.

Toward a Next Generation Data M odeling Facility: Neither the ...
Kroenke, David M;Gray, C Donald
Journal of Information Systems Education; Spring 2006; 17, 1; Research Library

Journal of Information Systems Education, Vol. 17(1)

Toward a Next Generation Data Modeling Facility: Neither
the Entity-Relationship Model nor UML Meet the Need

David M. Kroenke
Management Science Department
University of Washington Business School
Box 353200
Seattle, WA 98195-3200

dk5@u.washington.edu

C. Donald Gray
IronMoon, Inc.
10541 15™ Ave NW
Seattle, WA 98177

don.gra

ironmoon.com

ABSTRACT

In this article, we define five purposes of a data model and describe a typical data modeling problem. We then evaluate the
Entity-Relationship and Unified Modeling Language data models against those five purposes in the context of the example
problem. We find severe limitations with both data models. We conclude the article with a survey of the characteristics needed

for a new data model.

Keywords: Data Modeling, UML, Entity-Relationship

1. INTRODUCTION

A database is a model of the users’ perceptions of the objects
in their business environment. Databases succeed or fail on
how well they match the users’ perceptions. Database
designs that do not support the user’s perceptions will be
judged to be “difficult to use” or “not really what I need.” In
some cases, database designs that conflict with the users’
perceptions can be made usable by complicating the logic of
application programs to transform the given database
structure into the user-perceived application components.
Such programs are needlessly expensive to develop and a
nightmare to maintain.

For all but the simplest databases, it is too difficult to express
the users’ perceptions in terms of a particular database model
such as the relational model. Instead, the users’ perceptions
are normally first expressed in terms of a data model, which
is an abstraction of the users’ view. Data models thus serve
as an intermediary between the users’ requirements on one
hand and the DBMS database design. The data model is
normally constructed during the requirements stage of a
database project and is converted into a database design
during the design stage.

29

We cannot overemphasize that the primary purpose of a data
model is to describe and document the users’ view of their
world. A data model is not a tool for recording a database
design. The primary purpose of a data model is not to define
the tables that will appear in the database. A relational
schemata is a representation of a DBMS storage definition,
not of the users’ perceptions. Unfortunately, the table model
is not rich enough to represent the users’ needs.
Consequently, without a suitable data modeling facility, the
developers contort the users’ requirements into the relational
schemata and in the process, lose many important
requirements.

We believe that neither the existing versions of the entity-
relationship model nor the UML data model are adequate for
use as a data model for documenting user requirements. We
believe that both have significant limitations and that cither a
new data model or a substantially extended version of E-R or
UML is needed.

Our argument proceeds as follows: We begin by defining
characteristics of a desirable data model. We then describe
an example problem and demonstrate, in subsequent
sections, how neither the E-R model nor UML adequately
describes that example. We conclude with a description of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

what we believe are the minimum requirements for an
appropriate data model.

1.1 Needed Characteristics of a Data Model
In our view, a data model should have the following
characteristics:

1. Sufficiently robust to readily express the users’
perceptions

As simple as possible

Independent of any physical database model
Utilize domains with inheritable properties

Readily support database migration

NhwN

Let us now consider each of the criteria in turn.

1.2 Sufficiently Robust

The features and functions of a data model must be rich
enough to support the users’ perceptions of the objects.in
their world. Of course this means that a data model should
represent the entities and their relationships, but additional
features and functions should allow the modeling of many
other semantic constructs as well.

Consider two examples. First, suppose the uset wants to keep
track of customers and indicates that those customers hve an
Address that consists of Street, City, State, and Zip.
Additionally, the user states that Address is not required, but
that if any portion of the Address is provided, then all of the
elements of address become required. Thus, in a data entry
form, the user need not enter any part of address, but if the
user enters a value for, say, City, then all of the attributes
Street, State, and Zip become required.

A second example is more subtle. Suppose the same users
states that each customer has a contact person. For each
contact, the user wants to record Name, Email, and Phone. A
customer must have at least one contact, but may have as
many as 3. Name is required, and both Email and Phone are
optional. The question then becomes, is a contact simply an
attribute of a customer, or is a contact a separate thing,
independent of customer that has a relationship to a
customer? We will return to this question in 2 moment.

An easy way to visualize these requirements is to suppose
that we have constructed a prototype customer form and we
record the underlying structure of that form. Figure 1 shows
such a form-based schematic. The dotted subscript notation
indicates the minimum and maximum cardinalities of each
attribute, respectively. The 1.1 subscript on Name means that
exactly one value of Name is required and allowed. The 0.1
subscript on Description indicates that no value for
Description is required, but that a maximum of one value is
allowed.

This notation appropriately records the users’ cardinality
requirements for Address. The cardinality of the group is 0.1,
indicating that no value of the Address group is required, but
that at most one value is allowed. Within that group, the
cardinalities are 1.1, indicating that if the Address group
exists all attributes within the group are required.

30

CUSTOMER

Figure 1: A Schematic of Prototype CUSTOMER Form

Similar comments pertain to Contact. Note, however, that
Contact has a maximum cardinality of 3. Note also, that
Contact is considered to be an attribute of CUSTOMER. It is
not an independent entity.

If a contact were an independent entity, then it would need to
have data entry forms and reports of its own. Suppose, as an
alternate case, that contact is independent and that we
construct a form-based diagram for it as well. Figure 2 shows
the result. Note we represent the relationship between the
two entities as an attribute surrounded by a rectangle.

CUSTOMER CONTACT

Figure 2: Form Schematics for CUSTOMER and
Independent CONTACT

Of course, there are many, many other aspects of the users’
perceptions that we need to capture in a data model. For the
purposes of our discussion, however, we will restrict
ourselves to these two.

1.3 As Simple as Possible

While a data model must be robust enough to capture the
users’ perceptions, it must also be as simple as possible, for
two principal reasons. First, the only people who can reliably
validate a data model are the users. Because the data model
is a representation of the user’s semantics, only the users can
verify its correctness. No systems developer can reliably
verify the correctness of a data model. Based on our
experience, one of the most common causes of database
failures occurs when systems developers attempt to. validate
the data model themselves. Over the years, we have become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

allergic to systems developers’ statements that begin as, “If I
were a user, I’d want...” A system developer is not a user
and cannot validate a data model.

This constraint means that the data model must be simple
enough to be readily understood by motivated users with, at
most, a few hours training. Users cannot be expected to learn
data modeling techniques that are little more than a thin
cover over relational or other physical database models. Such
data models are far too complex for most users.

The second reason that a data model must be as simple as
possible is to reduce complexity for the systems developers.
When we worked on the Army CALS project, we developed
a data model of the U.S. Army’s logistical data that involved
some 1200 entities. (In fact, we did not use the E-R model,
but the model we did use generated results that were roughly
equivalent to that number.) The data model developed over
eight months and entities that were defined in month one
would turn out to have relationships to entities defined
several months later. Managing the complexity of this
project was the single most important factor for success. In
such projects, any reduction in notational complexity pays
huge dividends in cost reduction and quality improvement.

1.4 Independent of Any DBMS and Database Model

A data model should be independent of any DBMS product
or physical database model — including the relational model.
A data model should be a representation of the users’
semantics, and nothing more. A data model should not be
constrained to include characteristics of any representational
model. A data model should not be constrained to relations,
nor should it be constrained to OOP objects, nor should it be
constrained to XML, nor should it be constrained to DL/ or
CODASYL DBTG (if there is anyone alive today who
remembers those storage representations). Once a data model
has been created, it can readily be transformed into a
representational scheme like the relational model or XML.

When the data model includes characteristics of a DBMS
abstraction such as the relational model, systems developers
and database designers will come to view the users’
requirements in terms of what they know how to represent.
User requirements will be lost.

For example, consider Figure 3, which shows a relational
representation of a portion of the CUSTOMER shown in
Figure 1. The relational model has no construct for a single
valued group attribute. Consequently, the CUSTOMER
relation in Figure 3 has no facility for representing the
Address group. To represent this entity using relations, the
attributes contained in address are simply added to the table,
the group is dropped, and all cardinalities are set to optional.
The users’ constraint that if one of the attributes of Address
has a value, then all of those attributes must have a value has
been lost. We have constrained the requirement to fit the
limitations of the relational model.

The only group construct provided by the relational model is
that of a relation. So, if we persist in representing the
cardinalities of the Address group with the relational model,

31

we can construct a separate Address table. Figure 4 shows an
E-R diagram documenting that choice. We have constructed
a weak entity for Address, set its minimum cardinality to
zero, and made the attributes in the weak entity required.
Thus, the Address entity does not need to exist, but if it does,
all of its attributes are required. Such a representation does
correctly represent the users’ constraint,

CUSTOMER

Figure 3: Relation Has No Facility for Address Group

CUSTOMER

ADDRESS O

Figure 4: Modeling Address Group with Weak Entity

While Figure 4 does represent the user’s semantics, it fails
the test of simplicity. The original diagram in Figure 1 will
be preferred by almost all users (Pelley and Marshall, 1993).
Additionally, this E-R model will be judged by most
database designers to lead to a poorly performing database
design. Because the relationship is 1:1 between Customer
and Address, and because Address is logically an attribute of
Customers, most designers will collapse the two entities into
one, and create a table like that in Figure 3. At that point, the
cardinality constraint will either be lost, or documented as a
constraint to be enforced by application programs. That
decision places an unnecessary burden on the application.

1.5 Utilize Domains with Inheritable Properties

A domain is the set of values that can be given to an
attribute. A domain is defined by both logical and physical
characteristics. For example, a PartNumber domain could be
defined as a part number according to the FY 2006 ABC
Company part catalog (the logical definition) that is in the
format Char(12) with mask PPPPNNNNNNNN, where PPPP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

is the part category and NNNNNNNN is the number of the
part in that category (the physical definition).

Note that two domains can have the same physical
description and not be equal. PartNumber and
StorageLocation could both be Char(12) with the same mask,
but they would not be of the same domain. They have two
different logical definitions.

A data model should allow for the definition of domains, and
it should require that all attributes be associated with exactly
one domain. Furthermore, the properties of all attributes
should be inherited from the properties of the domains on
which they are based. When the properties of the domain are
changed, the properties of the attributes should change as
well.

Inheritance will be appreciated by anyone who has ever
worked on a large data model and discovered part way
through the project that some domain, say ProductCode has
been incorrectly defined. Considering just the physical
description, suppose that every attribute based on
ProductCode has been defined as Integer(8), but that at some
point in the project, it was learned that some product codes
have a dotted decimal appended to them. The physical
definition of every attribute that is an instance of the
ProductCode domain must be altered. Of course, before it
can be altered, it must be found, and that search, in a large
data model is time consuming, wasteful, and prone to error.
Had the attributes been based on a domain, a simple change
to the domain would have altered the definition of all
attributes which inherit from that domain.

However, the principal advantage of defining domains and
basing attributes on their domains is not efficiency. The
principal advantage is that the representation of domains
allows organizations to enforce data standards. Domains can
be defined that conform to an organization’s data standards
and systems developers can be required to use those standard
domains when creating data models. If the domains are
immutable, then the domain properties can be locked for use
within a given data modeling activity.

1.6 Readily Support Data Migration

Information systems and organizations do not merely
influence each other. Instead, they are autocatalytic. While
seemingly independent, each creates the other. Like the
famous Escher lithograph of two hands drawing each other
(Drawing Hands, 1948), an information system creates
characteristics of the organizations it supports, and the
organization creates characteristics of the information
system.

When we install a new information system, users begin to
behave in new ways. As they behave in new ways, they
develop new requirements for the information system. As
we alter the information system to meet those new
requirements, users again behave in new ways, and so forth,
ad infinitum. In fact, the only information system that is
finished is one in which all of the users are dead.

Thus, we can never finish an information system. In truth, it

32

means that the notion of finish is not applicable to systems
development, nor is it applicable to data modeling.

A data model is therefore only complete at a given moment
in time. As the system is used, requirements will change, and
the data model will need to be modified. Consequently, any
data modeling facility or technique must be designed to
gracefully accept change, to apply change consistently, and
to minimize the work on users and developers as change
oceurs.

We know of no data modeling facility that meets all of these
criteria. The two leading data models, the entity-relational
data model and UML, fall short on these criteria as we will
demonstrate next.

2. THE ENTITY-RELATIONSHIP DATA MODEL

The entity-relationship (E-R) data model was first proposed
by Peter Chen in 1976 (Chen, 1976).That model was
modified to include subtypes in the Extended E-R model by
Teorey, et al, in a subsequent paper (Teorey, Yang, and Fry,
1986).

Since those early papers, the notation of the E-R model was
modified by James Martin when he defined the Information
Engineering (IE) version of the E-R model (Martin, 1991).
That version uses crow’s feet notation to represent the many
side of a relationship and is thus popularly known as the
crow’s foot version.

Another version of the E-R model, IDEF1X (IDEFIX, 1993),
was adopted as a national standard, but is little known
outside of government circles. Today, when most people
reference the E-R model, they refer to the crow’s foot
version.

To add further complication, data modeling products have
implemented these different versions of the E-R model
differently. Thus, when one uses the E-R model, one must
choose a version of the model and an implementation of that
model. In practice, organizations typically standardize on a
data modeling product and that choice dictates the
implementation of a particular version of the model.

For the most part, IDEFIX and the IE version of the E-R
model differ only in notation. In fact, ERwin, a popular data
modeling tool licensed by Computer Associates can convert
IDEF1X models into IE models and IE models into IDEF1X
models. Because the conversion is two way, the models are
logically equivalent, and for our purposes here, it doesn’t
matter which we chose. Because of its popularity, we will
use the IE version.

2.1 Avoid the Visio Data Modeling Product

Different data modeling products implement their version of
the E-R model, and not all are equally desirable. In
particular, the Microsoft Visio implementation of the E-R
model is particularly bad. Unfortunately, because of the
marketing power of Microsoft, and because many
educational institutions have a license-free agreement to use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

Journal of Information Systems Education, Vol. 17(1)

Microsoft products, the Visio data modeling templaie is
widely used in academia. We believe such usage is
inappropriate.

The Visio data modeling template was poorly designed, and
clearly was constructed by engineers who knew little of data
modeling. In truth, it is nothing more than a table
representation tool. For example, it is impossible to express a
N:M relationship in Visio. All such relationships must first
be decomposed into two 1:N relationships using intersection
tables. Such representation has nothing to do with modeling
the users’ semantics — it is artifact of the relational model
and properly belongs late in the database design process.

While we have great respect for Microsoft and many of its
products, we would strongly urge academics to avoid using
the Visio product. It teaches too many bad habits, it is far too
complex, and, because of its complexity, Visio data models
are exceedingly difficult for users to validate.

2.2 Considering the IE (Crow’s Foot) E-R Model

The first section of this paper listed five criteria for a data
model. In this section, we will evaluate the IE version of the
E-R model against those five criteria. To do so, we will
consider the simple data model shown in Figure 5. This data
model was developed to support the data requirements of a
sales team at an airplane brokerage. The team sells executive
jets to businesses and wishes to track potential customers and
their airplane interests.

CUSTOMER AIRPLANE

|[CUSTOMER o

CONTACT

CUSTOMER
Namer '«
Description o.

SPECIFICATION
Capacity o
Ceilingr....

NumEngines »

AIRPLANE

ADDRESS ¢

Nameg
Description o' |

Figure 6: E-R (IE Version) Model of Figure §

Figure 6 shows an IE E-R model that represents the data
requirements shown in Figure 5. The model is a
straightforward application of entities and their relationships.
Consider this model against the five criteria listed earlier.

2.3 Sufficiently Robust

The model in Figure 6 does represent all of the requirements
in Figure 5. However, the ADDRESS and SPECIFICATION
entities are required to appropriately model the group
cardinalities. As noted earlier, these entities are suspicious,
however, and ultimately will be pulled back into
CUSTOMER and AIRPLANE during database design. Still,
the data rules are represented by this model.

2.4 As Simple as Possible

We do not believe the data model in Figure 6 is as simple as
possible, and indeed, from our experience have learned that
such a data model is difficult for most users, however highly

Entity Entity

Attribute Attribute

Group Weak entity
m.n notation R vs. O notation

Figure 5: What the User Thinks — Two Entities

To review, the m.n subscript notation means that m instances
of the given attribute are required, and at most » instances
are allowed. Address, Contact, and Specification are group
attributes that contain the bracketed sub-attributes. The
boxed notation of AIRPLANE within CUSTOMER indicates
that a CUSTOMER has an interest in from zero to many
instances of AIRPLANE; the box of CUSTOMER in
AIRPLANE indicates that an AIRPLANE is of interest to
zero to many instances of CUSTOMER?®,

3 By the way, there has been a debate for many years among
data modelers as to whether N:M relationships truly exist.
Some have argued that such relationships always have data,
and, as a consequence, are always more accurately
represented by two 1:N relationships using an intersection

33

Boxed entity attribute Presence or absence of
(i.e., AIRPLANE in crow’s feet
CUSTOMER)

Oval and hash mark
Relationship

Relationship cardinality
Inference of entity boundary
(i.e., CUSTOMER includes
ADDRESS and CONTACT,
but does not include
AIRPLANE or
SPECIFICATION)

Table 1: Comparison of Form Skeleton to E-R Model

table that carries the data. In the N:M relationship between
STUDENT and CLASS, there is always some data about that
relationship, say GRADE, that causes the NM
STUDENT:CLASS relationship to be better represented as
two 1:N relationships to GRADE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

motivated, to learn. In fact, the simple form skeleton in
Figure 5 is far easier for most users to understand than the
model in Figure 6.

Those of us who have known and used the E-R model for
sometime have become so used to this model and its
notation, that it is difficult for us to understand why users
struggle to learn it. Consider, however, the differences in
concepts required to interpret these two diagrams:

We believe that the customer to product-interests
relationship refutes this argument. We have seen many cases
of this relationship as pure N:M. There is no left out
intersection data. Hence, we believe that N:M relationships
do exist, and it is important for all data modeling products to
allow their representation.

In truth, counting the number of elements to be learned does
not fairly represent the conceptual differences in these
representations. A better accounting of the differences would
include how difficult it is for users to learn and comprehend
these different elements. As most of us know from teaching
database modeling, the idea of a weak entity is difficult for
most students (IS majors) to learn. Teaching weak entities to
professional accountants, marketeers, and financiers, is even
more challenging.

In short, we believe that the E-R model fails against the
simplicity criterion. In fact, the simple form based skeleton
would be easier for users to learn.

2.5 Independent of Any DBMS or Database Model
Unfortunately, the E-R model has a distinct relation-like
flavor. As such, some implementations like the Visio
implementation are nothing more than table diagramming
tools. They add little to the table diagram facilities in DBMS
products.

Even the better implementations of the E-R model, such as
that in ERwin, preserve a table-like flavor. The principal
example of that is the lack of support for a group attribute.
As stated, there is no place in the relational model for a
group attribute, and none exists in E-R implementations.
Ironically, the original version of the E-R model as proposed
by Chen (1976) did include the notion of a group attribute
and it did include the notion of multi-valued attributes. To
our knowledge, those features have not been implemented in
any E-R data modeling tool. Perhaps early users of the E-R
model were more interested in producing database designs
than they were in capturing the users’ semantics. Regardless,
we believe that data modeling tools would greatly expand
their utility were they to include those original features of the
E-R model.

2.6 Utilize Domains with Inheritable Properties

Some E-R modeling tools feature proprietary
implementations of inheritable domains. However, there is
no formal support for domains in the E-R model.

2.7 Readily Support Database Migration
In our opinion, the notation of the E-R model makes data

migration difficult. Simple changes in requirements can
necessitate disproportional modifications to the model.
Consider two typical changes. Suppose that after
implementation, the user decides that two changes are
needed. First, an attribute WebSiteURL needs to be added to
CUSTOMER. Suppose further that the maximum cardinality
for that attribute is . Second, suppose that the user decides
that up to three values of Street need to be added to address.
This change is needed to allow for multi-part street
addresses.

CUSTOMER

Na",‘e,ii«f ; Amuali
Descriptionos =~ .~
WebSiteURL oy

Address

34

Figure 7: Data Model after Two Changes

These changes are shown in the form-based skeleton in
Figure 7 and for the E-R model in Figure 8. The changes as
documented in Figure 7 are readily understood by most
users. The changes documented in Figure 8 seem overly
complex. Most users will not understand what the role of the
weak entity ADDRESS_STREET nor understand the
implications of such an addition. They will prefer changing
0.1 to 0.3 in the form-based model. Keep in mind, too, that
this is a very simple data model. Suppose that we had,
instead, 100 or so entities. The notation complexity of the E-
R model becomes overwhelming.

Consider, also, what is required to reduce maximum
cardinality. For the form-based model, we need only change
O.N to 0.1. For the E-R model, we must eliminate a weak
entity and collapse its attributes into its parent entity.

2.8 The Fundamental Problem of the E-R Model

Based on years of data modeling experience, we are
convinced that there is a fundamental conceptual problem
with the E-R model: namely, it represents entity
relationships! Most users do not think of relationships as
things. Until we study data modeling, in fact, most human
beings to do not think of relationships as things. We are
forced to think that way as part of our database education.

How do users think about relationships? In the context of
Figure 5, they think, “Well, a customer can have an interest
in multiple airplanes.” Or, on another occasion, “An airplane
can be of interest to many customers.” In fact, whenever
any of us wishes to validate the cardinalities of a
relationship, we begin with one entity and think of its
relationship to the other. Then we take the second entity and
consider its relationship to the first.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

Thus, we always think hierarchically. We always think from
one to the other. We cannot think of both ends of a bridge at
once.

It is only the fact that we must classify relationships for the
purpose of database design that we even consider both sides
of the maximum cardinality of a relationship. For data
modeling, we ought not to be forced to do this. We should be
able to consider just the context of the CUSTOMER entity
and ask, What is the minimum and maximum cardinality of
the AIRPLANE attribute in that context? Then, perhaps
months later in the data modeling activity, when we consider
AIRPLANE, we can ask, What are the cardinalities of the
CUSTOMER attribute in AIRPLANE? Once we validate
the two independent entities, then it should be up to a
database design tool to infer the relationship is 1:1, I:N, or
N:M.

CONTACT

CUSTOMER

AIRPLANE

ADDRESS-
STREET -

Figure 8: E-R Data Model after Changes

Human beings do not naturally think that way, and they
ought not to be asked to think that way during data
modeling. It is an unnecessary burden to ask users to think
about cardinalities of relationships. Properly trained data
modelers attempt to shield users from this complexity
through form mockups or textual descriptions. If the E-R
model accurately represented user perceptions such
translations would be unnecessary.

One other perspective sheds light on this problem. Consider
the attributes of CUSTOMER in Figure 5. CUSTOMER has
a relationship to Name; CUSTOMER has a relationship to
Address. We do not pull these relationships out of the entity
to demonstrate that there is a relationship. We do not create a
separate relationship line for those relationships. Simply by
placing Name in the list of CUSTOMER attributes, we
graphically infer that CUSTOMER has a relationship to
Name. The cardinality subscripts place constraints on the
attribute’s appearance in the entity.

Similarly, by placing the boxed AIRPLANE attribute in
CUSTOMER, we are indicating that CUSTOMER has a
relationship to AIRPLANE. That relationship is constrained
by the cardinality subscripts.

35

There is no fundamental difference between the relationship
from CUSTOMER to Name than there is in the relationship
from CUSTOMER to AIRPLANE. And there is no need, from
the users’ perspectives, of treating those relationships
differently. Treating them differently just add confusion and
unnecessary conceptual baggage. Again, the fundamental
problem with the E-R model is that it represents entity
relationships as something different from other attribute
relationships. It is a confusing falsehood to do so.

3. THE UML MODEL

The UML model was designed as a set of tools for
developing object oriented programs. Officially, the current
version of UML has no data modeling facilities. Rational and
other companies have defined data modeling profiles, but
those have not seen widespread adoption. Some UML
products, such as Borland's Together Architect, incorporate
the E-R model as their data model.

In practice, some database designers have employed UML
class modeling diagrams and notation for representing
entities. It is that use of UML that most people refer to today,
when they refer to "data modeling with UML."

Figure 9 shows a UML representation of the data model in
Figure 5. In our opinion, Figure 9 is both simpler and more
complex than the E-R representation in Figure 6. It is simpler
because UML allows for the modeling of multi-valued
attributes. It does not, however, support the modeling of
group attributes.

UML is more complex than the E-R model because it
includes the trappings of OOP. In UML, attributes are
classified as public, protected, or private. The hyphens in
Figure 9 indicate that all attributes here are considered to be
private. In general, this sort of classification is unknown in
the data modeling world and is judged to be confusing and
unnecessary by users.

_ Customer - Airplane
- -nam XS 2| -nameft]-
 Zesorp description
0.1 / \o..s 0.1
Address < Contact . - Specification
-street [1] “name [1] - ~capacity [0..1]
Cloity [1] 0 -phone [0:.1] -range [0..1]
Sstate (1] “email [0..1] -ceiling [1]
~zip {1] -2ip {0..1] -numEngines (1]

Figure 9: UML Representation of Figure 7

Table 2 compares the E-R model to the UML model with
regard to our five criteria for a data model. Considering the
first, UML is just as robust as the E-R model, but it does
represent entity relationships differently than non-entity
relationships. (The relationship from CUSTOMER to Name
is modeled in context. The relationship of CUSTOMER to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AIRPLANE is modeled using relationship notation. To the
user, both relationships should be modeled in context.)

Journal of Information Systems Education, Vol. 17(1)

Criterion E-R Model UML Data
Model
Express No support for No support for
users’ multi-valued group attributes.
semantics attributes nor for | Entity
group attributes. | relationships
Entity modeled
relationships differently than
modeled attribute
differently than relationships.
attribute
relationships.
As simple Complicated ... Complicated by
possible principally due OOP notation.
to need for weak
entities
Independent Not independent. | Not independent.
of DBMS or Relation-like OOP class-like
other physical
database
model
Support for None Model data
data domains domains as
classes?
Support for Difficult Less difficult than
data E-R
migration
Table 2: Comparison of E-R and UML on Data Model
Criteria

With regard to simplicity, UML simplifies E-R notation
because it allows for multi-valued attributes. Unfortunately,
the lack of a group attribute means that extra classes must be
created to represent groups. This need makes UML more
complicated than the users' model in Figure 5.

Considering our third criterion, independence of physical
database model, UML is puzzling. UML diagrams model
OOP classes and we do not know how classes are supposed
to relate to physical database models. Perhaps UML scores
better than E-R on this criterion, but absent clear
understanding of the intent of UML entity classes, we are
unsure.

With regard to the fourth criterion, data domains, a UML
class can be thought of as a domain. Thus, it is possible that
data modelers could create a class for every data domain and
base each attribute on such a class. Such an effort would be
unwieldy, however, and not practical for any large-scale data
modeling project. Modeling domains in this way would seem
to be a further example of forcing data modeling
requirements into OOP constructs. Hence, we would
conclude that UML has, realistically, no support for data
domains.

With regard to the last criterion, migration, UML is slightly
simpler than E-R. The presence of multi-vatued attributes
reduces the need for weak entities, which enables data

36

migration requirements to be more easily expressed.
However, modeling entity relationships differently than
attribute relationships means that changes to relationships
will be more difficult to model.

4. CONCLUSIONS: TOWARD A BETTER DATA
MODELING FACILITY

We believe that the weaknesses and limitations of both the
E-R and UML data modeling facilities justify the need for a
new data model. Our industry needs a data model that is
more modern than E-R, and not adormed with
public/private/protected data scoping, stereotypes, interfaces,
profiles, and four different kinds of relationships. We further
believe that the five criteria for a data model set out in this
paper can be used as guidelines for developing a new data
modeling facility.

First, a data model should be robust for expressing the users'
semantics. This means, as we have indicated, that a data
model should support multi-valued attributes and group
domains. We also believe that relationships among entities
should be modeled in place, as shown in Figure 5, and not
separated out. '

In addition, however, a modern data modeling facility would
support the definition of data rules. The work by Ronald
Ross (Ross 1999, 2003) and others over the years has
identified a large number of types of data rules. The new
data model should readily represent a large selection of those

types.

Simplicity and independence from a DBMS or other physical
database model such as the relational model go hand-in-
hand. A data modeling facility should be purpose-built to be
readily understood by users. A diagram such as that in Figure
5 is a good start, but even that abstraction is difficult for
many users to interpret. A data modeling facility that could
generate forms that clearly illustrate the consequences of
data modeling decisions would be even better.

Additionally, we believe the next-generation data modeling
tool should have direct support for data domains. The facility
should be easy to use and it must be possible to important
domains from data dictionaries. Additionally, in some cases,
the data modeling tool would need to lock domain properties
from change.

Finally, any new data modeling tool/language/facility should
be designed with data migration in mind. As stated, no data
model is ever finished. Ready adaptability, clear, graphical
demonstration of changes, and built-in configuration control
are, we believe, essential to the next generation data
modeling facility.

5. REFERENCES

Chen, Peter, “The Entity-Relationship Model: Towards a
Unified View of Data,” ACM Transactions on Database
Systems 1(1), 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

Integrated Definition for Information Modeling (IDEF1X),
Federal Information Processing Standards Publication
184, 1993.

Pelley, Lee and Marshall, Thomas E., "Database Modeling
Comparison: The Semantic Object Model and the Entity-
Relationship . Diagram (SALSA vs 1EF),” Information
Systems Research Center Working Paper (ISRC-WP-
931001), 1993.

Martin, James. Information Engineering. Prentice-Hall,
1991.

Ross, Ronald G., Principles of the Business Rule Approach,
Addison-Wesley Professional, 2003

Ross, Ronald G., The Business Rule Book, Second Edition,
Business Rule Solutions, 1999

Teorey, Toby J. , Yang, Dongging and Fry, James P., "A
logical design methodology for relational databases using
the extended entity-relationship model,"” ACM Computing
Surveys 18(2), 1986.

AUTHOR BIOGRAPHIES

David M. Kroenke has more than thirty-five years
experience in the computer industry.
He began as a computer programmer
for the U.S. Air Force, working both
in Los Angles and at the Pentagon,
where he developed one of the
world's first DBMS products. In
1977, he published the first edition
of Database Processing, a text that is
currently published in its tenth
edition. In 1982 Kroenke was one of
the founding directors of the Microrim Corporation where he
lead the marketing and development of the DBMS product
R:base 5000, as well as other related products. Kroenke
developed a data modeling language called the semantic
object model which provided the foundation for Wall Data’s
SALSA products. Currently, Kroenke continues his
consulting and writing projects. He is also a Lecturer in
Information Systems at the University of Washington in
Seattle, Washington.

C. Donald Gray has been a leader of innovative software
projects for twenty-four years. His
work encompasses diverse software
technology areas such as database
applications, application
development tools, desktop
publishing, application integration,
and computer security. A primary
focus of his career has been
creating technology to reduce
complexity for both end users and

T software developers. Gray led the
development of Wall Data’s SALSA application generation
products based on the semantic object model. He is currently
researching technology to improve programmer productivity.
He lives in Seattle, Washington and enjoys biking and
backpacking.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

