Journal of Information Systems Education
Volume 4, Number 3

INVITED PAPER

EXPERT SYSTEMS: A QUICK TUTORIAL

Dr. Joseph Schmuller, Mgr. of Expert Systems
CDM-Federal Programs Corporation

13135 Lee Jackson Memorial Highway

Fairfax, VA 22033

ABSTRACT: An expertsystem is a computer program that contains stored knowledge
and solves problems in a specific field in much the same way that a human expert
would. The knowledge typically comes from a series of conversations between the
developer of the expert system and one or more experts. The completed system applies
the knowledge to problems specified by a user. This paper describes expert systems,
their components, their development, and the tools used to build them.

KEYWORDS: Expert Systems, Knowledge Base, Inference Engine, Knowledge Engineer, Domain

Expert, Shell.

INTRODUCTION

Within the last ten years, artificial
intelligence-based computer programs
called expert systems havereceived a great
deal of attention. The reason for all the
attention is that these programs have been
used to solve an impressive array of
problems in a variety of fields. Well-
known examples include computer system
design, locomotive repair, and gene cloning

(D).

How dothey doit? An expert system
stores the knowledge of one or more human
experts in a particular field. The field is
called a domain. The experts are called
domain experts. A user presents the expert
system with the specifics of a problem
within the domain. The system applies its
stored knowledge to solve the problem.

EXPERT SYSTEM COMPONENTS

The part of the expert system that
stores the knowledge is called the

knowledge base. The part that holds the
specifics of the to-be-solved problem is

(somewhat misleadingly) called the global
database (think of it as a kind of *‘scratch
pad’’). The part that applies the knowledge
to the problem is called the inference
engine.

Asisthe case withmost contemporary
computer programs, expert systems
typically have friendly user interfaces. A
friendlyinterface doesn’t make the system’s
internals work any more smoothly, but it
does enable inexperienced users to specify
problems for the system to solve and to
understand the system’s conclusions.

BUILDING AN EXPERT SYSTEM

Expert systems are the end-products
ofknowledge engineers. Tobuild anexpert
system that solves problems in a given
domain, a knowledge engineer starts by
reading domain-related literature tobecome
familiar with the issues and the terminology.
With that as a foundation, the knowledge
engineer then holds extensive interviews
with one or more domain experts to
““acquire’’ their knowledge. Finally, the
knowledge engineer organizes the results

ofthese interviews and translates them into
software that a computer can use.

The interviews take the most time
and effort of any of these stages. They
often stall system development. For this
reason, developers use the term knowledge

acquisition bottleneck to characterize this
phase.

REPRESENTING THE
KNOWLEDGE

The formatthataknowledge engineer
uses to capture the knowledge is called a
knowledge representation. The most
popular knowledge representation is the
production rule (also called the if-then
rule). Production rules are intended to
reflect the ‘‘rules of thumb’’ that experts
use in their day-to-day work. These rules
of thumb are also referred to as heuristics.
A knowledge base that consists of rules is
sometimes called a rule base.

To clarify things a bit, imagine that
we have set out to build an expert system
that helps us with household repairs.

Page 2

Journal of Information Systems Education
Volume 4, Number 3

Toward this end, we have held lengthy
interviews with an experienced plumber.
Here are two if-then rules that the plumber
has told us. (Bear in mind that a working
expertsystem can contain tens of thousands
of rules.) '

Rule 1:

If you have a leaky faucet"

And

If the faucet is a compression faucet
And '

If the leak is in the handle

Then tighten the packing nut.

Rule 2:

If you’ve tightened the packing nut
And

If the leak persists

Then replace the packing.

(A compression faucet has two
handles, one for hot water, the other for
cold. The ‘‘packing’’ and the ‘‘packing
nut’’ are two items that sit under a faucet
handle.)

Ineachrule, the lines that specify the
problem situation (the lines that begin with

“if"* and “‘and’’) are called the antecedent -

of the rule. The line that specifies the
action to take in that situation (the line that
begins with ‘‘then’’) is called the

consequent.

WORKING WITH THE
KNOWLEDGE

In the two rules in the preceding
section, note that the consequent of Rule 1
appears (slightly changed) in the first line
of the antecedent of Rule 2. This kind of
inter-rule connection is crucial to expert
system operation. An inference engine
uses one of two strategies to examine
interconnected rules.

In one strategy, the inference engine
starts with a possible solution and tries to
gather information that verifies this
solution. Faced with a leaky faucet (and
knowing ourtworules), an inference engine
that follows this strategy would try to prove
that the packing should be replaced.

In order to do this, the inference

engine looks first at Rule 2 (because its

consequent contains the conclusion that
the inference engine is trying to prove),
then at Rule 1 (because its consequent
matches a statement from Rule 2’s
antecedent). ~This process is called

backward chaining.

Expert system work is
moving in several
directions. One is to use
expert systems as the
foundation of training
devices that act like
human teachers, instead
_of like the sophisticated
page-turners that
characterize traditional
computer-aided
instruction.

When the inference engine needs
information about the problem thatisn’tin
the knowledge base, the system questions
the user (the question-answer type of
interaction typifies backward-chaining
systems). The user’s answers become part
of the problem specification in the global
database. Because backward chainingstarts
with a goal (the solution it tries to verify),
it is said to be goal-driven.

In the other strategy, the user begins
by entering all the specifics of a problem
into the system, which the system stores in
its global database. After this, the system
usually does not question the user further.
The inference engine inspects the problem
specificationsandthenlooks fora sequence
of rules that will help it form a conclusion.

In our leaky faucet example, the
system user might specify the problem asa
leaky compression faucet with a leak in the
handle. The inference engine examines Rule
1 (because its antecedent matches the
specifics of the problem), and then Rule 2

‘(becauseitsantecedent containsa statement

from Rule 1’s consequent). In our example,
Rule 2’s consequent is the conclusion, This
processis called forward chaining. Because
this process starts with data (specification
of a problem), it is said to be data-driven.

DEVELOPMENT TOOLS

One of the first expert system
development tools was a by-product of one
of the first expert systems. In the 1970s,
Stanford researchers developed a system
called MYCIN. MYCIN contains a
multitude of rules (coded in the computer
language LISP) that represent medical
knowledge and enable the system to
perform medical diagnoses (2).

MYCIN’s developers reasoned that
removing the medical diagnosis rules
should not affect the workings of the
system’s inference engine and global
database. With the medical knowledge
gone (resulting in a system they named
EMYCIN -- ““E”’ for ‘‘empty””), they also
reasoned that they could insert knowledge
from other domains into the knowledge
base and thus build a fully functioning
expert system. Because they were right on
both counts, the expert system shell was
born.

An expert system shell contains pre-
coded expert system components (including
either backward chaining, forward
chaining, or both). The knowledge base is
empty, its framework intact. All of this
makes it unnecessary to rebuild the
components for each new expert system.
The knowledge engineer just adds the
knowledge.

CONCLUSION

Expert system work is moving in
several directions. One is to use expert
systems as the foundation of training
devicesthat actlike human teachers, instead
of like the sophisticated page-turners that
characterize traditional computer-aided
instruction. The idea is to combine one
expert system that provides domain
knowledge with anotherexpert system that
has the know-how to present the domain
knowledge ina learnable way. The system
could then vary its presentation style to fit
the needs of the individual learner. While
this concept is not new, today’s powerful
PCs are starting to put such trainers, called
ICAL (Intelligent Computer Assisted
Instruction) systems, within everybody’s
reach (3).

Page 3

Journal of Information Systems Education
Volume 4 Number 3

Another;mportantdnectlonconcems
expert system shells: Tomorrow’s shells
will-routinely allow developers to embed
inference engmes mto other kinds of

programs.

Embeddable mference engines set ’

up a number of fascinating potential
breakthroughs. Will word processors
become so intelligent that they grasp the
gist of what we want to write and then write

it better than we can? - Will databases

comprehend the information we need, help ,
us find it, and then suggest a search for

supplemental;y information? Will smatt

spreadsheets tell us the kinds ofmodels we

should use inour projections and thcnbulld

them for us? The pOSSlbllltleS are hmlted,
onIy by the knowledge basesand mference :

engmes that reside in our-heads. -

REFERENCES

. Feigenbaum, E. and McCorduck, P.
 The Fifth Generation: Signet, 1984.
. Buchanan,B andShorthffe, ‘

Addison-Wesley, 1984,
Kearsley, G. (Ed.) Artificial
e iy

Addison-Wesley, 1987.

“AUTHOR’S BIOGRAPHY

. Joseph Schmuller, Ph.D, is Edttor in C"Imf of PCAl (a magazme which deals with mtellcgent sohmons ‘
for desktop computers). He has done extensive mearch and teachmg in cognitive science, and is an
experienced knowledge engineer. ;

- Paged e

~~~~



ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1992 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096



