.

ERIsUML
Rumbaugh, James
Journal of Information Systems Education; Spring 2006; 17, 1; Research Library

pg. 21

Journal of Information Systems Education, Vol. 17(1)

ER Is UML

James Rumbaugh
IBM, 18880 Homestead Rd
Cupertino, CA 95014, USA

rumbaugh@us.ibm.com

ABSTRACT

Entity-Relationship (ER) diagrams are frequently used for data modeling and database design. The Unified Modeling
Language (UML) is dominant in the programming area but has not been widely adopted in the database area. I describe the
history of UML as inspired by ER diagrams and argue that the use of a suitable variant of UML incorporates the benefits of
ER diagrams as well as the advantages of a modeling language used by the programming community.

Keywords: UML, ER diagram, Data modeling

1. UML AND DATA MODELING

UML is not well accepted by many people in the database
field, despite a heritage that originally derives from ER
diagrams. Both database and programming language people
make assumptions about the role of modeling UML and ER
diagrams, assumptions that I feel are limiting. Used
correctly, UML is an excellent tool for data modeling. In this
paper, I describe some of the history of UML and argue for a
broader understanding of modeling.

2. ASSUMPTIONS

The prevailing viewpoint among both database and
programming language people is that UML is a tool for
building applications using object-oriented programming
languages, a tool that is not very suitable for database design.
Under this viewpoint, UML is identified with the principles
of Smalltalk and, by transference since the decline of that
language, with C++ and Java. I would summarize those
principles as follows:

o identity of objects is the fundamental concept
e data is stored within encapsulated objects
e data in objects is accessed only through methods

e navigation through a network of data is accomplished
by a series of method calls

e objects are connected by references stored in objects

e inheritance is of major importance in organizing types
and reusing implementation

e models are for designing programs
e the system modeling focus is “data in motion”
These information hiding principles prevent programs from

becoming dependent on the detailed data structures and
encourage reuse of fragment of programs, at the cost of some

21

rigidity in the organization and accessing of data and the

inability to optimize navigation chains.

Relational databases follow a different set of principles:

e serializable (“pure”) data values are the fundamental
concept

e data is stored in open (unencapsulated) tables

e data in tables is freely available to any program
(security is a separate issue)

e navigation through a network of data is accomplished
by a series of joins that can be optimized for
implementation

o data values are connected by relations (associations, in
UML terminology)

e inheritance is a troublesome concept to implement

e keys and indexes are of major importance in specifying
and implementing databases

e models are for designing relational tables
o the system modeling focus is “data at rest”

According to these assumptions, there is not much point in
mixing UML and ERD, or indeed of much commerce
between programming languages and databases. This is
based on the misconception that UML requires adoption of
the full set of object-oriented programming design
principles. On the contrary, UML does not include a built-in
design process; it can be used in many different ways. UML
has a lot of diagram types, but you don’t need to use all of
them for any one purpose, such as database design; you don’t
need to follow Smalltalk principles such as tight
encapsulation or heavy use of inheritance. UML class
diagrams are excellent for data modeling.

Note that I am talking about relational databases, not object-
oriented databases, which have dwindled to a minor niche
market. At one time there were over seven major object-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

oriented database managers for sale, and their proponents
claimed that they would soon displace relational databases.
This has not happened. Object databases forced users to
know the detailed organization of the data model, while
relational databases permit a more fluid approach, for
example, by deriving new virtual views. It is also difficult to
extract a subset of the fields in an object database, while
tables are a natural unit for decomposition of relational
databases. Relational databases responded to the threat by
incorporating some object-oriented concepts
maintaining their many advantages. Object databases are at
risk and are limited to certain kinds of applications.

Much of what I say will no doubt infuriate OO purists as
well as many database people. That’s okay—I’m a natural
iconoclast. There are too many arbitrary boundaries in
computing already.

3. HISTORY OF UML

Class diagrams are the oldest part of UML. Most of the basic
concepts and notation for UML class diagrams came
originally from OMT (Rumbaugh, Blaha, Premerlani, Eddy
& Lorensen, 1991), which was first described in Rumbaugh,
Loomis & Shah (1987). OMT was originally inspired by ER
diagrams as described in Ullman’s database text (1982), and
it was intended for modeling application domains. Some ER
extensions already included the concept of generalization,
which was not solely an object-oriented concept. OMT was
originally applied to describing a class library and to
modeling information to be stored in a database, so it had a
strong data modeling heritage.

Similar modeling concepts came from Shlaer and Mellor
(1988), whose work came from a database background; Coad
and Yourdon (1990), who described OO modeling as a
merger of semantic data modeling and OO programming
languages; and Martin and Odell (1992), with strong roots in
previous non-O0O modeling notations. Quite a number of
other books followed soon after. These books had a strong
data modeling aspect.

A different approach was taken by Cox (1986), Wirfs-Brock,
Wilkerson, and Wiener (1990), Booch (1991), and others.
This approach was based on the Smalltalk principles, was
focused more on behavior than data, and dealt more strongly
with programming issues. I described the tension between
the OO Methodology (OOM) camp and the OO
Programming (OOP) camp in an article in 1991 (Rumbaugh,
1991). The OOM camp took an analysis viewpoint and the
OOP camp took an implementation viewpoint. To a large
extent, the implementation viewpoint has prevailed in the
public view of OO modeling. Both viewpoints are necessary
for good software development, but much of the community
does not even realize there is a difference.

4. LOGICAL DATA MODELING

Many people in both the database field and OO
programming field want to rush to implementation. They

want models that are little more than visual programs. But
modeling is foremost about capturing essential information,
not accidents of implementation. Logical models capture
real-world knowledge about an application domain as well as
requirements of an application. Logical data models are

- useful for understanding the meaning and constraints on

while

22

data. Ideally, they avoid implementation and format issues
and concentrate on the semantics of the information and the
relationships of various kinds of data.

ER diagrams were intended to provide an abstract view of
data requirements. It must be remembered that ER diagrams
were originally not so well accepted by the database
community, because ER diagrams encouraged thinking about
data as organized into entities rather than tables. In other
words, ER diagrams were object-based. Entities capture the
identity of objects independently of the values of their
attributes. The concept of identity violates Codd’s basic
premise about relational databases, namely that they can be
represented as relations among pure data values; identity
produces groupings of data values that can be distinguished
by their identity even if their data values are identical.

Basic UML class diagrams are almost the same as ER
diagrams. They both include the concept of things with
identity (objects or entities), they attach data values to
entities (attributes), and they relate entities (associations or
relations). This is not surprising considering that they were
originally inspired by ER diagrams.

UML has the ability to specify methods, but you don’t need
to use them if you are modeling only data. UML has the
ability to specify visibility of attributes, but visibility is
really a software engineering concept aimed at providing
information hiding. I believe that information hiding is a fine
programming practice, but it belongs to implementation, not
to domain analysis. A logical data model can treat all
attributes as freely visible and ignore the whole concept of
visibility.

Some (but not all) variants of ER diagram limit multiplicity
specification on relations to the binary choices
optional/required and single/multiple. The UML
specification of multiplicity as an open integer range is more
general and also easy to understand. In any case, some
variants of ER diagram also use this kind of specification.
An integer range is not the most general form of
multiplicity—for example, there is no way to say that it must
be an even integer—but I think it is good enough for most
software purposes, if not for symbolic evaluation.

5. GENERALIZATION

UML includes generalization, but so do some extended ER
variants. It’s an important logical concept that is part of
ordinary discourse. Its main semantic purpose is to permit
polymorphism among data types, something that occurs
frequently in many problem domains. If you are modeling
semantic information, generalization is a legitimate and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

Journal of Information Systems Education, Vol. 17(1)

frequently necessary technique, although it was vastly
overused in the original Smalltalk-based approaches.

The usual objection to generalization is that database
management systems do not support it. This may be true
(although that is changing), but models should be used to
understand and capture knowledge about the application
domain and requirements rather than prematurely
constructing the implementation. After all, computers don’t
implement loops directly either; they are mapped from
programming languages by compilers.

Generalization in a data model can be mapped onto SQL
tables in a number of different ways; the best approach for a
particular problem depends on the details of the problem. In
general, there are three ways that generalization can be
mapped to tables: push attributes from subclasses to
superclasses, push attributes from superclasses to subclasses
or factor each class into a number of separate parts.

In the first approach, all the attributes from a set of
subclasses are placed in a single superclass. This approach is
wasteful of storage——many of the slots will always be empty
in any particular instance—but it preserves all information
and polymorphism is possible. In fact, this approach permits
dynamic reclassification of objects with no difficulty.

In the second approach, all the attributes from a superclass
are placed in each of its subclasses. This approach is
efficient, but polymorphism is not possible, because the
inherited attributes of each sub-class appear to be different.
In many applications, however, that is not a problem.

In the third approach, an object is broken into one sub-object
for each ancestor class in the generalization hierarchy. This
approach is efficient and permits polymorphism. Identity is
lost, however, because each object consists of separate
pieces. The pieces can be linked together with foreign keys,
but this makes queries more complicated.

In all cases, a class maps into a table with a candidate key
plus one column per attribute. Associations map into tables
with one foreign key per associated class.

A number of books and articles discuss the transformation
(Blaha and Premerlani, 1998). An implementation model of
SQL tables can be expressed in UML class diagrams, but for
such an implementation-level model generalization would
not be used (it would have been transformed from the logical
model).

6. CANDIDATE KEYS

Perhaps the most serious objection to UML and the main
reason it has been rejected in database modeling circles is the
lack of candidate keys on classes. (A candidate key is a set of
attributes, the values of which uniquely identify a particular
object.) OMT originally included candidate keys, but they
were removed from UML during the standardization process.
Recently, however, some profiles of UML for database
design have added candidate keys and indexes back again.
Using one of these UML profiles implemented in various

23

modeling tools allows a database modeler to do everything
that an ER diagram permits and more.

I think that candidate keys and indexes are useful and
desirable for database design, because they are important for
efficient implementation. I want to advance a different

" viewpoint for logical data modeling, however, one that will

undoubtedly be controversial with many database modelers.

I don’t think candidate keys should be specified at all on
classes during logical data modeling. A candidate key is a
statement that a particular set of attribute values uniquely
identifies a particular object; no other object may have the
same set of values. This is an incorrect way to view the
world. Nothing is unique in the whole world; keys are
always relative to some particular scope. In specifying
candidate keys, there is an implicit assumption that the scope
of the model is closed in some way and understood as being
the scope for the entire model. The assumptions of exactly
how it is closed are often unstated and, I suspect, usually not
thought about. But making such assumptions works badly if
the scope of the application changes, as it usually does
eventually. Then things are no longer unique and the former
candidate keys cause trouble. This is no idle theoretical
speculation; when two companies merge, the assumption that
employee IDs, product codes, and internal phone numbers
are unique causes a lot of trouble for the integrators.

A better approach is to understand that keys are always
relative to some scope, rather than inherent properties of
classes. That is, keys are not properties of classes at all but of
associations among classes. A scope should be modeled as a
class in the model, for example, a company. A key is a set of
attributes attached to both a scope class and a target class;
with respect to the scope class, the key identifies a unique
object within the target class (for example, an employee ID
identifying an employee of a particular class). If there is only
one instance of the scope (a singleton class), the cost of the
scope class is small and it can be optimized out of the
implementation. When additional instances appear, however,
then the scope objects are important, and if they are included
in the original data model, the model need not undergo a
radical revision. (Think about an employee with two jobs.)
You can’t optimize away the scope in the implementation,
but that would be true in any case, and if the optimization
was generated it can be removed automatically.

I have said that a key is attached to both a scope class and a
target class. Something that connects two classes is an
association (or relation, in database terms). The concept in
UML that identifies unique objects within a scope is called a
qualified association. A qualified association is an
association (such as employed-bv) between a scope class
(such as company) and a target class (such as person) with a
qualifier (such as employee ID). A qualifier is a list of
attributes owned by the association itself rather than either
class. A qualifier is a key in the general sense: an instance of
the scope plus an instance of qualifier values maps to a
unique instance of the target. Because the qualifier is
attached to an association, rather than the scope or target

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

class, new keys and new scopes can easily be added without
conflicting with existing ones. If a merger of scopes occurs
in the real world, the old scopes can be preserved in the data
world for as long as needed. No single scope need be
equated with the whole world.

Qualified associations are perhaps the most neglected
important feature in UML. 1 would recommend that they be
taught as a cleaner and more semantically accurate way of
modeling keys.

7. OTHER UML MODELS

UML includes other model types mostly intended to specify
behavior, such as state machines, interactions, activity
graphs, and so on. Most of these are not relevant to data
modeling. Nobody says you have to use them (well, some
people do say you have to use them, but I'm not one of
them).

In addition, the additional UML model types may be useful,
even to a database modeler. Many data objects have a life
cycle. State machine models can specify the life history of an
object. For example, a loan might have the states pending,
accepted, rejected, outstanding, and closed. Some attributes
are common to all states, but each state defines additional
attributes applicable to that state. For example, the rejected
state defines the attribute reason. Defining a state machine
mode] clarifies the relationship among the data in the various
states. Other UML model types can be used to specify other
kinds of dynamic behavior.

8. WHY USE UML?

UML class diagrams and ER diagrams are practically the
same thing, especially if the right extensions of each one are
compared. They use somewhat different notation, but I
would hope that we could teach students to look below the
surface notation. UML has extra concepts in class diagrams
that are not needed in database design, and it has a lot of
additional diagrams, but you don’t have to use any of them if
you don’t need them. But ER diagrams are happily in use in
the database area. Why even consider using UML at all?

The advantage of UML is that it is widely understood within
the computing community, whereas ER diagrams are limited
primarily to the database community. But a more important
reason is that few models are limited to one community.
Programs access databases to read and write data. It would
be good if programs and databases were built from the same
underlying logical models; using different models for the
same underlying information greatly increases the chance of
errors and often forces unnecessary translation of formats.
Using UML for both data models and program design
removes a lot of unnecessary obstacles. In fact, an ER
diagram can be regarded as a species of UML diagram.

Note that for data modeling as for programming, UML can
be used at two related but different levels: logical modeling

24

and design. Logical modeling focuses on understanding
problems at an abstract level; design modeling includes
implementation concerns. Both UML class diagrams-and ER
diagrams are useful for logical modeling. They can also be
used for design with the addition of aspects appropriate to
the implementation medium: things such as methods,
encapsulation, and visibility for programming languages;
things such as mappings to tables, candidate keys and
indexes, and triggers for databases. Both can be driven from
the same logical model.

9. RECOMMENDATIONS FOR TEACHING

I have expressed my viewpoint based on years of experience
observing computing practice, which often falls short of
what is taught in universities. In fact, recently many
universities have focused more on teaching specific
programming skills, such as the use of particular languages
or tools, rather than the attitudes and best practices that
underlay successful software development. I would
recommend the following emphases for teaching modeling:

¢ Emphasize the distinction between logical modeling
and implementation. Stress the importance of logical
modeling before making a lot of implementation
decisions.

s Encourage students to see past superficial features (such
as syntax and notation) to the underlying semantic
essentials and concepts. For example, UML class
diagrams and ER diagrams contain almost the same
concepts. Associations and pointers are two sides of the
same coin, and so on.

e Develop the ability to abstract. This is the most
important skill for computing and one that is lacking in
many practitioners. In the future, there will be few jobs
in computing for those that lack this ability.

10. CONCLUSIONS

ER diagrams and UML class diagrams are not really very
different. In fact, an ER diagram could be viewed as a kind
of UML class diagram. UML class diagrams can be used
profitably for logical data modeling with no loss of
information and with some gain. For database design,
additional capabilities such as candidate keys and indexes
can be added using UML profiles, some of which already
exist. .

11. REFERENCES

Blaha, M. and Premerlani, W., Object-Oriented Modeling
and Design for Database Applications. Prentice Hall,
1998.

Booch, G., Object-Oriented Design with Applications.
Benjamin/Cummings, 1991.

Coad, P. and Yourdon, E., Object-Oriented Analysis.
Yourdon Press, 1990.

Cox, B., Object Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

Journal of Information Systems Education, Vol. 17(1)

Loomis, M., Shah, A. and Rumbaugh, J., "An object
modeling technique for conceptual design.” Leciure
Notes in Computer Science 276, 192-202. Springer-
Verlag, 1987.

Martin, J. and Odell, J.. Object-Oriented Analvsis and
Design. Prentice Hall, 1992.

Rumbaugh, J., Blaha, M., Premerlani, W. Eddy, F., and
Lorensen, Object-Oricnied Modeling and — Design.
Prentice Hall, 1991.

Rumbaugh, J., “Two cultures: object-oriented programming
and object-oriented methodology.” American
Programmer 4. 10, (October 1991) pp. 4-10.

Shlaer. S and Mellor, S., Object-Oriented Systems Analysis:
Modeling the World in Data. Yourdon Press, 1988.

Ullman, 1., Principles of Duatabase Systems. Computer
Science Press, 1982.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing
Object-Oriented Software. Prentice Hall, 1990.

AUTHOR BIOGRAPHY

James Rumbaugh is a leader in object-oriented modeling
and one of the founders of the
OMT and UML modeling
languages. He has led diverse
probjects such as an object-oriented
programming language, a generic
graphics engine, a VLSI CAD
system, algorithms for
reconstruction of tomographic
images, and helped build one of the
first time-sharing operating
systems. He worked for 26 years at GE R&D Center, 9 years
at Rational Software, and 3 years at IBM. He has a B.S. in
physics from MIT, an M.S. in astronomy from Caltech, and a
Ph.D. in computer science from MIT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

