Journal of Information Systems Education

Yolume 5, Number 3

BRINGING OBJECT-ORIENTED PROGRAMMING
INTO THE UNDERGRADUATE COMPUTER
INFORMATION SYSTEMS CURRICULUM

Dr. John K. Gotwals

Dr. Mark W. Smith

Computer Technology Department
Purdue University

Knoy 242

West Lafayette, IN 47907

ABSTRACT: Object-oriented programming (OOP) is becoming the programming
methodology of choice in the 1990s. In this paper ajustification for including object-
oriented programming in the undergraduate CIS curriculumis presented. The paper
briefly describes what OOP is, why it is important, and what recommendations two
computer related model curricula (DPMA and ACM/IEEE-CS) make about OOP.
The course objectives for an introductory OOP course are described. Several
potential OOP programming languages are mentioned, and the rationale for the
selection of C++ is presented. The paper concludes with a brief discussion of two
possible programming environment possibilities: Borland’s Turbo C++ and
Microsoft’s Visual C++.

KEYWORDS: Object-Oriented Programming, OOP, C++, CIS, Curriculum

INTRODUCTION

There is arevolution going on in the
software development industry, and part of
this revolution concerns object-oriented
techniques. Object-oriented became a
software related buzzword of the late 80s,
and it has now evolved into an accepted
technology that has recognized benefits
for the software development process.[1]
One management consultant reported that
Electronic Data Systems (EDS) compared
two programming teams, one using object-
oriented techniques and the other using
conventional methods. EDS found that the
team using the object-oriented approach
had much better productivity than the team
using conventional methods.[2] The
computer industry trade press is replete
with articles about Object-Oriented X
(where X can be Programming, Database,
Analysis and Design, etc.). Some of these
articles include scare headlines such as

“Plan now to prevent career dead ends for
COBOL programmers.”’[3] Indeed, at least
one university CIS department is seriously
considering the eventual removal of
COBOL programming instruction from its
curriculum.[4]

The purpose of this paper is to give
an overview of object-oriented
programming (OOP) and its current
significance, to summarize the extent to
which OOP is included in current or
proposed model curriculums, and to
describe what one CIS department is doing
about the situation.

THE CRISIS IN SOFTWARE
DEVELOPMENT

In his seminal paper first published
in 1986, “No Silver Bullet: Essence and
Accidents of Software Engineering,”
Frederick Brooks stated that software

projects can become a “monster of missed
schedules, blown budgets, and flawed
products.”[5] He then examined several
technical developments that are most often
advanced as a solution to the software
development crisis and concluded that no
single development will by itself improve
productivity by as much as a factor of ten.
Brooks did, however, predict that several
of the emerging technologies (when used
together) could be expected to yield the
desired factor of ten improvement. In
particular, Brooks listed object-oriented
programming as having more promise than
any of the other emerging technologies of
his day.

There are several factors which are
responsible for the software crisis, but they
are all rooted in the fact that software is
inherently complex. Grady Booch’s classic
book “Object-Oriented Design with
Applications™ gives four explanations for

Page 2

Journal of Information Systems Education
Volume 5, Number 3

Figure 1: THE THREE CORNERSTONES OF OOP

Polymorphism

OOP

Encapsulation

Inheritance

this unrestrained complexity: the problems
software tries to solve are complex, it is
very difficult to manage the software
development process, software is very
flexible, and it is difficult to characterize
the behavior of the application.[6] Bar-
David in an article titled “Object-Oriented
Education and Training in the 1990’s,”
asserts that programmers are responsible
for the bottleneck in software production.[7]

A DESCRIPTION OF OBJECT-
ORIENTED PROGRAMMING

Object-oriented programming has
been referred to as a new programming
paradigm, or way of viewing the
programming process, and it is the
programming methodology of choice in
the 1990s.[8] In contrast to other
programming paradigms such as the
imperative-programming paradigm
(languages such as C or Pascal) or the
logic-programming paradigm (Prolog),
OOP views a program as a collection of
largely autonomous agents, called
objects.[9] An object includes both data

values and methods (similar to executing
procedures). A programmer attempts to
model or simulate desired behavior through
the construction of objects. Objects exhibit
three features which help the programmer
take advantage of the object paradigm.

In an object, data and behavior are
packaged or encapsulated. Encapsulation
allows the programmer to hide internal
details while providing a public interface
to the object. This data hiding enhances
reliability and modifiability of software by
reducing the interdependencies between
objects.

Another feature of an object, and
perhaps its most powerful, is inheritance.
Using inheritance, objects can acquire the
attributes and behavior of other objects.
This allows objects to share attributes and
behaviors without separately duplicating
the program code that implements them.

Finally, objects exhibit
polymorphism. Polymorphism allows the
shared code which objects acquire through
inheritance to be tailored to fit the specific

requirements of an object. This feature of
an object allows for a higher level of
abstraction in the design of software, since
the programmer is only concerned about
specifying actions and not how to
implement these actions.

WHY OOP IS IMPORTANT

Object-oriented technology is not
new, as its roots are in the early 70s when
the SIMULA programming language
became widely available. Like all emerging
technologies, there is considerable
discussion and dissension among “experts”
as to the viability of object-oriented
technology. Advocates like Ivar Jacobson
point out that 5,000 programmers are
currently developing systems based on
object technology and conclude that the
technology is proven and mature.[10]
Others argue that IS will reject object-
oriented programming and instead the
technology will be hidden from application
programmers under the cover of common
IS tools.[11] A 1992 report by researchers
at MIT’s Sloan School of Management

Page 3

Journal of Information Systems Education
Volume 5, Number 3

asserts that object-oriented technology will
be considered “experimental” for at least
the near future.[12]

Object-oriented programming is
attractive because it promises benefits in
the areas of complexity control, reuse of
standard components and increased ease
of software maintenance. Each of these
features should, in the long term, reduce
the costs associated with software
development.

0 exity Contro

A standard technique of mastering a
complex system is to decompose the system
into smaller and smaller parts until each
part becomes small enough to be
understood. When the system is
decomposed into modules, each carrying
out a major step in the overall process, we
are using top-down structured design. An
alternate decomposition method is to
decompose the system into objects, with
each object having a unique behavior and
modeling some object of the real system.
This latter approach yields smaller systems
than the top-down approach with the ability
to incrementally grow from areliable small
system into a more complex system.[13]

Another method of dealing with
complexity is through abstraction, which
is the process of ignoring the nonessential
details and dealing only with a generalized
model of the object. Abstraction is easier
and is a more normal part of the object-

oriented development process than with
other methods of software development.

oltwa use

Since object-oriented techniques
provide amechanism for cleanly separating
the interface of a module from its inner
details, it is possible to routinely construct
reusable software components. Brad Cox
argues that object-oriented programming
is a packaging technology, and he has
introduced the term “Software-IC” to
denote a reusable software component
which is independent of the specific job at
hand and is highly reusable in future jobs.
He speculates that at some future date the
software designer might be able to select
from a catalog the software components
needed to build a desired system.[14] The
analogy with hardware design is obvious.

Software Maintenance

Systems built with an object-oriented
approach are easier to modify than systems
built with the classical top-down approach.
There are several attributes of an object-
oriented system which support this
assertion. First, object-oriented systems
are often smaller than equivalent
implementations by other techniques. Next,
object based systems can be modified over
time rather than be abandoned or
completely rewritten to adjust to changing
requirements. Finally, since objects are
encapsulated, it is easier to change the

Table 1:

1.0 Computer Concepts:

3.0 Information Technology
3.1 Database

4.3 Development Techniques

4.0 Systems Theory and Development

4.3.3 OBJECT ORIENTED

DPMA’s 1S°9%0 UNDERGRADUATE MODEL CURRICULUM

1.3 Programming Languages and Applications Development Facilities
1.3.6 OBJECT-ORIENTED LANGUAGES

3.1.2 LOGICAL DESIGN (DBMS INDEPENDENT DESIGN):
ER, OBJECT- ORIENTED

implementation of an object than it would
be for the case of a conventional module.

OOP AND CURRENT CIS MODEL
CURRICULA

The model curricula of both the Data
Process Management Association (DPMA)
and the Association for Computing
Machinery/Institute of Electrical and
Electronic Engineers-Computer Society
(ACM/IEEE-CS) include object-oriented
techniques. Additionally, both
organization’s models have been reviewed
in order to find the emphasis and role these
groups expect object-oriented techniques
to play in the future training of
undergraduates. The following is a brief
review of each group’s model and how
object-orientation is included.

InDPMA’sIS’90Model Curriculum
foraFour Year Undergraduate Degree[15],
object-orientation appears in the areas of
the Model Curriculum shown in Table 1.

The IS’90 model curriculum uses
Bloom’s Taxonomy, and “awareness”,
“literacy” and “concept” are the major
requirements of object-orientation in the
IS’90 curriculum. The exception is in the
data base area where “Detailed
Understanding” is required. This translates
into “Be able to write syntactically
correct...”, “debug...”, “implement... and
maintain it”, “apply principles of..to..”,
and “design a... for...”, which is Level 3 of
Bloom’s Taxonomy (Application). The
IS’90 sample courses donotinclude object-
oriented topics until the third and fourth
years. Furthermore, no course required an
exit competency greater than Level 4,
“Detailed Understanding”.

Although the ACM/IEEE-CS Joint
Curriculum Task Force (JCTF)
“Computing Curricula 19917°[16] did not
consider programs for information systems,
they did define the term programming “...
to denote the entire collection of activities
thatsurround the description, development,
and effective implementation of
algorithmic solutions to well-specified
problems.” In addition, their report states
that programming occurs in all subject
areas. Their report has object-oriented
topics interlaced with almost all major

Page 4

Journal of Information Systems Education
Volume 5, Number 3

subject areas. Specifically, these areas
include: Database and Information
Retrieval, Operating Systems,
Programming Languages, Software
Methodology and Engineering, Advance
course electives on software design.

It is apparent that the JCTF believed
object orientation would become an
increasingly important methodology in the
future. In their report several references
arc made to specific languages such as
Smalltalk, SIMULA 67, Eiffel and C++.
Furthermore, throughout the document an
object-oriented approach to programming,
analysis, and development is evident. The
report makes reference to the contrast
between object-oriented concepts and the
more traditional methodologies and makes
the recommendation that an object-oriented
language should be used for the introductory
course in Implementation G: A Program in
Computer Science (Software Engineering
Emphasis).

It appears that both the DPMA and
ACM/IEEE-CS curriculum development
groups expect up-to-date CIS curricula to
begintoinclude coverage of object-oriented
aspects of programming, analysis and
design. The major subject areas within
each model curricula reflect this shift to the
object-oriented paradigm,

OOP AND CIS - THE EXPERIENCE
AT PURDUE UNIVERSITY

Two years ago, Cain stated that
although OOP technology has arrived,
“CIS students cannot write OOP programs
as partof their courses.”’[17] This statement
was based on the presumption that COBOL
was the primary language taught to CIS
students. However, some educational
institutions such as Dakota State
University[18] and Miami University[19]
are starting to incorporate QOP into their
CIS curricula by using languages which
contain provisions for OOP,

The Department of Computer
Technology (CPT) at Purdue University
has a nationally recognized undergraduate
program in Computer Information Systems
with special strengths in the areas of systems
analysis and database. Recently the
department began to update its curriculum

with a long-term strategy that is based on
two assumptions: 1) that programs will be
produced by CASE tools, and; 2) the need
for programmers will steadily diminish
over the course of the current decade.

The course is more than
hand-waving about
OOP — and students are
given weekly assignments
of simple programs which
illustrate the various
concepts and features of
class development in
C++.

In recognition of current industry
demand for programmers proficientin C++
and object-oriented programming, the CPT
department has begun to offer an elective
course titled An Introduction to Object-
Oriented Programming Using C++. The
course format consists of two 50-minute
lectures and one 2-hour lab per week for a
duration of 15 weeks. The course has a
prerequisite of successful completion of a
3-credit course in the C programming
language. Interest in the course is quite
high, and the course has also been taken by
non-CIS majors and graduate students.

ourse jectiv

The course introduces the student to
the concepts of object-oriented
programming and explains how these
concepts can be applied in C++. The
course is more than hand-waving about
OOP — and students are given weekly
assignments of simple programs which
illustrate the various concepts and features
of class development in C++. In the last
portion of the course, student teams enter,
debug, document and modify a moderately
sized (18 classes and 1700 lines of code)
object-oriented system.

Itisimportanttonote that the primary
emphasis of the course is learning about
object-oriented programming. Only those
C++ language features which are essential

to OOP are covered. As pointed out by the
class textbook author, “the programmer
who successfully makes the paradigm shift,
but does not know every last C++ feature,
will be far ahead of the programmer who
memorizes every C++ ampersand and
keyword, butnever learns the new approach
to thinking about programming.”[20]

electing the QO anguage

The concepts of object-oriented
programming are far more subtle than
those of structured programming and are
concerned with the implementation of a
certain view of what software should be.
Because object-oriented concepts are so
different from conventional procedure-
based design techniques and programming
languages like C, COBOL and FORTRAN,
developing an object-oriented design is
initially difficult for software designers.
From a teaching and learning standpoint it
would seem to be best to select a
programming language which was
designed specifically for OOP. If this
premise is correct and there are no other
considerations, then the language choice
would be between Smalltalk and Eiffel.

Pure OOP Languages
Smalltalk

Smalltalk was first implemented in
the 1970s at Xerox Corporation’s Palo
Alto Research Center (PARC) and
represents everything as objects.[21]
Smalltalk has a graphical user interface,
and the system is especially good at rapid
prototyping. However, Smalltalk produced
systems have a reputation of having slow
performance and requiring alot of memory.
Some companies are retraining their
personnel by exposing them to object-
oriented techniques through the use of the
Smalltalk environment. By taking this
approach programmers do not get bogged
down in syntactic and semantic difficulties
of (say) C++, and they can not revert to
previously learned methods of
programming. After sufficient training,
the programmers continue to use object-
oriented techniques, but they use another
language (usually C++) to write programs
which will be utilized in production.

Page 5

Journal of Information Systems Education
Volume 5, Number 3

Smalltalk appears to have reached critical
mass by achieving an industry standard
status.

Eiffel

Fiffel is a relatively new language
whose goal is to support software
engineering more effectively than C-based
languages. [22] FEiffel attempts to build
upon the worthy features of Ada, but without
the complexity of Ada. The main
disadvantage of Eiffel is that it is only
available from one company, and this makes
it difficult for Eiffel to achieve an industry
standard status.

Hybrid Languages

Unfortunately, what is “best” in a
technical sense is not necessarily bestin an
industrial sense. Educators must keep this
tradeoff in mind as a language selection is
made. In addition to the languages which
were designed specifically for OOP, there
are several languages which have been
designed by starting with a procedures-
oriented language and “grafting” object-
oriented features to the original language.
In this section three such languages are
discussed. The first language, Object-
oriented COBOL, appears to many to be an
oxymoron and is included in this
presentation solely because of COBOL’s
current industrial status. The second
language, Objective-C, is derived from C
and has achieved some degree of industrial
adoption. The third language, C++, despite
its disadvantages, has become an
overwhelming success and is the standard
for success against which all other object-
oriented languages are judged.

COBOL

Object-oriented COBOL
(OOCOBOL) is being developed by a task
group called the Object-Oriented COBOL
Task Group (OOCTG). Members of this
task group have joined a technical
committee (X3J4.1) of the American
National Standards Institute (ANSI)
COBOL Programming Language
Committee X3J4.[23] The OOCTG has
been meeting since 1989, and hopes to
have a standard implemented by 1997.

This group has been able to follow the
development of object-oriented languages
and can therefore take advantage of lessons
learned, incorporating them into the
OOCOBOL standards. OOCOBOL’s
potential major drawback is the obvious
problem with legacy systems for which
maintenance would be a nightmare using
OOCOBOL to try to interface with them.,
However, “wrapping” them as objects may
be a possible solution to this problem.[24]

COBOL is a long way from
disappearing, but the OO techniques which
promise a bright future for IS must be
integrated with COBOL. It will be very
interesting to see how this is done and
when and if it will appear as truly
OOCOBOL. In any case, this language
will not be a serious contender for adoption
by any organization until the language has
full commercial support by one or more
vendors. At the present time, language
tutorials, user’s guides, debugging tools,
vendor support, and (most crucial of all)
compilers simply do not exist.

Objective C

Objective-C was designed in the mid
80s with a goal of overcoming the
performance deficiencies of Smalltalk. [25]
This language uses Smalltalk concepts and
syntax to add an object-oriented layer to C.
In this way a user can utilize Smalltalk
concepts while gaining C performance.
Objective-C is currently provided by
Stepstone,[26] NeXT and IBM. Few
software libraries and tools are provided
by third-party vendors.

Ot

C++ appears to have an unassailable
position as the language of choice for
object-oriented programming by industry,
and some have asserted that “the choice of
C++ no longer remains a question of
preference, but becomes a matter of
necessity.”[27] C++ is popular because its
parent language C is firmly entrenched and
under normal circumstances would not be
atrisk to be replaced in any case. C++ was
designed to be a better C, support data
abstraction, and to support object-oriented
programming.[28] C++ compilers, libraries

and tools are provided by major software
companies and by a large number of third-
party vendors. In addition to wholesale
adoption by the industrial community,
C++’s success seems additionally secure
because an ANSI committee, X3J16, is
already hard at work on standardizing the
language.

However, it should be noted that
C++ has its weaknesses and its critics. C++
has been designed to be compatible with C,
and therefore compromises had to be made
in the design of C++. The language is very
complex, perhaps too complex. Unlike
some other languages, the programmer is
responsible for the details of dynamic
memory management. One academician
type referring to C++ has written “T am
appalled at the monstrous messes that
computer scientists can produce under the
name of improvements.”[29] The 1992
Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA)
conference proceedings contained the
statement, “C++ disaster suffices to show
how badly half-hearted solutions can fail.”
[30] Nevertheless, with the size of the C++
programming community continuing to
double in less than a year,[31] C++ is
perceived as the predominant object-
oriented language of the 90s.

...some have asserted that
“the choice of C++nolonger
remains a question of
preference, but becomes a
matter of necessity.

electing the Programmi

Environment

In the past, entering program code,
compiling, debugging and testing have
occurred in acharacter-based programming
environment. With the growing popularity
of the graphic user interface (GUI), users
are expecting their programs to run in a
GUI-based environment, systems
developers are using GUI-based computer
aided software engineering (CASE) tools,
and programmers too are starting to employ

Page 6

Journal of Information Systems Education
Volume 5, Number 3

tools which work in this modern
environment.

For their OOP course using C++, the
Purdue University CPT departmentselected
Borland’s Turbo C++.[32] Turbo C++
includes an integrated development
environment (IDE) which allows the
programmer to enter code, edit, compile,
execute and debug completely within the
IDE environment. The ability to do program
development from one central environment
increases productivity because iteliminates
the necessity to switch between disparate
environments.

Since most object-oriented programs
consist of many files, the programmer is
faced with the difficult task of keeping
track of the dependencies between the
various files. Borland’s Project Manager
“automates” dependency checking and
makes it easier for the programmer to keep
the executable file up-to-date.

Microsoft has recently introduced
the Visual C++ development system, an
upgrade to C/C++ 7.0, which one reviewer
has termed “the new champ of Windows-
based C++ compiler platforms.”[33]. Itis
an integrated, Windows-hosted
environment that combines the visually
oriented techniques of Visual Basic with
the flexibility of C++. With this system, an
experienced programmer can write
Windows applications in a fraction of the
time it would take by using only the
Windows software developmentkit (SDK).

An example of Visual C++
programming is as follows. Suppose a
Windows application needs a “dialog box™
which the user will use to indicate the
desired widths of a thin pen and a thick pen.
The programmer uses Visual C++'s App
Studio to easily and quickly generate the
template code which is stored in the
resource file.

Unfortunately, there are three topics
which must be mastered in order to
efficiently and effectively apply Visual
C++ to Windows applications
development. The developer must be
proficient in C++, have a thorough
understanding of the Microsoft Foundation
Class (MFC) Library, and some knowledge
of the Windows application programming
interface (API).

CONCLUSION

Object-oriented programming is
important because it offers improvements
in complexity control, facilitates software
reuse and promises to make software
maintenance easier. As the CIS industry
starts to adopt object-oriented techniques,
it will actively recruit students who have
received training in OOP. For this reason,
universities should make plans for
introducing an object-oriented
programming course into their CIS
curricula.

Figure 2:

DESIGNING THE PEN WIDTHS DIALOG BOX WITH APP STUDIO

=| IDD_PEN_JISE (Dialog) [-]-
LT TEECIICT T E]
[—
=| Pen Widths N[
Dialog -—- Thin Pan Width: [| A
editor . . Mo
icPiidy Thick Pen Width: | | =1e] — Contral
=n(=g palette
(== [
" B
B
[-®] % | Dinlag: Push Button Propartias |General [+]
10: [IDOKI] Caption: lﬂ]
B visible X Group X Default Button -—- Property
[Jpisabled [X] Tabstop [] owner Draw page

Page 7

Journal of Information Systems Education

Volume 5, Number 3

10.

11.

12.

REFERENCES

McGregor and Korson, Guest
Editorial, Communications of the
ACM, September 1990, p 38.
Garber, J. “Working Faster”,
Eorbes, April 12, 1993, p 110.
Currid, C. “Plan now to prevent
career dead ends for Cobol

programmers”, Infoworld, March 8,
1993, p 61.

Whitten, J. Computer Technology
Dept., Purdue University, Private
Communication, March 1993.
Brooks, F. “No Silver Bullet:
Essence and Accidents of Software
Engineering”, Computer, April
1987, p 10-19.

Booch, G. “Object-Oriented-Design
with Applications”, Benjamin/
Cummings, 1991.

Bar-David, T. “Object-Oriented
Education and Training in the

1990s”, Journal of Object-Oriented
Programming, March/April 1993, p
24-30.

Pohl, I. “Object-Oriented
Programming Using C++7,
Benjamin/Cummings, 1993.

Budd, T. “An Introduction to
Object-Oriented Programming”,
Addison-Wesley, 1991.

Jacobson, 1. “Is Object Technology
Software’s Industrial Platform?”,
IEEE Software, January 1993, p 24.
Fosdick, H. “Why IS Rejects
Object-Oriented Programming”,
Enterprise Systems Journal,
February 1993, p 45.

Fichman and Kemerer, “Adaptation
of Software-Engineering Process

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Innovations: The Case of Object-
Orientation”, CISR WP No, 242,
Center for Information Systems
Research, Sloan School of
Management, Massachusetts
Institute of Technology, Cambridge,
June 1992.

Booch, G. ibid.

Cox, B. “Object-Oriented
Programming: An Evolutionary
Approach”, Addison-Wesley, 1986.
DPMA, “IS’90 Model Curriculum
for a Four Year Undergraduate
Degree”, DPMA, Park Ridge, IL,
1991.

ACM/IEEE-CS Joint Curriculum
Task Force, “Computing Curricula
19917, ACM Press, 1991.

Cain, P. “Object-Oriented
Programming and the CIS
Curriculum”, Journal of Information
Systems Education, Vol. 3, No. 1, p
2-7.

White, B. Business and Information
Systems, Dakota State University,
Madison, SD, Private
Communication, April 1993.
Rajkumar, T. Department of
Decision Sciences, Miami
University, Oxford, OH, Private
Communication, April 1993.
Sessions, R. “Class Construction in
C and C++”, Prentice Hall, 1992.

Goldberg and Robson, “Smalltalk-
90: The Language and its
Implementation”, Addison-Wesley,
1983.

Meyer, B. “The New Culture of
Software Development”, Journal of

Object-Oriented Programming, Nov/
Dec 1990, p 76-81.

23.

25.
26.

27.

28.

29.

30.

31.

32

33.

Schricker, D. “The Organizations
Behind the Acronyms”,
Compilations, The Newsletter for
the Micro Focus COBOL
Community, March/April 1993, p
10.

. Topper, A. “O0T and COBOL:

How do they fit together?”, Object
Magazine, March-April, 1993, p 54-
56.

Cox, B. ibid

“The Bottom Line: Using OOP in
the Commercial Environment”,
QOPSLA 89 Workshop Report, Oct
1989.

Walker, G. “Why the Choice Must

be C++”, The C++ Journal, Vol. 2
No. 1, 1992.

Stroustrup, B. “The C++
Programming Language”, Second
Edition, Addison-Wesley, 1991.
Moody, R. “C In Education and
Software Engineering”, SIGCSE
Bulletin, Vol. 23, No. 3, Sept. 1991,
p. 45.

Meyer, B. “Ensuring Strong Typing
in an Object-Oriented Language”,
OOPSLA ’92 Conference
Proceedings, ACM SIGPLAN
Notices, Vol 27, No. 10, p 89.
Adcock, J. “Making a List and
Checking it Twice”, The C++
Report, March-April 1993, p 57.
Borland International, P.O. Box
660001, Scotts Valley, CA 95067-
0001, (408)438-5300.

Chiverton, B. “Visual C++ Enters

the Ring Swinging and Scores a
Technical Knockout”, Microsoft

Systems Journal, June 1993, p15.

Page 8

AUTHORS' BIOGRAPHIES

John K. Gotwals is an Associate Professor of Computer Technology at Purdue University. He
received his Ph.D. from Purdue University. His research interests include Object-Oriented Programming
and Programming for the Win32 Application Programming Interface.

Mark W. Smith is an Assistant Professor in Computer Information Systems, Department of
Computer Technology at Purdue University, West Lafayeite, IN. He received his Ed.D. from Nova

University, Ft. Lauderdale, FL, in Computer Education.
computer ethics, computer anxiety, and micro-based COBOL program development.

His current research interests include OOP,

He is the co-

author of two books on using Micro Focus COBOL and Micro Focus Personal COBOL.

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1993 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

