

Journal of
Information
Systems
Education

Volume 36

Issue 2
Spring 2025

Teaching Tip

Decryption and Reverse Engineering - An Applied Tutorial
for a Security Programming Course

Gunjan Batra, Humayun Zafar, and Pamila Dembla

Recommended Citation: Batra, G., Zafar, H., & Dembla, P. (2025). Teaching Tip:
Decryption and Reverse Engineering - An Applied Tutorial for a Security
Programming Course. Journal of Information Systems Education, 36(2), 111-129.
https://doi.org/10.62273/STWE8998

Article Link: https://jise.org/Volume36/n2/JISE2025v36n2pp111-129.html

Received: September 12, 2024
First Decision: November 4, 2024
Accepted: January 6, 2025
Published: June 15, 2025

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/STWE8998
https://jise.org/Volume36/n2/JISE2025v36n2pp111-129.html
https://jise.org/

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

111

Teaching Tip
Decryption and Reverse Engineering - An Applied Tutorial

for a Security Programming Course

Gunjan Batra
Humayun Zafar
Pamila Dembla

Coles College of Business
Kennesaw State University
Kennesaw, GA 30144, USA

gbatra@kennesaw.edu, hzafar@kennesaw.edu, pdembla@kennesaw.edu

ABSTRACT

For professionals in the cyber security industry, knowledge of programming is a highly valuable skill. Therefore, it is crucial to
teach programming courses to cybersecurity students in a way that aligns with industry needs. This paper presents a tutorial on
encryption for a security programming course for undergraduate students specializing in cybersecurity. The challenge requires
students to reverse engineer an encryption algorithm (using Python) and decrypt a text using the acquired knowledge. The tutorial
also discusses the importance of programming skills for security students and why Python is an excellent choice for this purpose.
The tutorial was conducted at a business school, receiving positive feedback from students and sparking increased interest in
programming applications within cybersecurity.

Keywords: Tutorial, Security programming, Python, Encryption, Reverse engineering

1. INTRODUCTION

Cybercrime poses a growing threat to global businesses, with
the “Cost of a Data Breach 2022” report highlighting an average
cost of $4.35 million per breach (IBM, 2022). Concurrently,
Cybersecurity Ventures forecasts that cybercrime costs will
escalate to $10.5 trillion annually by 2025, driven by the
expansion of digital infrastructure and the increasing
sophistication of cyberattacks (Morgan, 2021).

To address this challenge, comprehensive initiatives from
academia, industry, and government aim to cultivate a skilled
cybersecurity workforce. Notably, the National Security
Agency’s (NSA) endorsement of 312 colleges as Centers of
Academic Excellence highlights the increasing emphasis on
advanced cybersecurity education, incorporating rigorous
training in network protocol analysis, programming, and
reverse engineering (Reeder & Paller, 2021).

Amid these developments, the intersection of programming
skills and cybersecurity expertise has become pivotal.
Understanding software development and security
programming is crucial for professionals tasked with defending
against and mitigating cyber threats. To address this need, our
tutorial on “Cryptography” within a “Security Programming”
course offers practical, hands-on training. Utilizing Python,
students engage in reverse encryption exercises that enhance
their capability to decrypt messages and apply security concepts
effectively.

This tutorial, tested in the IS/ISA (Information Systems/
Information Security and Assurance) program at a southeastern

U.S. business school, has demonstrated significant educational
benefits. Feedback from a post-tutorial survey indicated that
students not only appreciated the practical application of their
programming skills but were also keen to explore further
programming applications in cybersecurity.

This case study serves as an exemplar for integrating real-
world cybersecurity challenges into academic curricula,
ensuring that graduates are well-equipped to meet the demands
of the cybersecurity sector.

The paper is organized as follows. Section 2 discusses
related work, Section 3 explains the rationale for choosing this
tutorial, Section 4 presents the tutorial, and Section 5 discusses
evidence of student learning. Sections 6 and 7 cover the
applications, benefits, and conclusions of our work. Appendix
A presents detailed solution steps for students, including
snapshots, and Appendix B presents the survey questions.

2. RELATED WORK

In this section, we discuss the importance of security students
knowing a programming language, the effectiveness of tutorial-
based instruction for teaching programming, the reasons for
choosing Python for our tutorial, prior work on using Python in
security programming courses, and the NIST Cybersecurity
Framework (NIST CSF 2.0, 2024).

https://doi.org/10.62273/STWE8998
mailto:gbatra@kennesaw.edu
mailto:hzafar@kennesaw.edu
mailto:pdembla@kennesaw.edu

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

112

2.1 Importance of Security Students Knowing a
Programming Knowledge
The objective of teaching programming languages to security
students is to meet the skill, demand, and business needs in the
industry. Most entry-level and intermediate-level roles in the
information security field, such as cybersecurity manager,
information security analyst, network engineer, malware
analyst, threat intelligence expert, and network security
architect, require and benefit from some level of programming
ability. Security professionals sometimes need to manage and
interact with professionals who are developers or programmers.
Because many companies seek this skill, universities are
offering new courses, certificates, and degree programs with
programming components.

Most employers prefer graduates of security programs to
have hands-on experience to reduce the need for (and expense
of) on-the-job-training (Lewis & Crumpler, 2019). Employers
and universities use cybersecurity assessment (cyber aptitude)
tests that include programming testing (computers,
programming, and security) (Reeder & Paller, 2021). During
job interviews, employers may have a technical expert ask
candidates to explain the vector used in a recent attack or to
solve a few reverse engineering, network traffic protocol
analysis, or Python programming problems.

Yang and Wen (2017) collected empirical data of U.S.
business school (B-school) cybersecurity programs, developed
a cybersecurity curriculum model, and identified programming
as the second most important course in the curriculum. They
recommended that cybersecurity professionals learn at least one
object-oriented programming language. Programming
knowledge gives them an edge over security professionals
without those skills (Kuk et al., 2019).

2.2 Tutorial-Based Instruction for Teaching Security
Programming
For an IS/ISA graduate, the objective is not simply to learn to
code but to learn how to use code to solve real-life business
problems. The goal is to move away from lecturing and utilize
a more application-based learning-based approach.

Multiple approaches are used to teach information security,
such as textbooks, research, lectures, tutorials, and labs. The
idea behind using a tutorial to add to the lectures on security
programming is to provide a balanced understanding of the
security problem from a business perspective and how to use a
programming language to solve it. Students should not only
practice commands and functions but also understand the
contextual information such as when and why to use them in a
real-world security problem. An extensive literature review to
assess the methods to teach programming was performed.

Various approaches have been used by different programs:
context-based (Kakucs et al., 2022; Wen & Katt, 2019),
example-based (Gaber & Kirsh, 2021; Moumoutzis et al., 2018;
Segal & Ahmad, 1993), lecture-based (Delialioğlu, 2012),
game-based (Combéfis et al., 2016; Lindberg et al., 2019;
Mathrani et al., 2016), problem-based (Bawamohiddin &
Razali, 2017; Chutisowan et al., 2021; Delialioğlu, 2012;
Nuutila et al., 2008; Omeh et al., 2022; Peng, 2010), project-
based (Phuong, 2022; Sherman et al., 2019), case-based
learning (Chutisowan et al., 2021; Moumoutzis et al., 2018), or
a combination of these.

Teaching programming to security students requires a
hands-on, application-based approach (Ksiezopolski et al.,

2022). This should be done using real-world examples and
problems. Contextualized learning (Rivet & Krajcik, 2008),
which often takes the form of real-world examples and
problems, is a meaningful method for students to learn the
applications of the code they learn in the programming class.
Contextualization provides a powerful motivation for learning
(Cooper & Cunningham, 2010; Perin, 2011). Security and
programming knowledge should be contextualized together and
embedded in a meaningful scenario that makes sense to
students, enhances their understanding, and makes the concepts
more relatable.

Psychology and education researchers have demonstrated
that when knowledge is learned in a context similar to that in
which the skills will actually be needed, applying the learning
to the new context may be more likely (Dey, 2001; Perin, 2011).
Learning knowledge content through real-world experience is
important for students because “Once they can see the real-
world relevance of what they’re learning, they become more
interested and motivated” (Predmore, 2005, p. 23). In addition,
studies in educational psychology have affirmed that example-
based learning is quite effective, especially for students or
novice problem solvers (Atkinson et al., 2000). Practical
scenarios are great tools to simulate a workplace environment
(Hamburg et al., 2008). Merrill’s (2002) First Principles of
Instruction (FPI) for effective teaching and learning emphasize
that meaningful learning occurs when:

1) Learning is problem-centered, i.e., learners are engaged
in solving real-world problems

2) Existing knowledge is activated as a foundation for new
knowledge

3) New knowledge is demonstrated to the learner
4) Learners apply new knowledge
5) Knowledge is integrated into the learner’s world

The tutorial presented in this paper is based on the problem-

centered approach. The principles align with the tutorial’s
approach, which requires the students to reverse engineer an
encryption algorithm and decrypt a text. We chose a problem-
based approach for the tutorial to give students exposure to
practical and industry-relevant problems.

2.3 Why Are We Using Python?
Python is one of the best programming languages for security
experts (Bravo, 2023; CPOMagazine, 2020; NSA, CISA, &
US, 2023). Python is easy and quick to learn, understand,
implement, debug, and troubleshoot. Python is a general-
purpose, server-side scripting language that can be
implemented easily in security projects. The vast library of
assets and a large community of developers make Python a
powerful open-source language. A fundamental understanding
of Python’s data structures can be applied to penetration testing
and cybersecurity applications and can be very beneficial for
those who want to advance in this area (Kuk et al., 2019).
Considering the popularity, use, applicability, and demand for
Python in academia and industry over the past few years, it is a
great choice for teaching security programming.

Python is the number one programming language,
according to the TIOBE Software Index, an indicator of the
popularity of programming languages (TIOBE Index for April
2025, 2025). Python is also number one on the PYPL Popularity
of Programming Language Index, which is created based on
how often language tutorials are searched on Google (PYPL

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

113

PopularitY of Programming Language, 2025). This index is
indicative of which language might be valuable to study, or
consider for use in a new software project.

Multiple works compare Python with other object-oriented
programming languages and discuss why it is better choice of
language to learn for programming students (Bogdanchikov et
al., 2013; Fangohr, 2004; Kuk et al., 2019). Further, the
suitability of Python as a programming language for B-school
IS curriculum has been discussed in detail (Ellis et al., 2019).
Python gives B-school students academic and business-relevant
programming experience.

From a cyber security perspective, Python programming
skills will be of great value to students who want to build
foundational understanding of technology with cybersecurity
proficiency (Odetokun, 2020). Most importantly, Python is in
high demand by employers. In the 2023 Robert Half
Technology Salary Guide, Python is listed as one of the top five
coding languages tech leaders are looking for (Johnson, 2022).
Python has been widely adopted across various industries. It is
being used at Google for mainframe foundation, Dropbox for
cloud-based services, YouTube for integration of streaming
videos into their Internet pages, and Instagram for its Django
framework. Python is also used by NASA for Workflow
Automation System (WAS) and scientific programming tasks,
and NSA for cryptography and intelligence analysis. Python
can perform a multitude of security functions, including writing
scripts, automating information security processes, customizing
tools, analyzing malware, scanning, penetration testing tasks,
and automating security response operations. Most of these
activities can be automated using Python scripts and easily
coded in an English-like script of Python (Kuk et al., 2019).
Python has numerous libraries for implementing a variety of
functions such as Scikit, Nmap, Twisted, Scapy, Beautiful
Soup, Cryptography, YARA, Pymetasploit3, Mechanize,
Socket, and pygeoip.

2.4 Prior Work on Using Python for Security Programming
Courses
Python has been used for teaching information security. For
instance, an approach to teach cybersecurity that has been
implemented and successfully executed at Business and
Technology University (BTU), Georgia was discussed by
Chokhonelidze et al. (2020). They implemented a first-semester
compulsory course “Introduction to Programming With Python
Language,” followed by a second-semester programming
course, and multiple cybersecurity courses in subsequent
semesters. Next, they mention that the approach has shown that
students master cybersecurity subjects and are well prepared for
the job market. Additionally, data shows students’ interest in a
security-oriented Python course and their readiness to
participate in the class upon its introduction, as discussed by
Odetokun (2020). They recommend creating effective learning
environments (labs, tools) to enhance student engagement. A
study conducted by Henttonen and Rathod (2024) highlights the
importance of programming in cybersecurity based on a 15-
week Python course for students seeking cybersecurity careers.
The study found positive impacts, such as enhanced
engagement, when cybersecurity-specific content was
integrated into a programming course.

There are examples of positive experiences conducting
camps teaching cybersecurity and Python programming to high
school students, college freshman, students with no prior

programming experience. CyberPDX, a residential summer
camp was conducted by Feng et al. (2017) to introduce
cybersecurity to high school students. The camp focused on a
range of societal issues impacted by cybersecurity through four
learning threads, including Python programming. Initial results
showed that the camp positively influenced participants by
increasing their intention to pursue a career in cybersecurity.
Another summer camp for high school students, including
entering college freshman was conducted by Eckroth (2018),
who shared his experiences teaching a 5-day 25-hour
cybersecurity and Python programming. Although the
curriculum was designed for students with no prior experiences
in cybersecurity or programming, it covered a wide variety of
topics including networking, encryption, password
management, and penetration testing. A post-survey indicated
that some students expressed disappointment with the rushed
curriculum, as it attempted to cover many foundational topics
and exercises within a limited time frame. The work by Breese
and Gardner (2024) presents two teaching cases based on
Python programming language for K-12 and university level
cybersecurity learners. The first exercise introduces students to
basic Python concepts and guides them through developing a
simple number guessing game. The second exercise focuses on
conducting log file analysis, integrating programming skills
with cybersecurity education. These exercises have been
implemented in both a cyber camp environment and in-class
settings for 100- and 200-level courses, primarily to attract
novice students to pursue cybersecurity as a major. They plan
to publish student experiences as part of their future work.

In our work, our goal is to provide the learners with a
practical, relevant to real world cybersecurity work and skill
building exercise that demonstrates the applications of
encryption in security. One of the biggest challenges is ensuring
access to the right materials, tools, and techniques to practice
the concepts and theories covered in course texts. We want to
provide resources that make students self-sufficient to solve a
given problem as many of them could be a novice in
programming and cybersecurity. The tutorial with step-by-step
screens will serve as an excellent resource to solve the given
problem. Students are also provided sufficient time to complete
it. Finally, we want to spark their interest in learning more
applications of cybersecurity in programming.

2.5 NIST Cybersecurity Framework (NIST CSF)
The NIST Cybersecurity Framework (NIST CSF) is a
comprehensive set of guidelines and best practices designed to
help organizations manage and reduce cybersecurity risks.
Developed by the National Institute of Standards and
Technology (NIST), the framework provides a flexible, risk-
based approach to cybersecurity, suitable for organizations of
all sizes and sectors. The NIST CSF is adopted across various
industries, making it highly relevant for students who will enter
the cybersecurity workforce. The six core functions are as
follows:

1) The GOVERN (GV) Function involves establishing,
communicating, and monitoring an organization’s
cybersecurity risk management strategy and policies,
aligning them with its mission and stakeholder
expectations. This function integrates cybersecurity into
the broader enterprise risk management (ERM) strategy
and oversees roles, responsibilities, and the
cybersecurity strategy.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

114

2) The IDENTIFY (ID) Function involves understanding
the organization’s current cybersecurity risks, assets,
and suppliers to prioritize efforts consistent with its risk
management strategy and mission needs. This function
identifies opportunities for improving policies, plans,
processes, and practices that support cybersecurity risk
management across all functions.

3) The PROTECT (PR) Function involves implementing
safeguards to manage and secure the organization’s
assets, reducing the likelihood and impact of adverse
cybersecurity events. Key areas include identity
management, authentication, access control, awareness
and training, data security, platform security (i.e.,
securing the hardware, software, and services of
physical and virtual platforms), and technology
infrastructure resilience.

4) The DETECT (DE) Function involves identifying and
analyzing potential cybersecurity attacks and
compromises. This function enables timely discovery of
anomalies and indicators of compromise, supporting
effective incident response and recovery efforts.

5) The RESPOND (RS) Function involves taking action
on detected cybersecurity incidents, focusing on
containing their effects. This function includes incident
management, analysis, mitigation, reporting, and
communication.

6) The RECOVER (RC) Function involves restoring assets
and operations affected by a cybersecurity incident,
aiming for timely recovery to minimize impact. This
function also ensures effective communication during
recovery efforts.

3. RATIONALE BEHIND SELECTION OF THIS

TUTORIAL

Understanding how encryption algorithms work and their
weaknesses is very important in cybersecurity. The tutorial
follows a step-by-step teaching and explanation approach to
make it an engaging exercise for students. Based on a reverse
engineering scenario, the tutorial can be self-learned by
students who have some prerequisite knowledge and would like
to gain hands-on experience in this area. There are multiple
reasons due to which this tutorial was chosen for the course and
as a subject in this paper.

1) Alignment with NIST CSF 2.0: This tutorial aims to
leverage the principles of NIST Cyber Security
Framework (NIST CSF 2.0, 2024) to enhance
participants’ understanding of cybersecurity threats and
defense mechanisms. Focusing specifically on the
PROTECT Function of the NIST CSF framework, it
teaches students to implement safeguards and enhance
encryption methods to secure data against unauthorized
access. By reverse engineering, participants can identify
weaknesses in encryption methods and learn how to
strengthen them, contributing to the organization’s
overall protective measures.

2) Practical relevance of the tutorial topic: This tutorial
equips students with knowledge and skills that are
valued across multiple sectors. Students learn a topic on
information security and gain understanding of how to
manually reverse a script. Cryptographic algorithms
play an important role in the security industry to protect

sensitive information. However, there are scenarios
where reverse engineering a cryptographic algorithm is
necessary, such as understanding its technical workings,
assessing its security, or developing compatible
software. Other applications of reverse engineering
include searching for vulnerabilities in software,
hardware, or systems, and analyzing malware. By
understanding how a system works, security
professionals can identify weaknesses that could allow
attackers to gain access or cause damage.

3) Hands-on experience: The tutorial provides hands-on
experience with the theoretical concepts learned in the
course. The problem-based approach makes the exercise
interesting and engaging. This approach expands the
knowledge horizon of students and encourages them to
use their skills to solve real business problems. In
addition, this exercise gives students a taste of the types
of questions asked during job interviews. Finally, the
exercise adds to the students’ practical skill which the
student can talk about during a job interview. Our
objective is to show how we can make security
programming course in B-school a fun, challenging, and
practical learning experience for students by including
exercises such as the below tutorial.

4. TUTORIAL – DECRYPTION AND REVERSE

ENGINEERING CHALLENGE

In this section, we will describe the tutorial. The tutorial will be
provided as part of the assignments or as a bonus exercise to the
students in the “Cryptography” module of the security
programming course. The instructor should ensure that the
prerequisite course material is covered before providing the
tutorial to the students. The course can be taught online/in-
person and the material will be provided through the Learning
Management System (e.g., D2L Brightspace) as part of the
lecture content.

4.1 Part of Tutorial for the Instructors
Level: Undergraduate. Pre-requisites: To instruct the students
in the Reverse Engineering Challenge, faculty members should
ensure the students know the following concepts:

1) Basics of cryptography (encryption, decryption,
hashing)

2) NIST CSF 2.0
3) Basic programming concepts of Python (variables,

operators, decision structure, loops, functions, strings)
4) Basics of reverse scripting

The tutorial provides a hypothetical scenario to the students

in which a job applicant interviewing for a position in
cybersecurity is asked to reverse engineer an encryption
algorithm written in Python. The goal is to demonstrate how to
manually analyze the code of an encryption algorithm to
decrypt a message and create its hash. The tutorial is self-
explanatory and students can follow the step-by-step
instructions provided. Each instruction is accompanied by
visuals that illustrate the code, clarify what needs to be done,
explain the reasoning behind it, and demonstrate how to
implement it. In the tutorial exercise,

1) Students need to decrypt a string and find the hash of
the string.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

115

2) Students are provided with two files to start with:
encryption code in “encryptor.py” and encrypted
message in “message.txt.”

3) Students are given one week to complete the tutorial and
are required to submit a snapshot of the hash as a proof
of completion.

4) Student handouts include:
a. Learning objectives, prerequisite knowledge,

scenario, challenge objectives, tools required.
b. Steps to solve the problem.
c. Reference snapshots of the solution (in

Appendix A).

4.2 Part of Tutorial for the Students

4.2.1 Learning Objectives.

1) Python Programming Proficiency:
a. Apply basic Python programming concepts,

including variables, operators, decision structures,
loops, functions, and strings.

b. Enhance problem-solving skills using Python in a
practical cybersecurity scenario.

2) Reverse Engineering Techniques:
a. Analyze and understand the structure and flow of

an encryption algorithm.
b. Develop Practical Skills in reverse engineering a

Python script.

4.2.2 Prerequisite Knowledge.

1) Basics of cryptography (encryption, decryption,
hashing).

2) NIST CSF 2.0.
3) Basic programming concepts of Python (variables,

operators, decision structure, loops, functions, strings).
4) Basics of reverse scripting.

4.2.3 Scenario. Assume you are a job applicant and while
searching for a job, you find that the Acipher website’s career
page is recruiting for a reverse engineering position. After you
apply, an Acipher careers system bot sends you an email with a
challenge to decrypt a message. The email contains an
encrypted message (message.txt:
703e966d1ed86f08daf503d6678e99eb09d47f18), an encryptor
script written in Python (encryptor.py) and Challenge
Objectives.

4.2.4 Challenge Objectives.

1) Read the script and understand its flow.
2) Decrypt the encrypted message provided to you.
3) Find the hash of the message string and submit a

snapshot of hash as a proof of completion of the tutorial.

4.2.5 Tools Required. Python3 and Theia IDE.

4.2.6 Solution Steps.

1) Part I) Understand the encryption of the message:
a. Simply execute the code to see what it does?
b. Attempt to understand the variables, operators and

functions.
c. Give meaningful names to variables and functions

based on their role in the program. For example,

the variable “value” that takes in user input can be
named – “user input.”

d. Focus on variables - value, ORD_value,
ORD_key, lol, xor_result, movebit, rotateLeft,
chars.

e. Focus on functions - GGGGotate().

2) Explanation - (encryptor script in encryptor.py):
a. The program performs encryption on a user-

provided input string by manipulating its
characters through bitwise operations and
rotations. The program code starts by calculating
XOR of first character’s ASCII value with the
encryption key (the ASCII value of “a”) (Lines 22-
24). Then, using a function, it applies left rotation
to the result of XOR operation, ensures that the
result stays within 8 bits and sets the least
significant bit if the original value was above 127.
The result is stored as an element in a list (Lines 1-
6, 25). Now, for the remaining characters in the
input string, it performs an XOR between the last
element in the list and the ASCII value of the
current character, and again rotates it left using the
same function as before (Lines 26-33). After
completing the process for all input characters, the
values in the list are then converted to a
hexadecimal format, resulting in the encrypted
string (Lines 40-49).

3) Part II) Decryption of the message:

a. Hexadecimal to decimal conversion: Create a list
of left-rotated decimals by converting each two
digits of the encrypted message to their decimal
format. Each pair of hexadecimal digits in the
string represents one byte (8 bits).

b. Reverse the rotation: Create xor_result by
converting each two digits of the encrypted
message to their binary bit format and rotate it
right.

c. Reverse XOR with previous values: Convert
“xor_result” and “encrypted_key[k]” decimal
numbers to their binary numbers. Next, compare
which bits of “encrypted_key[k]” differ from
“input_chars[k]” bits - get final decimal value of
each of the character.

d. Convert decimals numbers to characters: Convert
the list of decimal numbers to characters using the
ASCII value of the decimal number.

e. Continue Steps 1-5 for all digit pairs, until the
entire message is decrypted and original message
is obtained.

4) Part III) Compute the flag (i.e., the hash of decrypted

message):
a. Hash the decrypted message using MD5 algorithm

or Linux command
b. Reference snapshots of the solution available in

Appendix A.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

116

5. STUDENT FEEDBACK

The tutorial and a short survey were provided to the students of
a security programming course, where Python was the primary
language taught. The students were enrolled in the IS/ISA
program in the Department of Information Systems and
Security at a business school within a large university in the
southeastern United States. The tutorial and the subsequent
survey were completed by 18 students. The tutorial was
provided after the theoretical concepts had been covered in the
course. The results of the survey are as follows:

1) 82% of respondents agreed that the exercise was
reasonable and useful.

2) 72% of respondents agreed that the teaching method
through the tutorial supported their learning process.

3) 83% of respondents expressed interest in learning more
about the applications of programming in cybersecurity
after completing the tutorial.

Regarding what they liked about the tutorial, some of the

student comments included:
• “It helped me learn how to read and break down code

better.”
• “I like how it was easy to follow and not too hard to

learn.”
• “I liked it because the tutorial teaches in an easy way.”
• “I like there were steps provided along with pictures to

help walk through the process.”
• “Taught me an area of knowledge that I had never

learned up to this point in my college education.”

Regarding what they disliked about the tutorial, some of the

student comments included:
• “At first glance it seems overwhelming.”
• “It was pretty difficult for me at times.”
• “There is not a lot of explanation and information;

increase explanation.”

Overall, the students’ response to the tutorial has been

positive. Most students appreciated the step-by-step
walkthrough provided to complete the tutorial. However, some
students found the tutorial overwhelming and difficult and
wanted more explanation to be added. This reaction is
understandable, given that many students were exposed to
scripting for the first time in this course. Additionally, there was
no prerequisite for prior knowledge of encryption concepts. In
our view, the hands-on nature of this activity is one of its
greatest benefits. The best part was the step-by-step instructions
and snapshots that were available. The activity allows students
to move beyond a purely theory-based approach and engage
with practical, real-world applications. We hope that this
activity will help students build confidence in scripting, making
it easier for them to tackle similar challenges in future courses,
such as the network security and penetration testing course.

6. DISCUSSION

6.1 Learnings From the Tutorial
The tutorial teaches students to make meaning out of the
obfuscated code of a simple encryption algorithm. Some of the
tasks/concepts that students do - understand the functions in the
code, identify and rename the variables and functions, get

ASCII value of characters, use logical operators (XOR, AND,
and OR), use loops and lists in a program, convert hexadecimal
to decimal, and finally hash a given value.

In this tutorial example, students learn about reverse
encryption using their knowledge of Python programming.
Following the step-by-step process, they apply their
programming skills to a real use-case that an information
security manager may face.

6.2 Benefits of the Tutorial
This tutorial is relevant for educators who want to teach
students programming in the context of information security
(specifically reverse engineering within cryptography).

The tutorial process creates an engaging, active work
environment. This tutorial is an example of how a topic in an
information security programming course should be taught,
emphasizing the importance of applying programming skills to
solve real-world business problems. This approach enhances
understanding of security concepts and improves student
retention by linking programming concepts to business
applications. Additionally, this experience boosts students’
confidence in applying learned concepts to various scenarios.

Instead of providing a problem and asking students to write
code to solve it, we start by deconstructing preexisting Python
scripts, encouraging critical thinking about understanding code
they might encounter in real-world situations. Importantly, we
take a context-driven approach: introducing a business problem
first, then the appropriate methods to solve it.

6.3 Applications of the Learnings
Reverse engineering malware involves analyzing malware to
understand its functionality and purpose, determine how to
remove it from a system, or create defenses against it. The
process of reverse engineering is used to investigate viruses and
find practical solutions to counteract them. Reverse engineering
malware is challenging due to obfuscation techniques,
encryption, and frequent code changes by malware authors.
Understanding the algorithm at a basic level gives students
insight into reverse-engineering malware code. This knowledge
prepares students to tackle such situations.

6.4 Adopting the Idea
The instructors who adopt the tutorial-based instruction idea
should integrate it with a cybersecurity course module.
Moreover, they should use real-world scenarios to make the
tutorials relatable and applicable. They should define the
purpose and objective of the tutorial. They should ensure the
tutorial includes detailed, self-explanatory steps and code
snippets. They should add comments in the code to explain key
concepts. Additionally, they should provide the code files,
datasets and log files for hands-on practice.

7. CONCLUSIONS

The objective of this paper was to present a sample tutorial for
addressing security problems from a business perspective,
which can be used for teaching programming languages in
security programming courses. We provide a step-by-step
process for instructing students on how to solve a Reverse
Engineering challenge using Python.

The overall feedback about the tutorial has been positive
and the fact that students want to learn more about the

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

117

application of programming in cybersecurity is a significant
achievement. The learnings on scripting and encryption from
this hands-on exercise will help the students in future courses
in the program such as in Penetration testing course.

Our next step is to expand the tutorial-based method of
instruction to other modules in the course. Our goal is to
introduce each topic in the security programming curriculum
within the context of a different case study or real-world
example (monitoring network traffic, analysis of security logs,
etc.). We also plan to develop additional follow-up tutorials on
the topic of encryption for other courses in our program, such
as the network security course. We anticipate these topics will
evolve as we continue teaching the course and as new topics
gain importance and popularity. Throughout the course, we
engage in important discussions about the applications of these
concepts.

8. REFERENCES

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000).

Learning From Examples: Instructional Principles From the
Worked Examples Research. Review of Educational
Research, 70(2), 181-214.
https://doi.org/10.3102/00346543070002181

Bawamohiddin, A. B., & Razali, R. (2017). Problem-Based
Learning for Programming Education. International
Journal on Advanced Science, Engineering and
Information Technology, 7(6), 2035-2050.
https://doi.org/10.18517/ijaseit.7.6.2232

Bogdanchikov, A., Zhaparov, M., & Suliyev, R. (2013). Python
to Learn Programming. Journal of Physics: Conference
Series, 423(1), 012027. https://doi.org/10.1088/1742-
6596/423/1/012027

Bravo, C. A. (2023, September 27). 5 of the Top Programming
Languages for Cybersecurity. WeLiveSecurity.
https://www.welivesecurity.com/en/secure-coding/5-top-
programming-languages-cybersecurity/

Breese, J. L., & Gardner, B. (2024). Using Python to Inspire
Novice Cybersecurity Learners (K-12 and University
Level). Proceedings of the 2024 ISCAP Conference,
Baltimore, MD.

Chokhonelidze, G., Basilaia, G., Kantaria, M., & Dgebuadze,
M. (2020). Teaching the Cybersecurity Courses at the
University in Georgia. International Journal of Innovative
Science and Research Technology, 5(4), 648-651.
https://www.ijisrt.com/teaching-the-cybersecurity-
courses-at-the-university-in-georgia

Chutisowan, K., Trinantarat, P., Ratnarangsank, K., Jundang,
N., & Suwatcharakulthorn, J. (2021). Combination of
Problem-Based Learning and Case-Based Learning in SQL
Programming for Data Analysis. The 6th International
STEM Education Conference (iSTEM-Ed), Pattaya,
Thailand. https://doi.org/10.1109/iSTEM-
Ed52129.2021.9625105

Combéfis, S., Beresnevičius, G., & Dagienė, V. (2016).
Learning Programming Through Games and Contests:
Overview, Characterisation and Discussion. Olympiads in
Informatics, 10(1), 39-60.
https://doi.org/https://doi.org/10.15388/ioi.2016.03

Cooper, S., & Cunningham, S. (2010). Teaching Computer
Science in Context. ACM Inroads, 1(1), 5-8.
https://doi.org/10.1145/1721933.1721934

CPOMagazine. (2020). Most Desired Skills, Programming
Languages, and Professional Certifications for Cyber
Security Jobs. https://www.cpomagazine.com/cyber-
security/most-desired-skills-programming-languages-and-
professional-certifications-for-cyber-security-jobs/

Delialioğlu, Ö. (2012). Student Engagement in Blended
Learning Environments With Lecture-Based and Problem-
Based Instructional Approaches. Journal of Educational
Technology & Society, 15(3), 310-322.

Dey, A. K. (2001). Understanding Context. Personal and
Ubiquitous Computing, 5(1), 4-7.
https://doi.org/https://doi.org/10.1007/s007790170019

Eckroth, J. (2018). Teaching Cybersecurity and Python
Programming in a 5-day Summer Camp. Journal of
Computing Sciences in Colleges, 33(6), 29-39.
https://dl.acm.org/doi/10.5555/3205191.3205196

Ellis, M. E., Hill, G., & Barber, C. J. (2019). Using Python for
Introductory Business Programming Classes. Quarterly
Review of Business Disciplines, 6(3), 237-254.
https://faculty.utrgv.edu/louis.falk/qrbd/QRBDnov19.pdf

Fangohr, H. (2004). A Comparison of C, MATLAB, and
Python as Teaching Languages in Engineering. The 4th
International Conference of Computational Science,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-
25944-2_157

Feng, W.-C., Liebman, R., Delcambre, L., Lupro, M., Sheard,
T., Britell, S., & Recktenwald, G. (2017). CyberPDX: A
Camp for Broadening Participation in Cybersecurity. 2017
USENIX Workshop on Advances in Security Education,
USENIX Association.

Gaber, I., & Kirsh, A. (2021). Using Examples as Guideposts
for Programming Exercises: Providing Support While
Preserving the Challenge. The 16th International
Conference on Computer Science & Education, Lancaster,
United Kingdom.
https://doi.org/10.1109/ICCSE51940.2021.9569541

Hamburg, I., Cernian, O., Mancas, D., & Basandica, A. (2008).
Approaches to the Teaching of Information Security.
https://ace.ucv.ro/sintes12/SINTES12_2005/COMPUTER
%20ENGINEERING/09.pdf

Henttonen, K., & Rathod, P. (2024). Importance of
Programming in Cybersecurity: Preliminary Findings From
a Pilot Study Tailoring a Python Course for Targeted
Educational Needs. IEEE Global Engineering Education
Conference, Kos Island, Greece.
https://doi.org/10.1109/EDUCON60312.2024.10578580

IBM. (2022). Cost of a Data Breach 2022. IBM.
https://www.ibm.com/reports/data-breach.
https://doi.org/10.12968/S1353-4858(22)70049-9

Johnson, J. (2022). 5 Coding Languages Tech Leaders Are
Looking for. The Rober Half Blog.
https://www.roberthalf.com/blog/robert-half-thought-
leader/5-coding-languages-tech-leaders-are-looking-for

Kakucs, A., Kátai, Z., & Harangus, K. (2022). A Context-Based
Approach to Teaching Dynamic Programming.
Proceedings of the International Conference on Paradigms
of Computing, Communication and Data Sciences, Jaipur,
India. https://doi.org/10.1007/978-981-19-8742-7_53

Ksiezopolski, B., Mazur, K., Miskiewicz, M., & Rusinek, D.
(2022). Teaching a Hands-on CTF-Based Web Application
Security Course. Electronics, 11(21), 3517.
https://doi.org/10.3390/electronics11213517

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

118

Kuk, K., Milic, P., Spalević, P., & Gocic, M. (2019). Algorithm
Design in Python for Cybersecurity. The 28th International
Electrotechnical and Computer Science Conference,
Portorož, Slovenia.

Lewis, J. A., & Crumpler, W. (2019). The Cybersecurity
Workforce Gap.
https://www.csis.org/analysis/cybersecurity-workforce-
gap

Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019).
Gamifying Programming Education in K‐12: A Review of
Programming Curricula in Seven Countries and
Programming Games. British Journal of Educational
Technology, 50(4), 1979-1995.
https://doi.org/10.1111/bjet.12685

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016).
PlayIT: Game Based Learning Approach for Teaching
Programming Concepts. Journal of Educational
Technology & Society, 19(2), 5-17.
https://www.jstor.org/stable/jeductechsoci.19.2.5

Merrill, M. D. (2002). First Principles of Instruction.
Educational Technology Research and Development, 50,
43-59. https://doi.org/10.1007/BF02505024

Morgan, S. (2021). Cybersecurity Jobs Report: 3.5 Million
Unfilled Positions In 2025. Cyber Crime Magazine.
https://cybersecurityventures.com/jobs/

Moumoutzis, N., Boukeas, G., Vassilakis, V., Pappas, N.,
Xanthaki, C., Maragkoudakis, I., Deligiannakis, A., &
Christodoulakis, S. (2018). Design, Implementation and
Evaluation of a Computer Science Teacher Training
Programme for Learning and Teaching of Python Inside
and Outside School: Establishing and Supporting Code
Clubs to Learn Computer Programming by Self-contained
Examples. Proceedings of the 11th Interactive Mobile
Communication Technologies and Learning (IMCL)
Conference, Thessaloniki, Greece.
https://doi.org/10.1007/978-3-319-75175-7_56

NIST CSF 2.0. (2024). https://doi.org/10.6028/NIST.CSWP.29
NSA, CISA, & US. (2023). The Case for Memory Safe

Roadmaps https://www.nsa.gov/Press-Room/Press-
Releases-Statements/Press-Release-
View/article/3608324/us-and-international-partners-issue-
recommendations-to-secure-software-products/

Nuutila, E., Törmä, S., & Malmi, L. (2008). Learning
Programming With the PBL Method — Experiences on
PBL Cases and Tutoring. In J. Bennedsen, M. E. Caspersen,
& M. Kölling (Eds.), Reflections on the Teaching of
Programming: Methods and Implementations (Vol. 4821,
pp. 47-67). https://doi.org/10.1007/978-3-540-77934-6_5

Odetokun, I. (2020). An Assessment of the Effectiveness of
Python in Cybersecurity. Proceedings of the International
Conference on Computational Science and Computational
Intelligence.
https://www.researchgate.net/profile/Itunuoluwa-
Odetokun/publication/366276195_AN_ASSESSMENT_O
F_THE_EFFECTIVENESS_OF_PYTHON_IN_CYBERS
ECURITY/links/63a1f13e9835ef25903595eb/AN-
ASSESSMENT-OF-THE-EFFECTIVENESS-OF-
PYTHON-IN-CYBERSECURITY.pdf

Omeh, C. B., Olelewe, C. J., & Nwangwu, E. C. (2022). Impact
of Teaching Computer Programming Using Innovative
Pedagogy Embedded With Live Online Lectures and
Related Tools: A Randomized Control Trial. Computer

Applications in Engineering Education, 30(5), 1390-1405.
https://doi.org/10.1002/cae.22527

Peng, W. (2010). Practice and Experience in the Application of
Problem-Based Learning in Computer Programming
Course. International Conference on Educational and
Information Technology, Chongqing, China.

Perin, D. (2011). Facilitating Student Learning Through
Contextualization: A Review of Evidence. Community
College Review, 39(3), 268-295.
https://doi.org/10.1177/0091552111416227

Phuong, C. (2022). Teaching Cybersecurity: A Project-Based
Learning and Guided Inquiry Collaborative Learning
Approach [Doctoral dissertation, University of Tennessee
at Chattanooga]. https://scholar.utc.edu/theses/769/

Predmore, S. R. (2005). Putting It Into Context. Techniques:
Connecting Education and Careers, 80(1), 22-25.
https://eric.ed.gov/?id=EJ718606

PYPL PopularitY of Programming Language. (2025).
https://pypl.github.io/PYPL.html

Reeder, F., & Paller, A. (2021). What Works in Finding Elite
Cybersecurity Talent: Promising Practices for Chief
Information Officers. CIO Institute.
https://www.cio.org/assets/pdf/CIO_EliteCyberTalent%20
NEW_16pp.pdf

Rivet, A. E., & Krajcik, J. S. (2008). Contextualizing
Instruction: Leveraging Students' Prior Knowledge and
Experiences to Foster Understanding of Middle School
Science. Journal of Research in Science Teaching: The
Official Journal of the National Association for Research
in Science Teaching, 45(1), 79-100.
https://doi.org/10.1002/tea.20203

Segal, J., & Ahmad, K. (1993). The Role of Examples in the
Teaching of Programming Languages. Journal of
Educational Computing Research, 9(1), 115-129.
https://doi.org/10.2190/X63F-X1QX-V4KL-BJEX

Sherman, A. T., Peterson, P. A. H., Golaszewski, E., LaFemina,
E., Goldschen, E., Khan, M., Mundy, L., Rather, M., Solis,
B., Tete, W., Valdez, E., Weber, B., Doyle, D., O'Brien, C.,
Oliva, L., Roundy, J., & Suess, J. (2019). Project-Based
Learning Inspires Cybersecurity Students: A Scholarship-
for-Service Research Study. IEEE Security & Privacy,
17(3), 82-88. https://doi.org/10.1109/msec.2019.2900595

TIOBE Index for April 2025. (2025). TIOBE.
https://www.tiobe.com/tiobe-index/

Wen, S.-F., & Katt, B. (2019). Toward a Context-Based
Approach for Software Security Learning. Journal of
Applied Security Research, 14(3), 288-307.
https://doi.org/10.1080/19361610.2019.1585704

Yang, S. C., & Wen, B. (2017). Toward a Cybersecurity
Curriculum Model for Undergraduate Business Schools: A
Survey of AACSB-Accredited Institutions in the United
States. Journal of Education for Business, 92(1), 1-8.
https://doi.org/10.1080/08832323.2016.1261790

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

119

AUTHOR BIOGRAPHIES

Gunjan Batra is an assistant professor of information systems

and security in the Coles College of
Business at Kennesaw State
University, GA. She teaches
information security related courses
such as Security Script
Programming, Management, IT
Audit, Management of Information
Security. She received her Ph.D. in
Management from Rutgers

University, NJ, specializing in Information Security. Prior to
her doctoral degree, she worked as a consultant at KPMG in
their IT Advisory practice, helping clients with Information
security related issues. Gunjan is also a Certified Information
Systems Auditor (CISA). Her research interests include
Information Systems Security, Access Control, Information
Systems Audit, and Data Analytics. She has published her
research in several journals and presented at conferences in
these areas.

Humayun Zafar is a professor of information security and

assurance, and the Director of
Fintech at Kennesaw State
University. He completed his
doctorate in Business Administration
with an emphasis in IT from the
University of Texas at San Antonio.
His research and teaching interests
include cybersecurity and fintech.
His work has appeared in journals

and conferences such as Communications of the AIS,
Information Systems Frontiers, and HICSS.

Pamila Dembla is an associate professor of information

systems and security in the Coles
College of Business at Kennesaw
State University, GA. She teaches
database related courses. She is an
interdisciplinary scholar, and her
research interests include working on
cross cultural issues related to global
IT projects, specifically with respect
to gender. To that effect, her research

extends across many cultures including the United States, India,
Russia, Ukraine, and Mexico. She has published numerous
articles in journals, book chapters, and presented at various
regional, national, and international conferences. She has
mentored a number of students, interns, and chaired doctoral
students during her tenure.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

120

APPENDICES

Appendix A. Solution Steps

Below are the solution steps:

1. Initial encounter

The challenge presents you with an interactive IDE with two files in the editor explorer: some Python code in encryptor.py. (Figure
A1) and an encrypted message in message.txt: “703e966d1ed86f08daf503d6678e99eb09d47f18” (Figure A2). Copy the code to
your Python IDE of choice or use the presented editor.

Figure A1. encryptor.py in the Interactive Editor

 Figure A2. message.txt in the Interactive Editor

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

121

Executing the code reveals that the program is an interactive script that waits for the user to input a value (Figure A3).

Figure A3. Execution of encryptor.py

First, by looking at the script, you can see that some functions and variables are obfuscated. Start with understanding their role and
changing their names to human-readable names.

2. Understanding the code

On lines 1–51, the code contains functions called GGGGotate() and main(). On lines 52–53, an “if” condition verifies that the script
runs as the main program, then executes the function called main() (Figure A4). More information about the “if” __name__ ==
“__main__” condition can be found in the link: https://stackoverflow.com/questions/419163/what-does-if-name-main-do/

Figure A4. Calling the main() Function

The main() function starts on line 7. On line 8, the variable “value” receives an input from the user. Rename the variable for the
whole script to a name that matches the variable role.

You can rename a variable for a whole script by using Ctrl+F to search for the variable name. Then, click on “aa” and “ab” to filter
only match case sensitive and whole words. Next, click on the small arrow to open the “Replace” pane and insert a new variable
name, for example, “user_input.” Finally, use the “Find” pane arrows to navigate between the three matches and replace only the
variable name using “Replace” (Figure A5 and Figure A6).

https://doi.org/10.62273/STWE8998
https://stackoverflow.com/questions/419163/what-does-if-name-main-do/

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

122

Figure A5. Before Renaming the “value” Variable to “user input”

Figure A6. After Renaming the “value” Variable to “user input”

Lines 9-19 define other variables with different types and values whose role is unknown for the moment.

On lines 20–21, the script iterates through a string stored inside “user_input” and adds each character in ASCII decimal format to
a list called “ORD_value.”

Rename the “ORD_value” variable for the whole script to a name that matches its role in storing a list of user input characters. For
example, “input_chars” (Figure A7).

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

123

Figure A7. “ORD_value” Variable Renamed to “input_chars”

On lines 22–23, the script adds the decimal ASCII value of “a,” which equals 97, to a variable called “ORD_key.” Next, on line
24, the script uses “^” operator between the first value inside of the “ORD_key” list, which is 97 (0110 0001), and the first character
of the user input in ASCII decimal format. The result is stored into a variable called “lol.”

The “^” manipulation converts a decimal value to a binary value then performs an “XOR” operation between the binary values.

The script hints that “ORD_key” stores the encryption key because of the variable name and the “XOR” operation between
“ORD_key” to the user input’s first ASCII decimal character. Also, by inspecting “lol” usage, you can infer that its role is to store
“XOR” operation results. Therefore, you should rename “ORD_key” to “encryption_key” (Figure A8) and “lol” to “xor_result”
(Figure A9).

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

124

Figure A8. “ORD_key” Variable Renamed to “encryption_key”

Figure A9. “lol” Variable Renamed to “xor_result”

Line 25 calls to the GGGGotate() function while providing “lol” as a variable input, then the function’s output is appended to the
“ListMoveBit” list. The GGGGotate() function is defined in lines 1–6 (Figure A10).

Figure A10. GGGGotate() Function

The “<<” operator in line 2 rotates left several times the binary bits of the variable in hand. In this case, the bits rotate one bit left
and add 0 on the right side of the “xor_result” binary code, the binary’s decimal output after the “<<” operation is stored in “bit”
variable. Line 3 uses “&” between 255 decimal (1111 1111) and “bit” variable (which is “xor_result” in decimal format). The result
is stored in a variable called “movebit.”

The “&” manipulation converts a decimal value to a binary value, then performs “AND” operation between the binary values.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

125

A condition in line 4 checks if “xor_result” decimal is higher than 127 (0111 1111), then in line 5 it performs “|” manipulation
between 1 decimal (0000 0001) and “movebit” (which stores the output of “bit” and 255). The “|” manipulation converts a decimal
value to a binary value and performs an “OR” operation between the binary values.

On line 6, the function ends and returns the value of “movebit.” Upon understanding the role of the GGGGotate function, rename
the function and its variables accordingly. Start with “bit,” which stores the left rotated “xor_result” variable value in integer format
and can be renamed to “xor_rotated_left.” The function returns the “movebit” variable after a few binary manipulations; therefore,
it can be renamed to “bits_to_return.” After understanding the GGGGotate function’s main role is to rotate left, you can rename it
to “rotateLeft.” (Figure A11).

Figure A11. Renaming GGGGotate Function and Its Variables

On line 25, the output of the “rotateLeft” function is appended to a list called “ListMoveBit,” which you can infer its role is to store
a list of “rotateLeft” outputs. You can rename it to “rotated_left_list” (Figure A12).

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

126

Figure A12. Renamed “ListMoveBit” to “rotated_left_list”

Lines 26–33 run in for loop iterations through “input_chars,” which is a list that stores the input characters previously provided on
lines 20–21 in ASCII decimal format. Each item is stored in the “chars” variable. Because each item is singular, rename “chars” to
“char” (Figure A13).

Figure A13. Renamed “chars” to char

Because the “Index_Value” initial value provided on line 11 is 0, the “if” condition on lines 27–29 is true only on the first iteration,
which increases “Index_Value” by 1 and skips lines 30–33 until the next iteration.

On lines 30–33, “xor_result” stores a new output of an “XOR” operation between the previous item on “rotated_left_list” that
“Index_Value” points to, and the current iteration character is ASCII decimal format from “input_chars” list. Then, the “rotateLeft”
function rotates the “xor_result” left and it is appended to “rotated_left_list.” Finally, in line 33, “Index_Value” increases by 1.
Lines 34–39 modify a few unused variables and can be skipped.

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

127

The for loop in lines 40–49 run through “rotated_left_list” and set “i” as the variable name for each item in the list (Figure A14).
On lines 41–42, the variable “val” receives the hexadecimal format of “i.” Lines 43–49 have two “if” conditions that, together,
append “val” value to the final encrypted message. The conditions checks if the “i” integer value is lower than 16. If true, add the
prefix “0” to “val” for the encrypted message (Figure A14).

In lines 50–51, the script prints the final encrypted message.

Figure A14. Final Encrypted Message

3. Decrypting the message

To decrypt a message, you need to reverse the steps every two characters take before being printed to the terminal. The first two
characters of the message are “70.” On lines 41–42, “val” stores “70,” which is the hexadecimal format of the “i” variable. Retrieve
the decimal of 0x70 by executing the command “echo $((16#70)),” or with the online tool in Figure A15, available at
https://www.rapidtables.com/convert/number/binary-to-decimal.html.

Figure A15. Converting 0x70 to Decimal and Binary

Converting each two digits of the encrypted message to their decimal format, forms a list of left-rotated
decimals:112,62,150,109,30,216,111,8, 218,245,3,214,103,142,153,235,9,212,127.

https://doi.org/10.62273/STWE8998
https://www.rapidtables.com/convert/number/binary-to-decimal.html

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

128

Next, lines 30–33 are skipped on the first iteration. Therefore, skip to line 25, which append “xor_result” to “rotated_left_list” upon
left rotation. To find “xor_result,” rotate the binary bits right. If the 0x70 binary number is 0111 0000, then rotating the bits right
turns to 0011 1000, which is equal to 0x38 or 56 in decimal.

Finally, obtain the first input character by reversing the “XOR” operation output stored inside “xor_result.” Convert “xor_result”
and “encrypted_key[0]” decimal numbers to their binary numbers, then compare which bits of “encrypted_key[0]” differ from
“input_chars[0]” bits. Every “0” in “xor_result” means the bit is identical, and every “1” means the bit is different.

For example, “xor_result” is “56” (0011 1000) and “encryption_key[0]” is “97” (0110 0001). The first digit of “xor_result” is “0,”
then the first digit of “encryption_key[0],” which is “0,” will stay “0.” The second digit of “xor_result” is “0,” and for
“encryption_key[0]” is “1.” Because “xor_result” has “0,” then the bit “1” of “encryption_key[0]” stays. Because “1” in the third
digit of “xor_result” indicates that the original parameter bit was different from “encryption_key[0],” the “encryption_key[0]” third
binary number flips to “0.” By continuing to reverse the “XOR” operation, you reveal the final decimal value of the first character
to be “89” (0101 1001). According to the ASCII table, the decimal number “89” is “Y.”

From the second digits’ pair until the last pair, the flow changes a bit since “Index_Value” is not equal to “0” anymore. The decimal
“62” (00111110) turns to “31” (0001 1111) upon right rotation on line 32 by reversing the “rotateLeft” function. Next, on line 31,
reverse the “XOR” operation of the previous decimal value “112” (0111 0000) and the current iteration decimal char while
considering that “xor_result” is decimal “31” (0001 1111). Calculating the binary differences again yields that the second “char”
decimal equals “111” (0110 1111), which is “o” according to the ASCII table. Proceed to the next digits pair until full message
decryption. The final decrypted message is “You broke the blocks.”

4. Submitting the flag (or the hash of decrypted message)

To capture the flag (or the hash of the decrypted message) & complete the challenge, you need to hash the decrypted message using
MD5 via an online MD5 hashing site, or by running the following command in a Linux machine:

The final flag is:

https://doi.org/10.62273/STWE8998

Journal of Information Systems Education, 36(2), 111-129, Spring 2025
https://doi.org/10.62273/STWE8998

129

Appendix B. Survey Questions

1. What is your major?

a) Accounting
b) Economics
c) Entrepreneurship
d) Finance
e) Hospitality Management
f) Information Security & Assurance
g) Information Systems
h) Management
i) Marketing
j) Professional Sales

2. The exercise was reasonable and useful.
a) Strongly disagree
b) Somewhat disagree
c) Neither agree nor disagree
d) Somewhat agree
e) Strongly agree

3. The teaching method through tutorial supported my learning process.
a) Strongly disagree
b) Somewhat disagree
c) Neither agree nor disagree
d) Somewhat agree
e) Strongly agree

4. Would you like to learn more about the applications of programming in cybersecurity after learning this tutorial?
a) Strongly disagree
b) Somewhat disagree
c) Neither agree nor disagree
d) Somewhat agree
e) Strongly agree

5. What do you like about this tutorial?

6. What do you dislike about this tutorial?

https://doi.org/10.62273/STWE8998

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2025 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital or
hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required
to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to the Editor-
in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2025 36(2) 111-129 First Page
	c-2409099TT Final-TCS-LAM-XPZ.pdf
	JISE 2025 36(2) Copyright ISSN

