Teaching Students
How to Find the
randidate Keys

of a Relational
Database Schema

lossein Saiedian, Ph.D

ABSTRACT: While most database textbooks pro-
vide formal and informal definitions for the
candidate key of a relational database scheme,
none provide a simple approach for finding the
keys. In this paper, we present a simple algo-
rithm that can be used by the students to cor-
rectly and efficiently identify the candidate
keys of a relational database schema. The al-
gorithm examines the position of attributes in
the functional dependencies to determine
which attributes are essential and useful for
determining the keys and which attributes
should be ignored. A key is found by comput-

ing the closure of essential attributes.

KEYWORDS: Relational Database, Candidate
Keys, Functional Dependencies

INTRODUCTION

uppose you {or the textbook you have
adopted for your database class) give the
following problem to your students:

Given a universal relational database
schema R(A, B, C, D, E, E G) with a set of
functional dependencies I' = {A — B, CD —
A, CB — E, AF - G, CF — D}, find all candi-
date keys of R.

How are the students supposed to deter-
mine the candidate key(s) of R?

Most popular database textbooks provide
only a definition for the key but do not de-
scribe how to determine .one [3, 5]. Some au-
thors, e.g., Ullman [8] indirectly provide an
algorithm. The algorithm essentially involves
computing the closure of all possible subsets
of the attributes of R. One or more of such
subset may exhibit candidate key properties.
Computing the closure of all subsets of the at-
tributes of a relation is no easy task.

In their new edition, Elmasri and Navathe
[4] offer the following algorithm:

set K « R;
for each attribute A € K
compute {K - A}+ with respect to I'
if (X - A}+ contains all the attribut-
es of R then
. set K « (K - A}

The above algorithm suffers from two ma-
jor deficiencies:

* First, it requires many computations.
Suppose a relation has n attributes. This al-
gorithm calls for computing the closure of
n - 1 attributes, then the closure of n - 2 at-
tributes, and so on until a key is found.

* Second, it returns only one key for R, and
the returned key depends on the order in

JOURNAL OF INFORMATION SYSTEMS EDUCATION ~ Spring 1996

_

which attributes are removed. For exam-

ple, for RCABCDEF) with a set of FDs T, if

we start removing attributes starting with

F, followed by E, followed by D, we may

end up with ABC as a key while not realiz-

ing that, for example, E by itself, or F by it-

self, or the combination of EF, or E or F

combined with any of the attributes A, B,

or C might have been keys of R.

Our experience with and observation of al-
most all of the academic problems of the
above kind has shown that when determining
the candidate keys of a relation, only a small
subset of the attributes has to be considered,
and that the candidate keys come from that
small subset. The question is which subset and
how to determine it? This is the objective of
the rest of this paper.

OBJECTIVES

Our objective is to present a simple algo-
rithm that can be used by the students in an
introductory database course to determine the
candidate keys of a universal relational data-
base schema. We are presenting this algorithm
because most of the popular database text-
books explain how to determine the candidate
keys. Practically, most database textbooks give
informal and formal definitions of a key, and
some introduce rather complicated algorithms
for computing the closures of a set of attribut-
es or a set of functional dependencies, but the
issues in determining the candidate keys are
not covered. Thus our objective is to provide a
simple algorithm that can be used by the stu-
dents to find the keys of a universal relation, a
point that is not handled with clarity in the
textbooks. The algorithm that we provide may
not necessarily have a broad theoretical ap-
peal. But that is not our objective. We are fa-
miliar with theoretical contributions in [6]
and [2] and the extensive discussion of the
theory of relational databases and the func-
tional dependencies in [7]. However, the con-
cepts and algorithms presented in these and
similar articles are too technical to teach to
the introductory database students. We be-
lieve our key finding heuristic is simple and
practical for such purpose.

AKEY FINDING ALGORITHM

Given a universal relation R and a set of
functional dependencies I', we carefully ex-
amine the position of the attributes of R in T,
and decide which attributes must be part of a
key, which attributes will never be part of any
key and which attribute may be part of some
key. Let's refer to these three sets of attributes

33

.

as A, p, and P respectively. When determining

the keys, it becomes obvious that,

¢ attributes of p should not be considered as
they will never be part of any candidate
key,

o attributes of A must be part of every candi-
date key of R, and

e attributes of B should be considered only
when the set A does not produce all the
candidate keys.

In following paragraphs we discuss what A,
p, and P represent and how to construct these
three sets.

Given the universal relational database
schema R(A, B, C, D, E, E G) with a set of
functional dependencies ' = {A — B, CD —
A, CB - E AF —» G, CF —» D), we divide
the attributes of R into two not-necessarily-
distinct sets. One set represents all attributes
that occur on the left-hand side (LHS) of at
least one functional dependency (FD) while
the other set represents those attributes that
occur on the right-hand side (RHS) of at least
one FD. For relation R, LHS and RHS are as
follows:

LHS RHS
A-._ B
Bvn
D E
B G
F D

Next, we identify those attributes that ap-
pear on both sides by drawing a dotted line
between them:

LHS RHS
A . B
c A
D E
B ™. G
F ™D

Now we can construct the three sets men-
tioned earlier. Set A refers to those attributes
that appear on the LHS only, namely C and F
Set p refers to those attributes that appear on
the RHS only, namely E and G. Finally, set B
refers to those attributes that appear on both
LHS and RHS, namely A, B, and D. (Note that
the above “tables” need not have been drawn.
The sets A, p, and B can be generated simply
by inspecting the functional dependencies.
However, we use the above approach in the
classroom because it makes construction of
the three sets more visual, simpler, and less
prone to errors.) The key finding algorithm
continues as follows:
® Ignore attributes of p. Using Armstrong in-

34

ference rules [8], it can easily be shown
that attributes appearing in p will never be
a part of any candidate key of R.

o All attributes of A must be part of every
candidate key of R. Compute the closure of
L. If A by itself forms a key of R, then it is
the only key of R. (Both of these two asser-
tions are provable by using the Armstrong
rules.)

e [f A does not produce a key, add attributes,
one at a time, from P to A and compute
their closure until all keys are found. Note
that all attributes of § must be considered
in order to find all candidate keys.
Furthermore, note that computing each
new closure is simple because the closure
of attributes of A has already been pro-
duced. Thus all that is needed is to deter-
mine if the addition of a new attribute
from B to A produces a key.

We apply the above algorithm to our prob-
lem. Here is the problem description repeated

from Page 1:

Given a universal relational database
schema R (A, B, C, D, E, F, G) with a set of
functional dependencies I' = {A - B, CD —
A, CB - E, AF - G, CF — D} , find all candi-
date keys of R.

We have already determined A,, and p: A =
{CF}; B = {ABD} ; and p = {EG}. According to
the algorithm, C and F must be part of any
key while E and G will not participate in any
key. Note that according to the algorithm, (a)
we need not consider computing the closure
of any single attribute because A contains two
attributes, (b) nor do we need to consider at-
tributes E and G because they appear in p,
and (c) we should consider attributes of A be-
fore considering any other combination of at-
tributes.

Let’s consider A : A+ = [CF}* = CFDABGE.
Thus {CF} is a key of R. According to the algo-
rithm, {CF} is the only key of R. We need not
consider any other combination of attributes.
Brief Discussion

Note how the key finding process has been
simplified by the algorithm. Computing the
closures of every possible combination of at-
tributes to find all potential keys of even a
small relation like the above example would
have been too time consuming.

For the above example, we considered a
schema for which the set A was non-empty
and formed the only key for the schema. In
other words, we only had to consider A. For
the next example, we will consider a schema
for which A will also be non-empty but it will

not form a key.

ANOTHER EXAMPLE

Consider the following problem descrip-
tion:

Given schema S (ABCDE) and the set of
functional dependencies I'= {AB — CDE, AC
—BDE,B — C,C —» D, B— E}, find all can-
didate keys of S.

We have
LHS RHS
A C
B "D
c™. E
5

Thus, we end up with the following attrib-
utes for A, B, p: A = {A}; B = {BC}; p = {DE} .
According to the algorithm, A must be part of
every key of S while D and E may never par-
ticipate in any key.

Let’s consider attributes of A only: AT = A™
= A.Thus A is not a key of S. We now consider
adding attributes from B to A and compute
their closure to find all keys:

{ABJ* = ABCDE. ABisakeyofS.
[AC)* =ABCDE. ACisakeyof S.
AB and AC are the only keys of S.
Brief Discussion

According to the algorithm, AB and AC are
the only keys of S. Note that:

* we did not need to consider any single at-

tribute of S except A.
¢ we did not need to consider any combina-

tion of D or E with A because these two at-

tributes may never be in any key of S,
¢ we did not need to consider BC because A

must be a part of every key of S, and
¢ we did not need to consider other combina-

tions, e.g., ABC, since they will yield a su-
perkey.

IfA=Dand p=@ (thatis, B contains all
attributes), then it implies the worse case sce-
nario, i.e., every attribute might be a potential
component of a key. One solution is to use the
“traditional” approaches, i.e., considering all
potential combination of attributes but such
scenarios rarely happen, at least in academic
problems.

A MORE TYPICAL ACADEMIC EXAMPLE

In this section, we consider another acade-
mic example. The example is adopted from
the exercises at the end of Chapter 7 of
Ullman [8].

Consider a database of ship voyages with
the following attributes:

JOURNAL OF INFORMATION SYSTEMS EDUCATION ~ Spring 1996

¢ ship name represented by S,

¢ type of ship, represent by T,

¢ voyage identifier, represented by V,

® cargo carried by one ship on one voyage,
represented by C,

* port name, represented by P, and

* voyage day, represented by D.

It is assumed that a voyage consists of a se-
quence of events where one ship picks up a
single cargo, and delivers it to a sequence of
ports. A ship can visit only one port in a sin-
gle day. The following functional dependen-
cies may be assumed: T = {§ 5T, V- §C, SD
— PV},

The above represents a typical example of
an academic problem. The readers are.chal-
lenged to determine the key(s) before preced-

ing further.
‘We have
LHS RHS

S.. T

Vi, ™., C

D™ ™S

-.-_..‘ P

AY

The attributes of A, B, and p are as follows:
L= (D}, B =SV}, and p = {TCP}. According
to the algorithm, D must be a part of every
candidate key while T, C, and P will not par-
ticipate in any key. Let us consider the closure
of A: AT = D* = D. Thus D is not a key of the
database.

Now, we consider adding attributes one at
a time from P to A, and compute its closure:

[DS} +=DSPVCT. DSisakey.
{DV}+=DVS.. DV is also a key.

Thus the ship database has two keys, name-
ly DS and DV. We do not need to consider any
other combination of attributes.

CONCLUDING REMARKS

We believe the algorithm presented in this
article is simple and practical for academic
purposes. We have applied it to many small
and large academic problems. The results have
been correct and the process has been quite
efficient.

ACKNOWLEDGMENTS

The author wishes to acknowledge anony-
mous reviewers for their helpful comments.
This research was partially supported by a
1995 UCR grant, University Committee on

Research, University of Nebraska at Omaha.
4

REFERENCES r

[1] C.J. Date. An Introduction to Database Systems, volume [.

Addison-Wesley, Reading, MA, 6th edition, 1995.

[2] D. Kroenke. Database Processing. Prentice-Hall,
Englewood Cliffs, NJ, Sth edition, 1995.

[31. Ullman. Principles of Database and Knowledge-Based
Systems, volume [. Computer Science Press, Rockville, MD,
1988.

[4] R. Elmasri and S. B. Navathe. Fundamentals of Database
Systems. Benjamin-Cummings, Menlo Park, CA, 2nd edition,
1994.

[3]C. Lucchesi and S. Osborn. Candidate keys for relations.
Journal of Computer and Systems Sciences, 17(2):270-279,
1978.

[6] G. Ausiello, A. D'atri, and D. Sacca. Graph algorithms for
functional dependency manipulation. Journal of the ACM,
30(4):752-766, 1983.

[7] D. Maier. The Theory of Relational Databases. Computer
Science Press, Rockville, MD, 1983,

[8] W. Armstrong. Dependency structures of database rela-
tionships. In Proc. 1974 IFIP Congress, pages 580-583,
Geneva, 1974,

Hossein Saiedian. Ph.D.
Department of Computer Science
University of Nebraska at Omaha
Omaha, Nebraska 68182
hossein@unomaha.edu

Hossein Saiedian is an associate professor in the
Department of Computer Science at the University of
Nebraska at Omaha, USA. He is a member of the IEEE
Computer Society, Sigma Xi, the ACM, and currently
serves as the Chair of the ACM SIGICE (Special Interest
Group in Individual Computing Environments).

Dr. Saiedian has published over 40 technical articles
including articles in recent issues of IEEE Computer,
International Journal of Computing & Information
Technology, Computer Networks & ISDN Systems, Journal
of Systems and Software, and Journal of Information &
Software Technology. His pedagogical articles have
appeared in Computer Science Education, Journal of
Information Systems Education, and SIGCSE Bulletin.
Dr. Saiedian was ranked as the third leading software
systems scholar in the October 1994 issue of Journal of
Systems and Software.

JOURNAL OF INFORMATIGN SYSTEMS EDUCATION Spring 1996

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1996 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

