Journal of Information Systems Education

Volume 4, Number 4

INCORPORATING CASE IN THE SYSTEMS ANALYSIS AND

DESIGN COURSE

Dr. T. M. Rajkumar

Department of Decision Sciences, SBA
Miami University

Oxford, OH 45056

ABSTRACT: This paper describes CASE tools and argues for their incorporation in
the class room in all the phases of the system development life cycle. The paper then
describes trends that are taking place in the software engineering field. The use of
CASE in teaching and supporting these new concepis is described.

KEYWORDS: CASE, Systems Analysis and Design, Cooperative Processing, Reengineering, Object

Oriented Analysis

INTRODUCTION

Computer Aided Software
Engineering (CASE) has beenaroundsince
the early 1970’s but has only emerged
recentlyasa factor inthe MIS environment.
A study conducted in 1988 showed that
less than 10% of the industry was actively
using CASE. In contrast, by 1991 30% of
the industry have adopted CASE and
another 54% are studying or planning use .
This is largely due to two factors. First, the
costs of CASE products have dropped
considerably along with other software and
hardware products. Second, CASE has
begun to gain momentum as more users are
demanding CASE products resulting in
improved vendor support.

CASE tools have been gradually
introduced in the systems analysis and
design courses for MIS students in the past
two to three ears. The availability of free
software for academic use from I[nterSolv
hashelped accelerate thistrend. The popular
books that are being used in the classes
now include CASE in their discussions and
treatment of material.

Most instructors or books do not
provide a comprehensive treatment of
CASE in their class rooms. This paper tries
todevelop anintegrated approach in which

CASE forms the underlying theme of the
Page 22

course. The paper introduces the concept
of CASE in section 1. Section 2 discusses
the issues and topics to be covered in the
classes. Section 3 touches upon emerging
issues that need to be addressed in the years
to come.

CASE

CASE isamechanism forautomating
structured methodologies , and an
environment that supports the software
engineering process . The environment is
usually comprised of seven distinct
components that are listed as follows:
diagramming tools, syntax verifiers,
prototyping tools, reengineering tools,
central repository, code generators, and
project management and methodology
support . The diagramming tools allow
analysts and users alike to quickly grasp
the flow of data through the graphical
representation of the processes. The
automated aspect of the tools allows for
great flexibility without extensive time
spent redrawing the diagrams. The syntax
verifierhasthe capacity to insure thatinputs
and outputs of processes are balanced. The
central repository is the foundation of the
CASE environment,

This repository acts as the bridge
between the graphics of Data Flow

Diagrams (DFD), report or screen
definitions and the data definition and the
generation of various code depending on
the circumstances. The prototyping tools
are used to develop both report outlines
and screen outlines quickly and easily.
These reports and screen outlines can be
demonstrated to the users and modified
continually until all parties are satisfied.
Any of the fields used in the input or output
of the screen or reports can be obtained
from the central repository.

The code generators allow for specific
modularized code to be generated by the
analyst. The project management and
methodology support tools are used to track
the progress and manage the resources used
for that progress. Finally the reengineering
tools cantake codeand give it some structure

or create structure charts for systems that
already exist.

Inthisarticle, CASE is interpreted in
a broad sense, encompassing a range of
activities that support the entire systems
life cycle. This interpretation is consistent
with the emerging view of CASE that
emphasizes attention on the entire systems
environment . The approach taken here is
nottoteachthe studentsjust new technology
but to help them use technology to learn
analysis and design better.

Journal of Information Systems Education
Volume 4, Number 4

TOPICS AND ISSUES

The topics and issues addressed here
are focused on introducing the student to
CASE as a broadly useful tool in the many
facetsofsystemsanalysis and development.
Hence, this section discusses the various
features of case tools and how they can
help in system analysis, design and
development.

The benefits that are achieved with
CASE tools include:

e increased productivity
e better quality
o reduced maintenance costs

These benefits are not always
achieved unless the CASE tools are
implemented correctly, and managed
carefully. Tosuccessfullyimplement CASE
tools the business must use a structured
systems methodology [5]. The CASE tool
is used to facilitate the chosen business
methodology as opposed to replacing it. In
order forastudenttosuccessfully use CASE
in the work place the student needs to
understand the usage of CASE inthe system
development life cycle.

All too often in a systems analysis
and design course, CASE is introduced in
the logical analysis and design phases. The
student is exposed and shown how to draw
DFD’s, construct data dictionaries, draw
structured chartsetc., without showing how
it can affect the rest of the life cycle.

The areas CASE can help in should
be clearly specified to the student. They
include the following:

Proicct Estimati -

Developers and planners have
expressed concern over their inability to
accurately predict costs and estimate efforts
,humanresource requirements, and duration
of projects. These are critical to ensure
success and to reach go/no go decisions at
various phases of the life cycle. CASE can
help in project estimation and planning,
and could help control the development
costs of the project. The teaching approach
used here is to have the student research
how a company uses CASE and estimating

tools such as Excelerator and Estimacs
together in their planning and project
estimation.

Project Management

Project management tools are
sometimes part of CASE tools. At other
times they can be easily integrated into the
CASEtool (for example, Microsoft Project
can be linked to Excelerator). The project
management tools can be used to provide
1) detailed work plans, 2) task dependency
relationships 3) tracking of the project and
4) help in allocating chargeback to the
various projects. The teaching approach
used here is to expose the students to the
detailed work plansand drawing of GANTT
and PERT charts using the CASE tool.
Emphasis on the rest of the project
management tools to help track the project
as the student progresses through the
semester in the project is also shown.

The approach taken here
isnottoteach the students
just new technology but
to help them use
technology to learn
analysis and design better.

Akl { Specificati

Most structured analysis and design
course place a strong emphasis on this
phase as they rightly should. Among the
items that the students should be taught are
1) Requirements specification, 2) Data
dictionary, 3) Report Design, 4) Screen
Design, and 5) Entity-Relationship
diagrams. Often the tools are taught in
isolation and consistency checks among
the various toolsusing the designrepository
are not shown. It isimportant to show to the
student that the tools are integrated and
work in unison to achieve the requirement
specification.

In addition, it must be shown that
other software tools such as word processing
tools can be integrated with the CASE
tools to perform the requirement
specification, and any issue resolutions

that occur between the userand the analyst.
If the issue resolution results in a new
specification, CASE tools can store both
the old specification, and the new
specification. The ease of storing and
retrieving multiple versions must be
demonstrated to the student with
appropriate projects.

One method of teaching analysis and
specification with CASE is to divide a
class into teams that take turns serving as
clients for each other. Student teams then
criticize each other’s DFD or analysis
specifications. The criticism reported is
formalized and written using the CASE
tool. Issue resolution is then addressed
formally by the analyst team. This type of
student criticism has worked well.
Alternately the instructor can play the role
of the client and issue resolution using a
CASE tool can be demonstrated to the
student.

Design

The design function of normalization
is generally taught in a database design
course, and isreinforced during the systems
analysis course. Rarely is it shown how
normalization can be performed with CASE
tools. Some CASE tools such as
KnowledgeWare can perform
normalization from E-R diagrams. Others
such as Excelerator provide only
consistency checking and inform the user
ofproblems with the data model developed.
Ineither case the student should be exposed
to this concept. Similarly structure chart
conversion using Yourdon’s techniques of
data transformation analysis and
transaction analysis are taught.

Support for these functions within
CASE tools is not emphasized; structure
charts are invariably drawn from scratch.

Coding

The student should be exposed to
how the automated coding generated by
the CASE tools from screen and report
generators look. They should be taught
how to include such topics within the
specifications of the logic. The word
processing component of the CASE tool is

Page 23

Journal of Information Systems Education
Volume 4, Number 4

helpful in going through this logic and
identifying the program specifications of
the system. The power of CASE tools is
enhanced by their ability to work with
language compilers such as COBOL. For
example, MicroFocus workbench can take
Excelerator’s output and translate it into
skeletal programs including procedure
division code. This code can be later
enhanced into compilable code.

Evaluation of the structure chart for
coupling, cohesion, fan-in and fan-outetc.,
can be automated to some extent. Reports
on such evaluation and what they imply
should be made clear to the student by
showing them some examples of CASE
generated reports. This will help evaluate
the design, and syntax check the program
logical flow. Tools are currently being
developed which provide context sensitive
helptothe useron the language and provide
examples; allowing them to be cut and
pasted into the logical code. Justas version
control isuseful in the requirement process,
it is also useful in the coding process, so
that programmers and analyst can go back
toa previous version if they are unable toa
debug an error in the current version.

Testi

A CASE tool can help in this aspect
of the life cycle by enabling the analyst to
developand write test specifications, using
the requirements specified earlier. CASE
tools can also help generate test cases for
the code they generate.

CASE tools can also help run
statistics, on the data gathered from the
delivery platform on actual test runs, It can
provide regressions to find causes and
effects of certain parameters that are
tweaked, or just show simple comparisons
between data that is gathered. Both these
uses of CASE should be shown to the
student.

Support

A great benefit of CASE tools is that
they make up a new form of corporate
memory that survives staff changesand the
limitsof paperdocumentation . CASEtools
can help in documenting the problem
management in the maintenance phase of

the life cycle. It can help in documenting
the situation, the action taken, the effects
and response on the system. It canalso help
in change management by identifying the
modules which will be affected by changes
tothe data structure or dataelement. Though
not a primary purpose, CASE tools can
help management to monitor the
availability, response times, and
responsiveness of the support team in
mission critical applications.

nicati

CASE tools can help communication
among various analysts on the team
regarding the project documents through
the repository. Inaddition, it is easy to add
additional software that can be called to set
up meeting schedules on CASE systems
running on local area networks. Many
CASE vendors are working on integrating
these communication aspects into their
systems [9].

As can be seen, CASE permeates
every aspect of the system development
life cycle. It is important for the student to
understand the role CASE plays through
out and how it can be used to improve the
productivity of the analysts without
spending much money.

EMERGING ISSUES

Some current trends are affecting
how CASE isgoing to be used in the future.
An exposure to these concepts and how
they affect CASE tools and systems
developmentisvital tothe studentslearning
process. Thissectiondiscusses some trends
thatinclude among others i) object-oriented
analysis, ii) reengineering, iii) cooperative
processing and iv) software components.

With the advent of object-oriented
programming and object-oriented
databases, object-oriented analysis (OOA)
has taken on an important role in the
systems analysis course. Courses still
emphasize the traditional DFD, data
dictionary and structured analysis concepts.
Rarely do they teach object-orientation
through out the entire course.

Atthe core of object-oriented analysis
is the object. An object is an entity defined
by a set of common attributes and the
services or operations associated with it.
Objects are the main actors, agents and
serversin the systemand OOA is concerned
with identifying the objects in the problem
domain . In OOA the objects are organized
in a non hierarchic manner, interact and
communicate with other objects based on
the interfaces that are specified. Hence, in
OOA both objects and their interfaces are
of primary interest.

Processing takes place inside the
objects and the methods for the various
messages that are used to interact are
encapsulated inside the object. This
encapsulation provides it maintainability.
The objects can inherit methods from other
objects belonging to the same hierarchy.
This enables objects to share common
attributes as needed.

CASE tools can be used for support
in this approach to identify the objects,
their attributes, and class structure. The
behavior of the objects is then described
and documented within the object. The
informational view of the system can be
presented using an object notation
introduced by Yourdon and Coad. From
this perspective one can identify the data
objects within the system and how they are
affected by other objects. Presentation of
object-oriented analysis can be performed
using the processing oriented approaches
specified by using object-oriented data flow
diagrams (ODFD).

ODFDs are similar to conventional
DFDsinwhich objectsand functionsappear
as processes. An object appearing on the
ODFD encapsulates related data elements
and functions [12]. The behavioral views
of the system can be specified using state
transition diagrams. The state transition
diagrams are used to tie the events that
occuronthe ODFDtoabehavior. Example
ODFD’s are developed in [11,12].

The approach used in teaching this
method involveshaving the studentanalyze
and design a data entry form using the
object oriented approach. This forces the
student to think about the functions,
methods, inheritance and hierarchical

Page 24

Journal of Information Systems Education
Volume 4, Number 4

structure of the objects. The drawing of
sample ODFD’s, and state transition
diagrams for getting input, validation and
updating of the underlying object for this
exercise are also required. It is important
for the student to be able to perform object
oriented analysis as OOA is to the 90’s
what structured analysis was to the 80’s.

Object oriented analysis also has
repercussions for design because a well
specified analysis results in normalized
objects. Also traditional evaluation
techniques such as coupling, cohesion etc.
gets modified in the object oriented
environment. Metrics such as those
proposed by Chidamber and Kemerer has
to be taught to the students. This includes
weighted methods per class, depth of
inheritance tree, number of children,
coupling between objects and lack of
cohesion in methods. CASE tools do not
support much of this activity at this time.
Support, however, is forthcoming.

R ineeri

Many systems analysis and design
courses treat the subject of system
development purely from the view of a
new system. Rarely is importance given to
the fact that 50% of a traditional systems
analyst job is really maintenance and
keeping old systems alive . With the trend
toward downsizing and converting
applicationstorelational database systems,
reengineering has taken on a new and
important role in modern information
systems. The student should be exposed to
this concept in the systems analysis course.

Reengineering is the process by
which code written for applications are
revised through a CASE tool as the original
code may lack structure and
maintainability. CASE tools are useful and
helpful in this regard. They provide tools
such as documenters, analyzers,
restructurers and diagrammers to aid in
understanding the physical and logical
design from the code itself. Documenters
read the program code and provide high
level information about what the system is
doing suchascrossreferencing information.
Restructurers change the unstructured code
into something more structured. Analyzers

evaluate the strength and weaknesses of
the system. Diagrammers such as
KnowledgeWare’s IEW can read database
code and graphically represent it asan IMS
hierarchy diagram.

It is important to point out to the
student that most of these CASE tools aid
only in the physical development of the
actual system. CASE systems currently do
not support planning and analysis for
reengineering. For example, most CASE
systems cannot derive a DFD of the
application from the program code.

With the advent of object-
oriented programming
and object-oriented
databases, object-
oriented analysis (OOA)
has taken onanimportant
role in the systems analysis
course.

To use these CASE tools with this
process the designers must download the
information that defined the mainframe
database to the PC workstation. The
downloaded information typically includes
aspects such as database definitions and
file descriptions [9]. The database
definitions are automatically reverse
engineered into graphical formats supported
by the CASE tools. CASE systems can
produce traces and object mappings from
the original definitions to the new system.
This enables the analyst to understand and
approve the automatic transformations.

The analyst uses the CASE tools to
analyze the system and then forward
engineer the new system. Forward
engineering enables the system and
database definitions to be redesigned
completely on the PC and uploaded to the
mainframe environment. Dependent
applications may now need to be rewritten
or new applications written to exploit the
new database design. It is also important to
include a good methodology in the forward
engineering process, to delineate and
identify the scope of the project.

To introduce these concepts to the
student, projects done in the previous year
by other students are given without any
documentation. The students are just given
a working system and the code for the
systems. Improvements and incremental
modifications of the system are required.
The students are then required to use the
CASEtooltodevelopthe diagrams, analyze
the system, generate documentation, and
redevelop the system. The weakness with
this approach has been the fact that the
particular CASE system employed does
not directly convert the code developed in
either FOCUS or dBASE that has been
used in previous years for the projects in
this course. This project however gives the
students a strong sense of the maintenance
and reengineering functions of systems
analyst.

C tive P s
A major trend in information systems
today is client server computing and
cooperative processing. Cooperative
processing occurs whenever a transaction
requires two or more processes to execute
independently of each other . The typical
configuration has an intelligent
workstation, connected to a LAN and a
mainframe. What makes the processing
cooperative is that significant parts of the
application execute on the workstation.

Cooperative processing is also the
backbone of IBM’S AD/Cycle strategy and
is a major component in its AD/cycle
architecture . A requirement of AD/cycle
architecture is to merge the workstation
characteristics of interactive graphical
presentation with the ability of mainframe
facilities to centrally control and share
development resources. Known as
cooperative processing this feature tries to
exploit the full power of the different
platforms and takes advantage of the
inherent strength of each computer.

Cooperative processing introduces
new concepts forsystemsdevelopment that
students must understand. It has a major
impact on methodologies in three main
areas that include graphical interfaces,
packaging of code and data, and the use of
object-oriented analysis and design for the

Page 25

Journal of Information Systems Education
Volume 4, Number 4

client server protocol design [16]. When
developing a cooperative application all
processing locations within the network
will have to be defined, including user
privileges and security policies. Real-time
communication and data translation
services for different platforms must be
designed and plans for network version
control and software distribution must be
created.

CASE tools are emerging to support
application developmentusing cooperative
processing. What allows cooperative
processing to be developed on CASE tools
is that the two cooperating processes need
not be on two separate processors [16]. A
major attraction of a good cooperative
architecture is that the system can be coded,
developed, and tested entirely on the
workstation. Only when the system isready
to be implemented is it ported to the server.
It is essential for the student to understand
the development of these types of
application as they will be the dominant
type of application in the future.

To introduce these concepts to the
students, students are required to develop
reports in the PC environment for an
application running on the mainframe. SQL/
Windows from Gupta Technologies was
used as the software providing the reports
foranapplication developed using FOCUS
in the mainframe. The approach used was
not a typical client server approach as the
mainframe was not connected into the
business schools’ local area network. The
developed system used a snapshot of the
data by downloading the information from
the mainframe. Reports were then run on
this downloaded data.

The real time nature of demand for
data and the need for designing the
communication aspects of the system was
well demonstrated with this approach as
the response from the mainframe was
sluggish during busy hours. The analysis
and design aspects can be introduced to the
students by allowing them privileges of
Project Manager on the CASE tool. With
this privilege, the student can decide which
users can get update and retrieval access
and learn how to define these in the analysis
phase. Students can then use the prototype

screens that are developed on the CASE
Page 26

tool, to show the access limitations for
Various users.

Software Components

Reusable software and the software
component industry try to identify software
similar to that ofa hardware component, so
that software systems can be developed
with a plug and work approach. Typically
based on the 3C model; the component
approach distinguishes between three main
ideas.

Concepr: astatement of whata piece
of software does, eliminating how it does
it. It is the specification of an abstract
behavior. This notion is similar to that of
object encapsulation and information
hiding.

Content: a statement of how the
piece of software achieves the behavior
given its concepts. This notion is related to
methods in object oriented design. There
can be more than one method to the same
concept.

Context: aspects of the software
environmentthat are external to the concept
but are relevant to the definition of the
software. This includes items such as
additional informationand conceptsneeded
to write the implementation. This is an
important distinction from object oriented
concepts since the context is separated
from the content per se.

The reuse of program material is
fundamental to improving the productivity
of programmers. The importance of reuse
has been promoted with object-oriented
environments, that support inheritance, and
generic procedures through the class
concept. They have proved so popular that
commercial vendors are now providing
base classes beyond those available in the
programming language. Reuse librarians
retrieve software components for possible
reuse. These systems usually comprise a
library of components and query retrieval
mechanisms. The reuse of preplanned units
is only the tip of the iceberg; since greater
benefits can be achieved by reworking units
to fit other similar needs.

Systems such as the one developed
for CONTEL exist that provide such

software reuse. The approach in thissystem
has been tc develop a generic design that
can be instantiated in different
environments. This reuse environment
supports both top down and bottom up
developments. CASE tools can help the
librarian visualize and understand the
abstraction and specialization process
during class definition and classification.
Perhaps they can aid in high level
structuring and identifying and directing
the assembly of reusable components.

Students taking the systems analysis
courses should be exposed to the concepts
of reusability and how it affects the
development process. The use of CASE
tools for reusable libraries should be
identified and emphasized to the students.
An effective approach is to have students
research and present this material in class.

CONCLUSION

In teaching this course, only the
current topics and issues were emphasized
for undergraduates. Graduate students
taking the course were introduced to the
emerging issues. In addition, features of
CASE were taught when the techniques
such as DFD was taught. Projects where
the student developed these materials
manually were not assigned. Thus CASE
wastightly integrated into the entire course.

Graduate studentshada difficulttime
understanding how to perform analysis for
client-server application as they had not
seen many client server programs before
this course. They had a smoother transition
to O-O analysis and design and could see
how CASEfitintothe whole process. When
reengineering was given asa group project,
itled to many complaints from the students.
Rather than keep the original code, some
groups redesigned and rewrote the entire
application from scratch. The consensus of
the students was that CASE was a very

useful technology for systems analysis and
design.

CASE tools on the PC such as
Excelerator, and Knowledge Ware must be
available in the labs for students to study,
experiment and learn the multifacets of
CASE and systems analysis and
development, CASE is the tool that would

Journal of Information Systems Education
Volume 4, Number 4

help achieve productivity gains in the 90°s
for the systems analyst, designer and
developer. Areas where CASE can help
include project estimation and planning,
project management, analysis and
specification, design, coding, testing,
support and communication. In addition, it
isatthe forefront of development in systems
analysisand design; inareas suchasobject-
oriented design, cooperative processing,
and reengineering. If a strong foundation
covering all these topics and how CASE
can contribute to improving productivity is
provided in the classes, the student will be
better prepared to face the challenges of
systems development in the real world.

REFERENCES

1. Graham C., ““CASE Cracks
Application Backlog’’, Datamation,
March 15, 1991.

2. Crozier M., Glass D., Hughes J. G.,
Johnston W., and McChesney 1.,
*‘Critical Analysis of Tools For
Computer-Aided Software
Engineering’’, Information and
Software Technology, November
1989, pp. 486-496.

3. Norman R. J. and Nunamaker, J.F_,
*‘CASE Productivity Perceptions of
Software Engineering

Professionals’’, Communication
the ACM, September 1989, pp.
1102-1108.

4. Burkhard, D.L., ‘‘Implementing
CASE Tools”’, Journal of Systems
Management, May 1989, pp. 20-23.

5. Henderson, J.C., Cooprider, J.G.,
“‘Dimensions of I/S Planning and
Design Aids: A Functional Model
of CASE Technology’’, Information

10.

11.

12.

Systems Research, September 1990,
pp- 227-254.

Boudin B.M., ‘‘Automate Your
Software Development With
Minimum Pain’’, EDN, June 7,
1990, pp. 107-109.

Kemerer, C.F.,, ‘‘An Empirical
Validation of Software Cost
Estimation Models’’,

Communications of the ACM, May
1987, pp. 416-429.

Fosdick H., ‘‘Re-Engineering
Mainframe Databases’’, Enterprise

Systems Journal, November 1991,
pp- 10-14.

Loy, P.H., *“A Comparison of
Object-Oriented and Structured
Development Methods’’, Pacific
Northwest Software Quality
Conference 1989.

Coad, P. and Yourdon E., ““‘Object-
Oriented Analysis’’, Yourdon Press,
Englewood Cliffs, NJ, 1989.

Bailin S., *‘Object-Oriented
Requirements Specification

Method’’, Communications of the
ACM, May 1989, pp. 608-623.
Wilkinson R. A., “‘Object Oriented
Requirements Specification for the
Commodity Paging System”’, in
Seaidards, Guidsh {E

IEEE Press, 1990, pp. 478-499

. Chidamber, S. and Kemerer, C.,

“Towards a Metrics Suite for

Object-Oriented Design’’, Proc.

ACM Object-Ori |

Programming, Systems, Languages,
. Avolicatioiis Cosif .

October 1991.

14. Jordan, E.W., and Machesky, J.J.,

Systems Development, Boston:
PWS-Kent, 1990, pp. 532-533.

15. Goldberg, C., ‘‘Shifting CASE
Target’’, Software Magazing, May
1992, pp. 25-27.

16. Flaatten P., “*Cooperative
Processing -- What and Why?”’,
CASE TRENDS, June 1991. pp. 26-
27,47.

17. Mercurio V. J., Meyers B. F., Nisbet
A.M,, Radin G., “*AD/Cycle
Strategy and Architecture’’, IBM
Systems Journal, 1990, pp 170-189.

18. Weide B. W.,, Ogden W. F., Zweben
S. H., “*Reusable Software
Components" in Advances in
Computing Vol 33., editor Yovits,

M.C., Academic Press. Boston,
1991.

19. Devanbu P., Brachman R., Selfridge
P.G., Ballard B.W_, *‘LaSSIE: A
Knowledge Based Software
Information System”’,
Communications of the ACM, May
1991, pp. 34-49.

20. Harrison W., “‘Trends in the
Development of Development

Environments’’, Proc. of the First
ti

Cambridge, MA, 1987, pp. 227-232.

21. Prieto-Diaz, ‘‘Implementing Faceted
Classification for Software Reuse’’,
Communications of the ACM, May
1991, pp.88-97.

AUTHOR’S BIOGRAPHY

TM. Rajkumar is an assistant professor of MIS at Miami University, Ohio. He received his bachelors
from Indian Institute of Technology, Madras and a Ph.D. from Texas Tech University. His research and

teaching interests include graphics, CASE, database and data communications.

Page 27

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1992 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

