.uk m.e.eastwood@brighton.ac.uk h.g.seefried{wbrighton.ac.uk

ABSTRACT

This paper presents a syllabus that attempts to address the problem of teaching systems analysis and design in the changing
world of today. In the first part of the paper, major issues and constraints that affect the development of a syllabus for this
discipline are identified and analyzed. The second part of the paper focuses on the key points of a methodology constructed
from traditional and object-oriented techniques, designed to satisfy the academic demands of the subject and reflect current
practice, while providing students with a coherent and organized approach to systems analysis and design. Analysis of the
outcomes and experience of implementing the syllabus provide the basis for conclusions and identification of possible areas

for future research.

Keywords: Approaches for teaching SA&D, Curriculum design and implementation issues, Object-oriented analysis and
design, Transition from structured approaches to object-oriented approaches.

1. INTRODUCTION

This paper presents an attempt to analyze and propose a
solution to the problem that currently faces academic
institutions in the development of a syllabus for the
discipline of Systems Analysis and Design (SA&D). The
problem can be defined as one of finding an adequate
balance between an academic approach that should
incorporate the underlying principles of the discipline and
the needs and interests of two other major stakeholders in the
education process, namely organizations and students.

The next section of the paper discusses major issues and
constraints that define a context within which a solution to
the problem can be sought. A possible solution to the
described problem is given in Section 3. The syllabus and the
tailored methodology within it represent an attempt to: (i)
follow a commonly accepted object-oriented development
method (hence the choice of a lightweight version of the
Unified Software Development Process (USDP) (Jacobson,
Booch and Rumbaugh, 1999)); (ii) incorporate proven
traditional modeling techniques, namely Data Flow
Modeling (DFM) and Entity-Relationship Modeling (ERM)
to demonstrate alternative modeling views of a business
system; (iii) demonstrate that it is beneficial to perform the
initial steps of USDP by capturing information and
knowledge of the business system in data flow models and
E-R models. Section 4 describes some of the problems and

dilemmas that we encountered. Conclusions and objectives
for future research are given in the last section of the paper.

2. ISSUES IN TEACHING ANALYSIS AND DESIGN

The goal of this section is not to compare different methods
and associated models but rather to discuss some of their
strengths and weaknesses that are relevant to the adoption of
an approach to teaching SA&D. An exhaustive survey and
comparison of methods and models can be found in
Wieringa (1998).

Both structured (traditional) methods that have dominated
the eighties and the now prevalent object-oriented methods
have the same goal — to analyze, design, and build complex
software systems. However, the sets of models and
associated modeling techniques ot these approaches difter.
Jackson (1995) observes that the models that we develop are
descriptions of three subsets of phenomena: two that are
specific to the problem domain (the “real world”) and the
solution domain (the “machine™) respectively and a subset of
shared phenomena (Figure 1).

X

The real world - X ;‘(X The machine

Figure 1. Phenomena of the real world and the machine
(adapted from Jackson, 1995, p. 170)

267

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

Structured methods were developed under the influence of
the structured programming paradigm, which led to top-
down decomposition, the foundation of data flow models
(Jackson, 1995). The data flow model is convenient for
describing the problem domain but not the solution domain,
which is described by a different set of models, most often
structured charts (Whitten, Bentley and Dittman, 2001 Page-
Jones, 1988). The transition from one set of models to the
other has often been referred to as the “gap” between
analysis and design. Bridging this gap is an inherent problem
of structured methods.

In contrast, object-oriented methods use the same set of
models to describe both the problem domain and the solution
domain enabling a “seamless™ transition from analysis to
design. The “unity” of models was achieved by “migration”
of object-oriented programming concepts to object-oriented
design (OOD) and then to object-oriented analysis (OOA).

Some aspects of both approaches have been criticized. For
example, Larman (1998) states that functional decomposition
leads to procedural software architecture, while Ourusoff
(2004) observes that OOA is solution rather than problem
oriented. Jackson criticizes the top-down approach in
general, arguing that the real world “hardly ever has a single
hierarchical structure™ (Jackson, 1995). He also criticizes
OOA and observes “that the world outside the machine” is
too complex to be described by a single phenomenon — the
object.

Although it is apparent that object-oriented analysis and
design (OOA&D) is currently the dominant approach Hay
points out that “... disciplines that have been dominant for
several decades have simply been ignored.” (Hay, 2003).
Applied in a controlled manner use of DFM in the analysis
phase can enhance understanding of a complex real world
system, define its boundaries, identify external events that
initiate its responses, and enable partitioning of the system
by applying (and limiting) decomposition to higher levels of
abstraction.

The E-R model is probably one of the most important and
influential data-oriented models developed during the 1980s.
The strength of the E-R model is that it can be readily
applied to describe phenomena in both the real world and the
machine. The E-R model represents a semantically rich
model that captures relevant characteristics of the system
under consideration. At the same time, it is the design model
for relational databases.

This leads to another important issue: the impedance
mismatch between object-oriented technology and persistent
data stored in a relational database. Ambler points out that
“It is clear that object and relational technologies are in
common use in most organizations and both are here to stay
for quite a while ..” (Ambler, 2005). The data driven
approach of traditional methods produces a logical E-R
model that maps well into a physical design for a relational
database. Conversely, OOA&D translates seamlessly into a
programming language such as Java, while the class model
does not map so readily onto a relational database.

The previous discussion suggests that E-R models and
object-oriented models based on the Unified Modelling
Language (UML), a standard supported by Object
Management Group (OMG, 2006), should be included in the
syllabus of SA&D. The issue of including some structured
modeling concepts, namely DFM, remains open and decision
rests on the judgment of academics that design the syllabus.

Another important issue in teaching SA&D concerns
software process models. The traditional waterfall model
defines the phases of the System Development Life Cycle
(SDLC) as analysis, design, construction, implementation,
and maintenance. While this definition of phases may be
useful from an education point of view, in practice the
waterfall model has been criticized for its inflexibility and
predominantly replaced by iterative-incremental approaches
such as Dynamic Systems Development Method (DSDM,
2003) and USDP (Jacobson, Booch and Rumbaugh, 1999)).
It is important that a syllabus for SA&D includes a
compatible set of modeling techniques, current development
methods and software process models.

In the process of education, organizations are obviously
major stakeholders. Driven by the competition, organizations
need cost-benefit effective solutions. Object-oriented
technologies offer more reliable and re-usable solutions, and
combined with iterative-incremental system development
these solutions can be achieved in a shorter period of time.
On the other hand, organizations are not going to discard
proven techniques and legacy systems that still satisty their
daily requirements and were built and documented during
the traditional methods era. Ideally, new graduates should be
proficient in both.

Other major stakeholders are the students. Throughout their
education, they have to achieve two partly conflicting goals.
On one hand, they need good understanding of and the
ability to apply contemporary models and methods that will
make them employable. On the other hand, graduates of
today will still be working forty years from now. They have
to develop a good understanding of the technology
independent underlying principles of SA&D. This
knowledge is an essential foundation upon which they can
build understanding of the technologies that are yet to come.

Academic institutions are the stakeholders that have to
balance the needs of industry and students. More often than
not these objectives have to be achieved with limited
resources, one of them being the time that can be devoted to
the discipline of SA&D within a three year degree. Selection
of an appropriate textbook to support the proposed
curriculum is also an important constraint. Most textbooks
that provide detailed presentation of models and modeling
techniques tend to be confined to one particular approach
and/or method (Bennett, McRobb and Farmer, 2006:
Larman, 2002; Satzinger, Jackson and Burd, 2005).
Textbooks that attempt to incorporate different methods,
models and software process models, for example Avison
and Fitzgerald (2006) by necessity tend to be cursory in their
coverage of individual methods. Not surprisingly, empirical
evidence shows that there is a discrepancy between the

268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

recommended textbooks and the material actually delivered
to students (Burns and Klashner, 2005).

In this section, we have presented the issues that we consider
to be relevant in designing a SA&D syllabus. The approach
we have taken and the elements of the syllabus we teach in
an attempt to resolve these issues are given in the next
section of the paper.

3. OUR METHODOLOGY

The computing program at the University of Brighton has a
common level 1 for all computing students, which includes a
single semester module on Requirements Analysis where
basic modeling and requirements gathering techniques are
introduced. Only students on the Business Information
Systems (BIS), Internet Business Computing (IBC) and
Business Software Development (BSD) degrees continue to
study SA&D in the second year. This paper focuses on the
level 2 analysis and design module for these students who
also study related modules in Databases, and Web
Application Development in the Microsoft .NET
environment (Microsoft, 2006). In the final year, a variety of
models and methods are introduced for comparison and
evaluation.

3.1 Overview

The workflows and artifacts of USDP (Jacobson, Booch and
Rumbaugh, 1999) form the basis of our approach. The main
workflows identified in USDP are Requirements Capture,
Analysis, Design, Implementation and Testing. We
incorporated the first three as the core of the module, as
illustrated in figure 2, with issues of Implementation and
Testing being discussed towards the end of the year. We
have deviated from the object-oriented paradigm of USDP
with the retention of the traditional techniques of ERM and
DFM in the requirements gathering phase.

.
tes |
R ! System Context
§2 i DFM
= i
g § Problem Domain ¢ New b,,\“’
=3 E-R Mode! | Requirements IS
> &
« ' [
% “
. JE N S G
o2 % « '
8§93 %
S58 & Use Cases
>8®
£ R |
- £z ,‘g’ p\\\\@" Analysis
. 6590“5\“\,\69 Communication #
€ R Diagrams e,
23 /e,a cr
(el lo,
bkl Analysis Class 7
o o
=3 Mode!
g - lode! Design
Sequence
a Design Class Diagrams
Model

Figure 2. An overview of the approach

Figure 2 shows an overview of the methodology we use for
teaching. The figure suggests a waterfall approach to
analysis and design but the arrows are intended to represent
the general flow of the analysis and design process, and there
is likely to be considerable iteration between the artifacts. It
should also be noted that there is no direct translation
implied from one artifact to another; for example, the

Analysis Communication Diagrams do not translate directly
into the Design Sequence Diagrams because more detail is
added in the transition.

The problem domain is modeled using an E-R model rather
than a class diagram. The entities identified become
candidates for the objects of the UML entity class stereotype
required for the analysis use case realizations, specifically
the analysis communication diagrams. Attributes and entity
relationships identified in the problem domain also inform
the Analysis Class Model. Although not shown in figure 2,
the E-R model is developed into the design of the relational
database. The database design model may also include
persistent classes identified from the Design Class Model.

The data flow model enhances understanding of the context
of the system and assists in identifying events. There may be
a question as to whether current and/or required, logical
and/or physical data flow models are most appropriate but
whichever is chosen events can be identified that in turn
suggest potential use cases that are the system’s responses to
these events. The external entities and locations/roles on the
data flow model may suggest candidate actors for the
required system. The candidate actors and use cases derived
from the data flow model then inform the use case model
along with any additional new requirements.

The approach then more closely follows USDP as described
by Jacobson et al. (Jacobson, Booch and Rumbaugh, 1999).
Use Case Realizations are initially represented by Analysis
Communication Diagrams. The three UML class stereotypes
of boundary, control and entity objects are introduced, and
their representation in the communication diagrams
facilitates the view of the three-tier architecture (Presentation
layer, Business Layer and Data layer). The business logic for
a use case is represented by the control object and is
described in an activity diagram to ensure business rules are
understood and captured correctly.

The Analysis Class Model is constructed from the Analysis
Class Diagrams for individual use cases. The responsibilities
of each class are identified from the object interactions
shown on the analysis communication diagrams. The
transition from analysis to design involves adding more
detail to the classes already identified, and the identification
of additional classes needed for construction in the chosen
technology. For example, an analysis boundary class may
become a number of interface classes in design, and an
analysis entity class may become a data access class and
persistent data.

3.2 Rationale

For a number of years Structured Systems Analysis and
Design (SSADM) (CCTA, 1996), was used for teaching
SA&D to Information System undergraduates. As a
prescriptive method, it provided a development framework
and well defined modeling techniques for analysis and
design. Undoubtedly, the method was well engineered with
clear guidelines as to when and how the modeling techniques
should be applied. As previously discussed, modeling the
real world was a strength ot structured methods. However,

269

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

for students the transition from one phase of the SDLC to the
next was not facilitated by the associated change of modeling
techniques.

Although OOA&D has played a role in our final year for
several years, the demise of structured methods and the
ascendancy of object-oriented methods needed to be
reflected in the emphasis of our syllabus over all three years.
We therefore came to the decision to base the level 2 module
on an object-oriented approach. The uniformity of modeling
with UML would facilitate the transition between
development phases specifically addressing the issue of
moving from analysis to design described in the previous
paragraph.

Not wishing to discard all the benefits that SSADM had
brought to our old syllabus, we wanted to integrate an object-
oriented method into our teaching rather than just presenting
students with a ‘tool box’ of modeling techniques. Our
review of current practice (and textbooks) suggested that
various flavors of USDP are now commonly used in the IT
industry. USDP is a “generic process framework that can be
specialized ...” (Jacobson, Booch and Rumbaugh, 1999), so
by tailoring a ‘lightweight’ version of USDP into a
methodology to satisfy our teaching needs students could
still experience the basic life cycle of development.

Our rationale for retaining DFM and ERM in the
Requirements Capture phase requires more explanation.

We have already mentioned that we perceive a weakness of
object-oriented modeling is in representing the ‘real world’.
Consequently, to help students understand the organizational
context of a computerized information system, and therefore
to clarify the boundary of the system, we have retained the
structured technique of DFM in the requirements gathering
phase of our approach. Decomposition is a necessary and
powerful tool for managing the complexity of a system and a
high level data flow diagram (a top level DFD and possibly
level 2 DFDs, depending on the complexity of the system)
suggests a logical partitioning of a complex domain into a set
of smaller, more manageable domains (potential subsystems
of the analyzed system). By limiting decomposition to higher
levels of abstraction, design of procedural software is not
implied. Finally, as mentioned earlier, data flow models
facilitate identification of events and potential actors and
consequently facilitate identification of use cases.

The design for an information system should consist of both
a design of the object-oriented software and a design of the
relational database. In the context of teaching, a number of
OOA&D textbook authors, (Bennett, McRobb and Farmer,
2006: Satzinger, Jackson and Burd, 2005), resolve the
problem by using a class model to represent the problem
domain, refining it through analysis and design and then
normalizing it into a relational model. However, Ambler
(2006) demonstrates that some aspects of a class model can
be mapped into more than one relational design, suggesting
this may not be the best technique for designing a relational
database. Conversely, Ambler (2006) also argues against
using data models to drive object-oriented design, contesting

that the class model should be derived during domain or
analysis modeling and not based on a conceptual data model.
This is a complex and well known issue and it is not the
purpose of this paper to discuss it at length, however it does
present a pedagogic dilemma: should the problem domain be
represented using a class model or an E-R model? Our
decision to use ERM was taken because we believe that at
this level the semantics of the data model and those of the
class model are equally appropriate for modeling the
problem domain. However, the discipline of producing a
normalized E-R model appears to assist students in
understanding the data requirements of the system. In
addition, the E-R model evolves into the database design
while providing a basis for identifying the analysis entity
classes. Hay provides some justification for our stance:

“... data modeling during analysis (whether of the
object or entity/relationship kind) is intended to do one
thing: describe the things about which an organization
wishes to collect data, along with the relationships
among them.” (Hay, 2003).

4. OBSERVATIONS

We have now used this approach to SA&D teaching for two
years, and the following issues have arisen.

Within the constraints of a single module, there is effectively
only time to work through one iteration of the USDP
workflows, perhaps portraying a waterfall life cycle.
However, the iterative and incremental nature of USDP is
addressed in lectures.

The artifacts of the analysis phase clearly demonstrate some
degree of design. Indeed Jacobsen, Booch and Rumbaugh
consider one of the important aspects of the analysis model
to be that it ... can be viewed as a first cut at a design model
.." (Jacobson, Booch and Rumbaugh, 1999). The
introduction of boundary and control stereotypes into
communication diagrams is surely making an early design
decision to adopt a three-tier architecture. This is contrary to
Hay’s view that “the models developed during analysis must
be technologically neutral” (Hay, 2003).

‘First cut’ design in the analysis model is also demonstrated
by a simple example from a case study of a private library.
The library has a number of business rules governing the
eligibility of a member to borrow a book. The member must
have current membership of the library and the maximum
number of loans permitted must not be exceeded. In addition,
the library will not allow members to borrow a book if they
have an overdue loan that has been recalled to satisfy a
reservation placed by another member. The use case that
represents this functional requirement is ‘Check a Member's
Borrowing Status®. The normal scenario of this use case is
represented in two different ways in the communication
diagrams in figure 3. Both communication diagrams capture
the business rules, but each solution represents a ditferent
allocation of responsibilities to the MemberStatusHandler
and Member classes, and hence an early design decision.

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

Figure 3b

Figure 3. Communication diagrams for the normal
scenario of ‘Check Member’s Borrowing Status’ use case

Although the distinction between a technology independent
analysis model and a technology dependant design model
has become obscured, this facilitates the transition from
analysis to design for students. If we accept that some degree
of design is inevitable during object-oriented analysis, and
acknowledge the advantage to students, we are faced with a
dilemma: should we adopt a purer object-oriented approach
to distributing responsibilities among the objects (figure 3b),
an early design decision that may have to be reversed when
designing for a particular implementation technology; or
should the control object be responsible for all the business
rules in analysis (figure 3a), postponing the distribution of
responsibilities until detailed design?

5. CONCLUSIONS

Our approach based on USDP with traditional techniques
employed in the requirements capture phase has enabled us
to retain most of the pedagogic benefits we previously
gained from SSADM: a framework of system development;
a well-defined set of modeling techniques; the underlying
principles of the SA&D discipline, and an industry-
recognized method. However, we are still grappling with one
issue in particular.

We have previously discussed that SSADM clearly separated
conceptual analysis from design, a differentiation that has
become obscured with the object-oriented approach. While
this initially seemed an advantage for students, the complex
issues of design clearly impinge upon analysis at an early
stage. We wish to further research where the boundary
between analysis and design should lie, and/or how the
analysis phase can be more independent of the technology.

6. REFERENCES

Ambler, S. W., (2005), “The Object-Relational Impedance
Mismatch”,
http://www.agiledata.org/essays/impedanceMismatch.html
Accessed 27/01/06.

Ambler, S. W., (2006), “Why Data Models shouldn’t drive
Object Models (and Vice Versa)”,
http://www.agiledata.org/essays/drivingForces.html
Accessed 27/01/06.

Avison, D., Fitzgerald, G. (2006), Information Systems
Development: Methodologies, Techniques and Tools, @
ed.), McGraw-Hill.

Bennett, S., McRobb, S., Farmer, R. (2006), Object-Oriented
Systems Analysis and Design using UML, 3" ed),
McGraw-Hill.

Burns, T., Klashner, R. (2005), “A Cross-Collegiate Analysis
of Software Development Course Content”, SIGITE’0S,
October 20-22, 2005, Newark, New Jersey, USA.

CCTA (1996), Central Computing and Telecommunications
Agency. SSADM4+ Reference Manual v4.3, London: The
Stationary Office 1996. ISBN 0-11-330844-2,

DSDM (2003), Dynamic Systems Development Consortium
http://www.dsdm.org, Accessed 31/01/06.

Hay, D. (2003), Requirements Analysis, Prentice Hall PTR,
Upper Saddle River, New Jersey.

Jackson, M. (1995), Software requirements & Specifications:
a lexicon of practice, principles and prejudices, Addison-
Wesley; ACM Press.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999), The
Unified Software Development Process, Addison-Wesley.

Larman, C. (1998), Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design,
Prentice-Hall.

Larman, C. (2002), Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design, @
ed.) Prentice-Hall.

Microsoft NET (2006),
http://www.microsoft.com/net/default.mspx Accessed
15/02/06.

OMG (2006), UML Resource Page, http://www.uml.org
Accessed 31/01/06.

Ourusoff, N. (2004), “Reinvigorating the Software
Engineering Curriculum with Jackson’s Methods and
Ideas”, The SIGCSE Bulletin, Vol. 36, No 2, June 2004.

Page-Jones, M. (1988), Practical Guide to Structured System
Design, (2™ ed.), Prentice-Hall.

Satzinger, J., Jackson, R., and Burd, S. (2005), Object-
Oriented Analysis and Design with the Unified Process,
Thomson Course Technology.

Whitten, J., Bentley, L., Dittman, K. (2001), System
Analysis and Design Methods, (5" ed.), McGraw-Hill.

Wieringa, R. (1998), “A Survey of Structured and Object-
Oriented Software Specification Methods and
Techniques”, ACM_Computing Surveys, Vol. 30, No. 4,
December 1998.

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

AUTHOR BIOGRAPHIES

Pavle S. Bataveljic is a Senior Lecturer in the School of
Computing, Mathematical and
Information Sciences, University of
Brighton, UK . He is the award
leader for the degrees of Business
Software Development and Internet
Business Computing. His research
interests include requirement
analysis and modelling techniques.
Before joining the University of
Brighton in 2000 he was a lecturer
at University of Belgrade, Serbia.
He received his MSc degree in Applied Systems Theory
from University of Belgrade. He also studied computer
science at the University of Virginia, USA supported by the
Fulbright Program.

Marian E. Eastwood is currently a Senior Lecturer in the
School of Computing,
Mathematical and Information
Sciences at the University of
Brighton, where she teaches
Analysis and Design. She is the
course leader for the postgraduate
programme in computing. Before
joining the University in 2001 she
worked in the IT industry as an
analyst and programmer. Her
research interests are Analysis and
Information System Development

Design, and
Methodologies. She received her MSc degree in Information
Systems Development from the University of Brighton.

Heinz G. Seefried is currently a Senior Lecturer in the
School of Computing, Mathematical
and Information Sciences at the
University of Brighton. He is also
the coordinator of the Information
Systems Development subject
group. His research interests include
Information System Development
Methodologies. Prior to joining
Brighton University, where he
teaches Databases, and Analysis and
Design, he was an independent
consultant in Information Management. He received his BA
degree in Business Studies from the University of Stuttgart,
Germany.

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

