Journal of Information Systems Education

Fall 1994

The Resurgence of COBOL.:
Considerations for the Future

ABSTRACT: The COBOL language is alive and well. There are those who deny this and con-
tend that 'COBOL is Dead.’ There are five important factors which contradict that statement.
First, industry is finding-a resurgence in the importance and use of COBOL. Second,
COBOL's environment has switched from mainframe to the distributed level of PCs. Third,
academic institutions have also changed to teaching COBOL on the PC level. Fourth, addi-
tions and refinements to the COBOL syntax show an evolutionary development is in process.
Last, continued improvement in the standards and cooperation between CODASYL, ANSI

and ISO help creates a language that is accepted not only in the United States but also inter-

nationally. These factors all contribute to the continued use, education and enhancement of

the COBOL language.

KEYWORDS: COBOL, Curriculum, Object Orientation

INTRODUCTION

COBOL has had more impact on business
than any other programming language. The
sheer amount of code that has been
developed over the past 34 years is a fitting
testimony to the acceptance of this language.
However, there are some programming pro-
fessionals who say that COBOL, regardless
of its successful track record, is waning and
“Dead.” This paper will show that this
statement is the farthest thing from the
truth. COBOL, since its inception, has
undergone various revisions, attesting to the
fact that it is alive and willing to comply to
user demands. COBOL is widely accepted
within the continental U.S. as well as inter-
nationally, as documented by the existence
of numerous user groups.! [1]

WHERE IT ALL STARTED

COBOL had its official and unceremonious
start on April 8, 1959. This date is usually
regarded as the birthday of COBOL. This
date was chosen because it signifies the day
that a meeting convened at the University of
Pennsylvania by the Department of Defense
(DOD) to define the objectives for a new
Common Business Language. Captain Grace
Hopper, the mother of COBOL, was the
person in charge of this group. [2]

This language originally had no formal
name, and it was left up to the group
developing the language to formulate an
appropriate moniker. Some attempts were
BUSY, BUSYL, INFORS®¥L, COSYL,
DATASYL and COCOSYL. When the final
draft of the language was completed in
December 1959, COBOL emerged as the
consensus name agreed upon by this group.
The exact deliberation as to why this
name was chosen over other alternatives is
not known. [3]

COBOL has gone through various versions
(COBOL-60, COBOL 68, COBOL-74,
COBOL-85), plus other minor revisions, and
has been subjected to rigorous standards
imposed by ANSI (ANS1/X3]4) and 1SO
committees (ISO / SC22 / TC97 / WG4).
COBOL-85 has evolved from the
work of three major committees: CODASYL

(Conference on Data Systems Language) -

COBOL committee, ANSI/X3]4 committee
and ISO (International Standards
Organization) [4]. As the following
diagram shows, these committees have an
integrated relationship.

CODASYL <

> ANSI <« > ISO

Once the CODASYL committee develops

Dr. Ronald J. Kizior
Management Science Department
Loyola University Chicago
Chicago, Il 60611-2103
1-312-915-7394
#wA0rk0@luccpua.it.luc.edu

new standards, they are then submitted to
the ANS/W3J4 COBOL committee for addi-
tional review. When agreement is reached
by the ANSI committee, they, in turn, pass
them on to the ISO(WG4) COBOL
Committee for approval on an international
scale. As each new version of COBOL is
approved, new “functionality” is added in
order to increase the language’s
flexibility and acceptability.[5] This is
demonstrated by the material presented in
the next several paragraphs.

EVOLUTIONARY PROGRESS
.COBOL has flourished over the years by

incorporating the structured methodology

that came out of a special CODASYL com-

‘mittee symposium in the early 1970%. Such

features as Scope terminators, nested
programs, EVALUATE verb, in-line
PERFORM, DO-WHILE and DO-UNTIL are
the result of that symposium.

The most current version, COBOL-85,
emerged after a long delay, which many felt
was damaging to the language. The
CODASYL COBOL Committee held a
syposium in Los Angeles in 1975 soliciting
suggestions from all over the world on how
to change COBOL in order to accommodate
structured programming techniques. Most

1. Micro-Focus has user groups established in Amsterdam, Australia, Canada, Finland, Italy, Norway, Spain, Germany and United Kingdom.

PAGE 155

of the new features incorporated in COBOL-
85 had their roots at this symposium. [6] In
order to ensure that this delay would not
occur again , the International COBOL
Committee met in Vienna, Austria, in 1984
and adopted new rules, namely, an
Addendum Process. This process provides
the mechanism by which new features can
be added to the COBOL language without
causing incompatibility with older COBOL
programs. In September 1989 the com-
mittee passed an Intrinsic Functions
Addendum , which resulted in COBOL-89
being issued. This addendum added forty-
two new intrinsic functions to the COBOL
language. A few examples of the functions
that were added are ANNUITY, CHAR,
CURRENT-DATE, LOWER-(UPPER-)
CASE, MAX , MIN , REM , REVERSE, SUM,
SQRT , various calendar functions and
other popular mathematical and trigono-
metric functions. [7]

Some of these built-in functions operate
in the manner shown in the chart below.
(Lower case identifiers are user defined.)

Assuming that the three test scores are 82 ,
79 and 93 respectively, the minimum score
value is 79, which is not less than 70, and
the phrase ‘STUDENT HAS PASSED ALL
EXAMS’ will be displayed. Notice in the

Journal of Information Systems Education

Fall 1994

chart, that in order to activate a built-in
function, the keyword FUNCTION must
precede the unique function name.

The ANSI COBOL committee went to
work right after the COBOL-85 version was
released, and is currently working on the
next addendum, which, when released
could result in COBOL-95/96. The
committee is currently looking into the
possbility of adding additional flexibility to
the language by introducing such syntax as
EXIT-PERFORM, extensions to the ACCEPT
and DISPLAY verbs, windows support,
multi-tasking, boolean/bit functions,
extensions to the CALL statement and
other features that will allow object oriented
programming. [8]

WHAT DOES THE FUTURE HOLD

The future should bring increased interest
in COBOL because of the possibility of
incorporating OOP (Objected Orientated
Programming) techniques into the
language.[9] The CODASYL committee, in
Scottsdale, Arizona, in November 1989,
formed the OOCTG (Object Orientated
COBOL Task Group) (ANS1/X3]J4.1) to
oversee this project. [10]

Another interesting change that has
recently occurred is in the COBOL platform.
COBOL was originally used in a mainframe
environment and was always thought of in
that light. ®ver the past three years,
however, there has been a steady change
down to the PC level. Because of improved
technology and software availability,
more companies are now considering PC-
based COBOL.

CORPORATE CHANGE

Several years ago Frito-Lay, based in Plano,
Texas, had a distributed platform that linked
GUI-based PCs to their massive corporate
database which resided on a mainframe.
The original distributed systems platform
was primarily written in ‘C.’ This archi-
tecture was not interactive and ,therefore,
not fully satisfying the users’ needs.[11]

" Since they had experience with host

COBOL, Frito-Lay decided to use this expe-
rience to build a PC-based COBOL
development environment that would be
the basis for their new distributed
computing system. By choosing COBOL,
Frito-Lay was able to avoid encountering a
big learning curve .

Frito-Lay’s distributed processing system
was actually made possible by using an
object-oriented programming approach.

There are various classes and methods of

PAGE 156

data. These data are passed back and forth
among the distributed platforms. The sales
and marketing departments were the only
departments that used the original dis-
tributed system. Now other systems such as
personnel, payroll and manufacturing have
joined the request bandwagon.

The improved efficiency measured in
terms of 8 to 10 months request time under
the old system has now been reduced to a
matter of weeks under this PC-based dis-
tributed system. The new applications also
provide end users with the added advantage
of working with a GUI interface. [12]

ADDITIONAL INDUSTRY CASE
STUDY

Any person remotely familiar with the
activities of an insurance company realizes
that there is a huge amount of information
processing that goes on daily. Insurance
companies, and other companies like them,
face a continuous problem of program
maintenance. Production programs in the
insurance industry are constantly being
affected by various changes in federal and
state laws, and by various insurance regu-
latory agencies. In order to stay competitive
in today’s markets, these companies are
always looking for new flexible computing
alternatives. The Leverage Group of
Glastonbury, CT, is one such company that
has been using PC-based COBOL to
maintain a competitive edge and implement
new technology while preserving investment
in existing applications and skills.

The Leverage Group was originally a
mainframe shop, but, in order to create
their own market niche, they wanted to
develop a PC based solution that would
allow insurance companies to automate
policy administration on a PC network
while continuing their mainframe devel-
opment. One of their core products contains
350,000 lines of code and is targeted to run
on DOS, MS-Windows or OS/2 operating
systems and on a Novell LANserver or
LANmanager network. Those companies
who have used The Leverage Group’s ALS
(Administration Leverage System) product
have found this product to be both cost
effective and flexible. Working in a PC envi-
ronment allows The Leverage Group to
compete with mainframe vendors because
modifications can be done faster and
cheaper. {13]. ’

4GLs CHALLENGE
The previous two corporate case studies
help point out two important facts: 1) PC-

level implementation, and 2) the use of
COBOL for that implementation. The pro-
ponents of 4GLs have long praised the
speed and productivity increases of their
products. Their claim is how can anyone
today use a 3rd generation language com-
petitively? They voice the opinion that
“COBOL is DEAD.”

For the non-technical person, one of the
advantages that 4GLs have is their speed of
development. In that process there is a
drawback. The drawback is that 4GLs are
interpretive rather than compiled. This
reduces their speed advantage when
compared to COBOL. Also, as stated
previously, 4GLs , unlike COBOL, lack
standards.

Trying to change all of the existing COBOL
code, estimated today at over 70 billion
lines, [14] into a 4th generation language is
definitely a challenge, if not an impossi-
bility. What is needed is some kind of cost
effective conversion technology, which to
date is non existent. This, by far, is the
major stumbling block for most 4GL
vendors. This particular fact provides an
excellent reason why COBOL is neither
dead nor on the verge of dying. [15] There
is a definite need for programmers to
maintain this library of production
programs written in COBOL. Industry
would come to a gridlock situation if there
were no COBOL programmers available to
maintain the existing library of source code.

Ms. Kimberely Saxine, the manager of
development consulting for Hewitt &
Associates, believes that COBOL is far from
dead. She says,’ I think you're going to find
a lot of uses for it (COBOL) just because
there’s such a large base of mainframe
COBOL programmers out there. You just
can’t throw it away.”[16] She further
contends that the high development cost
and reputed unruliness of your typical ‘C’
program are not even being considered.

John Crabtree, a programmer/analyst for
Tandy Corporation in Forth Worth, Texas,
concurs that COBOL is a standard in their
shop. He contends that you can find expe-
rienced COBOL programmers nationwide,
which is not the case for ‘C’ or Smalltalk
developers. [17]

THE FUTURE IS ‘COOL’

‘COOL’, Cobol Object Orientated
Language, actually exists today on a pro-
prietary level. Hewitt & Associates, a large
information systems consulting company in
Lincolnshire, IL, has developed its own
version of OO-COBOL. They use ‘COOL’ to

Journal of Information Systems Education

Fall 1994

build reusable modules of code for produc-
tivity and efficiency. Their developers run
‘COOL’ through a PC-based precompiler
that generates OO source code that is then

submitted to a regular PC-based COBOL

compiler. {18]

Standardized ‘COQOL’ is in process. This
process started at the symposium sponsored
by the CODASYL COBOL Committee in
November 1989 in Scottsdale, Arizona. The
purpose of this symposium was to explore
the relevance of object-oriented
methodologies to COBOL. The OOCTG
was formed at this meeting with the
eventual goal of creating standards for OO-
COBOL. Their agenda, as originally
planned, is shown in the chart below.

Some of areas in which major discussion
has to take place with regard to ‘COOL’ are
Orthogonality, Recursion, Polymorphism
and Encapsulation. In an attempt to derive
*COOL’ standards, the following goals were
created: [19]

¢ Compatibility - with existing COBOL

syntax

o Simplicity - include obvious semantics

with simple syntax

® Consistency - well-defined COBOL

syntax will not change

® Maximum language power - more

operations per keyword

® Readability - always an objective since

1959

® High Performance - in run, compilation

and development time

® Transformability - ability of an object to

adapt to different uses in different
environments with minimum effort.

The first date on the above agenda has
been met and completed on time. The
second item has been developed, and formal
approval is expected shortly. A new book by
Raymond Obin has recently been published
by Micro Focus Publishing entitled Object
Orientation: An Introduction for COBOL
Programmers. This text explains various
teminology that can be used in conjunction
with ‘COOL’, but, again, at this time
it is all unofficial and subject to
further modifications by the standards
committee.[20]

PAGE 157

NEW BREED OF COBOL
COMPILERS

Drake Coker, the chief scientist and author
of Acucobol-83, points out that the new
versions of COBOL are slowly acquiring
various development tools, such as' GUI and
translation codes for SQL. Screen design,
historically difficult using COBOL, is also
much quicker and easier with the latest
version. The field is expanding. Currently,
the big names in COBOL compilers are
RM/COBOL, Acucobol-85, Micro Focus
COBOL, CA-Realia COBOL, Visual-COBOL
and Microsoft COBOL V.4 .[21]. A brief
warning to those in the market for a new
COBOL compiler: Check out each vendor’s
product to determine whether it is a true
compiler or an interpreter. For example,
Micro Focus Cobol is a true compiler;
Acucobol-85 is an interpreter. [22,23] The
biggest difference between interpreters and
compilers is in terms of efficiency in exe-
cution time, of which the later is superior.
Interpreters translate one instruction of
source code into machine language and
then immediately execute that instruction
before going on to the next instruction.
Compilers translate the entire set of source
code instructions into machine code, which
is stored in a separate file, and then execute
the entire set at one time.[24]

The previously mentioned vendors are
making their products available on various
platforms, such as DOS, 0S/2, VAX/VMS
and UNIX. They are also available across
various GUl-based systems, such as
WINDOWS, 0S/2 and OSF/Motif. This
flexibility has cut deeply into the claims of
the various 4GL power tool developers. [25]

Another point in favor of COBOL is the
fact that it is a vendor-independent
standard. 4GLs have failed to dominate the
development market because no one
language has emerged as an accepted
standard. Even though the competition
admits that its new 4GL products are used
more for downsizing, a major portion, 80%
as claimed by Drake Coker, chief scientist at
Acucobol, Inc., of all applications is still
written in COBOL. [26]. Rich Wunder of
CSC Partners, an information systems
consulting company in Newton Lower Falls,
MA, claims that as many as 65% of all
corporate systems are still running in
COBOL.[27] Whether 80% or 65%, there is
still a healthy portion of corporate systems
using COBOL.

This demonstrates the increase
in productivity that can occur in
an academic setting by
switching to a PC-based COBOL
environment from a mainframe
environment.

ACADEMIC RESPONSE

Given the fact that many industry envi-
ronments have changed from a mainframe
to a PC-based standard, the academic
community has had to take a long, hard
look at what they are going to do in terms of
teaching COBOL. Various book publishers
have helped ease the transition by having
available, as supplementary material,
student versions of PC-based COBOL. Other
vendors have created grant programs so
universities can obtain a regular version of
their PC-based COBOL compiler at a
reduced rate. Still others have developed
student versions of COBOL compilers that
sell for $49.95. These student versions
usually have a limitation in terms of the size
of the file which they can handle.

Some schools have been working with PC-
based COBOL for two to three years already,
and have been very successful. One com-
munity college in the Chicagoland area
switched from their mainframe COBOL to
PC-based COBOL in September 1992: In
the past, 8 assignments were a required part
of the course. When the second semester
started in January 1993, after having
experienced one semester, 10 assignments
were made mandatory, and in September
1993 the instructor raised that to 12
assignments. This demonstrates the
increase in productivity that can occur in an
academic setting by switching to a
PC-based COBOL environment from a
mainframe environment.

CONCLUSION

1t is obvious from what has transpired
recently that COBOL is not dead. The single
most popular commercial programming
language today is COBOL, which accounts
for somewhere between 65% and 80% of all
commercial applications.[28] As was
pointed out previously, there seems to be a
renewed interest by numerous firms to use
their COBOL experience in tackling new
endeavors. With the introduction of the
newer and more powerful 486 PCs,
companies have taken a harder look at

Journal of Information Systems Education

Fall 1994

distributed platforms while continuing to
use their mainframeé COBOL experience.
Although COBOL may not be popular on
numerous college campuses now, the best
of what COBOL has done and what it will
do in the future is yet to be made known.
Increased interest in PCs combined with the
capability of learning COBOL on the PC
level should provided the stimulus for
increased interest in the language. It is,
therefore, our job, the job of the college pro-
fessor, to take this information and make it
known to our students. We are being called
upon to enlighten and prepare the youth of
today for the careers of tomorrow.

REFERENCES
1. Compilations, May/June 1993, p.12.

2. Garfunkle, Jerome, “COBOL in the 90's".
Seminar presentation, Ramada Hotel,
Rosemont, Il. Sept. 9, 1992.

3. Ibid.

4. Schreider, Don ,"The Organizations
behind the Acronyms”, Compilations,
March/April 1993, p.10.

5. Garfunkel, Jerome, “IN DEPTH - COBOL
- The Next Stage,” Computerworld, July
23,1990, p.88

6. Ibid., pp.87-8.

7. Garfunkel, Jerome, “"COBOL Rescues
The Millennium”, Enterprise Systems
Journal, October 1991, pp.36-7.

8. Compilations, Nov/Dec 1993, p.19.

9. Urlocker, Zack, “The Future of Object
Orientated”, Chicago Computing, April
1989, p. 13 .

10. Schricker, Op. cit. p.10.

11. Kalkowski, Rick, “Frito-Lay Uses Micro-
Focus COBOL to Make Corporate Data
More Accessible”, pp.9 , Compilations,
March/April 1993.

12. Ibid., p. 10.

13. Kalkowski, Rick, “The Leverage Group
Offers Insurance Industry an Efficient
Mainframe Alternative”, p.7,

Compilations, January/February 1993.

14. Jenkins, Cameron, Vice-President,

PAGE 158

Marketing, Letter dated January 22,
1993, Acucobol, Inc.

15. Sokol, Marc, “Why 4GLs Cannot Kill
COBOL", Journal of System
Management, May 1990, p. 35.

16. Snell, Ted, “Are you Ready for Cutting
Edge COBOL?”, Datamation, Oct. 15,
1992, p. 77.

17. Ibid., p. 77.
18. Ibid., p.77.

19. Garfunke!, Jerome, Op. cit., July 23,
1990, p.87-8.

20. Obin, Raymond, Object Orientation: An
Introduction for COBOL Programmers,
Micro Focus Publishing, 1993.

21. "Who's Who is PC Cobol”, Datamation,
May 15, 1991, p. 72.

22. Celko, Joe, “"Queries and COBOL”",
Database Programming & Design,
March 1992, pp.26-7.

23. "Off-Mainframe Compilers Do the Job,”
Corporate Computing, Dec. 1992, p.97 .

24. Ross, Steven C., Understanding
Information Systems, West Publishing
Company, 1994, p. 11.

25. Snell, Op. Cit., p.78 .
26. Ibid., p. 82.

27. Colborn, Kate, “Cobol and Beyond",
Datamation, January 15,1992, p.65.

28. Ibid., p.65 .
Author’s Biography

Ronald] Kizior, assistant professor, of information systems
at Loyola University Chicago. He received his B.B.A. in
Accounting from the University of Notre Dame, M.B.A. in
Transportation from Northwestern University, and his M.A.
and Ph.d. in Economics from the University of Notre Dame.
He has taught at Loyola since 1969. He is active in EDSIG,
the Special Interest Group for Education which is a part of
the DPMA. He has held all of the elected positions in that
organization, and is currently the Director of Membership
Services. He has chaired the ISECON conference in 1988
and 1990. He has had presentations at the Midwest Business
Administration Association Conference , the Midwest
Computer Conference and at ISECON. His current areas of
research and interest are in COBOL, Quality Systems
Development and International Information Systems.

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1994 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

