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ABSTRACT 
 

Data Structures and Algorithms (DS) is a basic computer science course that is a prerequisite for taking advanced information 
systems (IS) curriculum courses. The course aims to teach students how to analyze a problem, design a solution, and implement it 
using pseudocode to construct knowledge and develop the necessary skills for algorithmic problem solving and abstract thinking. 
While the literature acknowledges the difficulty of this course, few references were found that examine the process students undergo 
while solving DS algorithmic problems. The study’s objective is to explore and describe IS students’ problem-solving processes 
and challenges requiring a high level of abstract thinking in a “black box” approach. During the study, 13 students were observed 
while solving a complex problem, using “think aloud” (TA) techniques. Each observation was recorded, transcribed, and iteratively 
analyzed using principles of provisional coding in qualitative data analysis. The findings suggest that the quality and correctness 
of the solutions depend on three main factors: abstract thinking, flexibility applied during the solution process, and an absence of 
misconceptions related to concepts and the basic understanding of the problem. The students’ levels of abstract thinking also 
influenced the quality of visualization used while trying to solve the problem. This study’s findings may raise the awareness of DS 
course designers and instructors regarding the importance of the role of abstract thinking, possible misconceptions, and strategies 
used in problem solving as factors influencing students’ ability to solve complex problems. 
 
Keywords: Data structures course, Problem-solving process, Complex algorithmic problems, Abstract thinking, Qualitative study 
 
 

1. INTRODUCTION 
 

The “Data Structures and Algorithms” (DS) course consists of 
two main aspects: data structures and algorithms. Wang (2012) 
defines the two aspects as complementary and inseparable for 
the design of such a program, where “data structure” refers to 
the problem of information presentation, and “algorithm” refers 
to the problem of information processing. 

The Overview Report of Computing Curricula (Leidig & 
Salmela, 2020) identifies the DS course as a required course in 
the information systems (IS) discipline, with emphasis on 
finding solutions to programming problems, developing proof-
of-concept programs, and determining whether faster solutions 
are feasible. The knowledge and skills this course offers to 
students are often a prerequisite for taking advanced courses in 
the IS curriculum (Databases, Data Retrieval, etc.) and may be 
very useful to graduates in their career development (Kramer, 
2007; Nazir et al., 2019; Wall & Knapp, 2014). 

Problem solving is generally regarded as one of the most 
important cognitive activities in everyday and professional 
contexts. Most people are required to solve problems and are 
rewarded for it (Jonassen, 2000). The term itself has been 
extensively discussed during the second half of the 20th century 
in general terms (e.g., Newell& Simon, 1972), mainly within 

the field of mathematics (e.g., Pólya, 1945; Schoenfeld, 1992), 
and later applied to the field of algorithmic problems in 
computer science. For example, the later work of Çakıroğlu and 
Mumcu (2020) examined problem-solving steps in block-based 
programming environments. 

In computer science problem solving, abstraction has been 
recognized as a fundamental and essential principle (Haberman, 
2004). According to Aharoni (2000b), during the DS course, 
students are exposed to different levels of abstract thinking. The 
abstract nature of the concepts taught in this course can often 
be difficult for students in general to grasp (Odisho et al., 2016), 
and for IS students in particular (Wall & Knapp, 2014). Several 
studies identified the reasons for these difficulties as (1) low 
motivation of students, especially for those who do not perceive 
computational skills as being important (Meisalo et al., 1997; 
Wang, 2012); (2) weak programming skills, which hinders the 
implementation of the possible solution (Wang, 2012); and (3) 
perceived difficulty of the course topics, which prevents 
students from dealing with the tasks (Wall & Knapp, 2014). 

Recognizing DS as a difficult field to teach and learn, DS 
instructors have proposed various methods and techniques to 
help students and teachers deal with different aspects of this 
unit (e.g., Biernat, 1993; Hakulinen, 2011; Odisho et al, 2016; 
Wang, 2012).  
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To that end, the literature refers to the challenges of 
problem solving and abstract thinking from different points of 
view, such as students’ solution evaluation (Ginat & Blau, 
2017), prediction of abstract thinking level (Perrenet, 2010), 
and the development of teaching methods (Ginat & Blau, 2017). 
An early study investigated the thinking process of students 
when dealing with simple data structures (Aharoni, 2000b) and 
defined different abstraction levels.  

In the current study, we focus on the students’ problem-
solving processes and challenges requiring a high level of 
abstract thinking in a “black box” approach, an approach in 
which the internal workings and implementations of a system 
are ignored, to simplify the problem and make the system’s 
general behavior easier to understand. The results of this study 
may shed light on the problem-solving processes that students 
experience and reveal possible deficiencies in their knowledge 
or the orientation of their abstract thinking levels, which are 
needed for successfully dealing with complex algorithmic 
tasks. In addition, these results may serve as a basis for 
developing teaching methodologies to scaffold students’ 
problem-solving processes and develop problem-solving skills. 
 

2. LITERATURE REVIEW 
 

2.1 Problem Solving 
Problem solving can be regarded as any goal-directed sequence 
of cognitive operations (Anderson, 1980) and occurs in a 
situation where an individual responds to a problem that they 
do not know how to solve with routine or familiar procedures. 
Problem solving can be described as composed of three 
dimensions: the problem, the process, and the outcome (Leiba, 
2010). Pólya’s (1945) seminal work suggested that solving a 
problem involves four phases (or episodes): understanding the 
problem, developing a plan, carrying out the plan, and looking 
back.  

Çakıroğlu and Mumcu (2020) compared problem-solving 
processes in programming environments to the framework 
proposed by Pólya (1945). The research concluded that various 
studies in computer science and mathematics addressed similar 
problem-solving steps. Çakıroğlu and Mumcu (2020) identified 
three steps performed during problem solving in block-based 
programming environments: the “focus step,” containing the 
reviewing, understanding, and thinking activities; the “fight 
step,” containing the implementation activity; and the “finalize 
step,” containing awareness regarding the solution. Focus, 
fight, and finalize steps can occur in a sequential manner or, in 
some cases, in a cyclic transition between these steps. When 
students turn back from the fight to the focus step, their main 
purpose is rethinking. When they turn back from the finalize to 
the fight step, they mostly notice the mistakes. 

Chinn et al. (2007) characterized the students’ problem-
solving process in DS by five stages: understanding the 
problem, developing a possible solution, looking back, 
students’ meta-comments, and interviewer intervention. The 
first three stages mirror Pólya’s (1945) problem-solving 
framework, which views the process as a progression, much 
like the waterfall model of software development, whereas the 
fourth and the fifth stages do not neatly fit into that progression. 
They found that time spent, stage and step transition rates, and 
whether the student solved the problem were not able to predict 
performance in the course. 

Parham et al. (2009) used Bloom’s taxonomy for cognitive 
process types (understand, apply, analyze, evaluate, create) to 
describe the thinking processes of computer science students 
when solving a complex algorithmic problem. Their study 
results showed that the successful problem solver seems to 
move from one type of cognitive process to another more 
frequently than the unsuccessful problem solver. In further 
research, Parham et al. (2010) provided more detailed insights 
regarding the types of metacognitive processes that occurred 
while solving complex data structure problems. 

 
2.2 Abstract Thinking 
Thinking like a computer scientist means more than being able 
to program a computer. It requires thinking at multiple levels of 
abstraction (Wing, 2006). Abstraction can be defined as an 
activity of reorganizing familiar structures used to solve known 
problems into new structures and relations adapted for the 
solution of a new problem (Armoni et al., 2006). The structures 
can be treated using a black box approach, where a black box is 
a system with a particular behavior and an unknown internal 
structure. The user can impact the whole system via the black 
box inputs and observe its reactions via its outputs (Cápay, 
2014). 

Recognizing familiar structures and patterns is called a 
reduction strategy. It offers the thinker a more global view of a 
problem by ignoring the details and enhances the possibility of 
strategic planning and an intuitive feel for the problem (Armoni 
et al., 2006). Hazzan (2002) showed a tendency to reduce a 
problem by adhering to familiar mathematical concepts from 
previous learning when solving problems in computability 
theory. The tendency to use reduction is influenced by the topic 
with which the problem deals, the way solvers conceive the 
legitimacy of reduction as a problem-solving heuristic, and the 
extent to which they consider that abstraction contributes to 
their problem solving. In addition, reduction seems illegitimate, 
like cheating, when using black boxes without knowing the 
implementation details (Armoni et al., 2006). Obstacles 
encountered during the transfer of prior knowledge to a new 
problem were related to “blurred” and vague pictures that 
solvers had about relevant data in the tasks to be solved, about 
proper utilization of basic algorithmic patterns, and about 
interconnections between these patterns. This may explain why 
less than 30% of a senior students’ class used higher abstraction 
level solutions characterized by treating the problem as an 
object with properties (Ginat & Blau, 2017).  

In the course described in this paper, we used a black box 
approach to teach students new simple or complex data 
structures. Each data structure was presented twice: first, as a 
black box with its defined operations – an abstract data type 
(ADT); and second, as its implementation. A more detailed 
description of this approach within the course may be found in 
the next section. 

Some studies exist where the majority of the discussion 
revolves around abstract thinking and problem-solving aspects 
of computer science. For example, Haberman (2004) studied 
abstract thinking and concentrated on understanding the 
concepts of an algorithm. Perrenet (2010) proposed an 
instrument for the measurement of students’ abstract thinking 
levels for the concept of an algorithm. Ginat and Blau (2017) 
used algorithm riddles having several solutions differing in 
their levels of abstraction to analyze computer science (CS) 
students’ thinking abstraction levels.  
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Aharoni (2000a) investigated the thinking process 
experienced by CS students when solving data structure 
problems in a DS course. He presented three different levels of 
abstract thinking observed among students explaining different 
data structures: programming-language-oriented thinking, 
programming-oriented thinking, and programming-free 
thinking.  

Programming-language-oriented thinking is a low level of 
abstract thinking, where the student uses programming 
language implementations to describe data structures. In other 
words, students who solved the problems at this level ignored 
the given structure and instead opted to create new ones while 
dealing with the implementation details by using a specific 
programming language.  

Programming-oriented thinking is a middle level of abstract 
thinking, where the student thinks of new data structures in 
terms of their implementation by some program, without 
referring to a specific programming language.  

Programming-free thinking is a high level of abstract 
thinking, where the solution is not related to the implementation 
of a data structure but to its concept as an object. In other words, 
students who solved the problems at this level used black box 
techniques, using familiar or given structures to create new ones 
without implementing the former.  

Programming-free thinking may be invoked only if the 
concept of the data structure at hand has already been developed 
to its object stage, the only stage that enables thinking about 
abstract data structures. If the concept is still in its process stage, 
we are witnessing programming-language-oriented thinking 
and programming-oriented thinking, where the learner must 
still think about the data structure as being implemented within 
some program (specific or not). Aharoni (2000a) also proposed 
that there are two abstract thinking levels: the high abstract 
thinking level, as described in programming-free thinking, and 
the low abstract thinking level, which can be further subdivided 
into programming-language-oriented thinking and 
programming-oriented thinking.  

There are several empirical studies that research 
undergraduate students’ processes of solving complex data 
structure problems, as discussed above. We found no empirical 
studies that examine the problem-solving processes of IS 
students in the field of data structures. IS students differ from 
CS students in the basic mathematical courses they are given as 
part of their curricula. IS students are less exposed to higher-
level mathematical courses and thus are less likely to encounter 
and practice abstract thinking. This study focuses on IS 
students’ problem-solving processes and challenges requiring a 
high level of abstract thinking and the use of a “black box” 
approach. 

 
3. METHODOLOGY AND CONTEXT  

 
The Data Structures (DS) course is a first year, basic, 
mandatory course for IS students studying for the s’bachelor  
degree (BSc.) in the Information Systems school. This course is 
designed to demonstrate and study various data structures and 
how they are used to effectively solve computational problems. 
The curriculum of IS students involves fewer mathematical 
courses than that of CS students. As a result, they have less 
experience in solving complex tasks that require advanced 
algorithmic and abstract thinking. 

To achieve the study’s goal, students were given a task that 
consolidated the “black box” thinking approach. As they solved 
it, their problem-solving and thought processes were 
documented and later analyzed to capture the different 
cognitive aspects and challenges they had.  
 
3.1 The Context (Course) 
The study was conducted during a DS course. Students taking 
this course learn complex data structures, such as stack, queue, 
and tree, as well as how to calculate and compare different 
algorithms in terms of their time and space complexities. The 
course is based on the Cormen et al. (2022) textbook. During 
the course, the following teaching techniques were used: a 
black box approach to develop abstract thinking skills, 
visualization techniques to support the black box concepts, and 
algorithm development and execution. All techniques were 
practiced in lectures, tutorials, and home assignments.  

To help students develop abstract thinking skills, each data 
structure (starting from simple ones and progressing to intricate 
ones) was presented by using the black box approach. Figure 1 
presents the three concepts used to present the black box 
approach. Each black box was presented twice: first by its 
capabilities (see (a)) and then by its internal structure 
(implementation) (see (b)). Each new black box presented in 
class was constructed from previously learned black boxes (see 
(c)). 

 

 
Figure 1. Different Modes Used to Present the Black 

Box Approach  

 
The use of visualization and simulation was presented and 

demonstrated in class as a strategy for understanding the 
problems, testing ideas for algorithms, and verifying those ideas 
(Aharoni, 2000b). We used visualization techniques such as 
drawing the structures on the board and referring to them as 
objects, and simulation tools (automatic and manual) to run 
examples and mimic the black box capabilities.  

Due to the COVID-19 pandemic, the course was conducted 
remotely, using Zoom video conferencing software. During 
these weeks, students continuously practiced abstract data 
structures using the black box approach in tutorials and home 
assignments. Each student attended classes remotely, which 
contributed to a suitable environment for independent work on 
the assignments. Questions were sent to the lecturer via a 
private chat.  

 
3.2 Research Methods 
To examine the processes students experienced while solving 
problems that require a high level of abstract thinking, and to 
gain a better understanding of their thinking characteristics, we 
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employed a qualitative case study methodology. The 
methodology, according to Stake (1995), is a “study of the 
particularity and complexity of a single case, coming to 
understand its activity within important circumstances” (p. xi). 
The characteristics of a case study are holistic (considering the 
interrelationship between the phenomenon and its contexts), 
empirical (basing the study on their observations in the field), 
interpretive (resting upon their intuition and seeing research 
basically as a researcher–subject interaction), and emphatic 
(reflecting the vicarious experiences of the subjects in an emic 
perspective) (Yazan, 2015). Yin (2014) offers a more detailed 
and technical definition of a case study as an empirical inquiry 
that investigates a contemporary phenomenon within its real-
life context, especially when the boundaries between 
phenomenon and context are not evident. For this exploratory 
study, we conducted a singular case study using TA protocol 
analysis.  

TA protocol analysis (Ericsson & Simon, 1980; 1993) 
requires participants to actively engage in the process of 
verbalizing their experiences, thoughts, actions, and feelings 
while interacting with a task. TA investigation seeks to place 
the participant in their most natural state of design thinking 
during the protocol sessions (van Someren et al., 1994). In 
addition, the TA method requires participants to use their own 
language and to approach the assigned task as they would 
naturally solve it. According to Ericsson and Simon (1984), 
there are traditionally two basic types of TA methods: the 
concurrent TA (CTA) method, in which participants “think 
aloud” at the same time as they are carrying out the 
experimental tasks; and the retrospective TA (RTA) method, in 
which participants verbalize their thoughts after they have 
completed the experimental tasks. TA has three distinct levels 
of verbalization (Ericsson & Simon, 1980; 1993), with each 
being representative of the amount of cognitive processing 
required. Level one verbalization requires vocalization of task-
relevant thoughts only. Level two verbalization requires 
participants to recode visual stimuli not regularly verbalized 
prior to providing verbalization on the task. Verbalizations 
should reflect stimuli affecting the focus of the participant 
through the task; for example, a participant might provide 
vocalization of stimuli within a task, including sight, sound, and 
smell. Eccles (2012) indicated that level one and level two 
verbalizations are the result of conscious thought processing in 
the short-term memory (STM) during the execution of a task, 
providing concurrent verbalization during or immediately after 
a task has been completed. Verbalizations occur most often in 
environments where participants are provided with undirected 
prompts to think aloud naturally during the execution of a task 
(Ericsson & Simon, 1980). Lastly, level three verbalization 
requires participants to provide explanations, justification, and 
reasoning for cognitive thoughts throughout the task. TA 
enables us to profile students based on their actual behavior as 
observed during the sessions. In this study, we performed a 
CTA with level one and level two verbalizations. While solving 
the problem, during the TA process, the students raised several 
ideas. The researcher did not intervene in this process but only 
observed it. 

All TA sessions were recorded, transcribed, and analyzed. 
The quotes in this study are translations of the original TA 
protocols and are as close as possible to the original expressions 
and idioms. To secure anonymity and confidentiality, we 
anonymized our respondents using a code number.  

3.3 Case Description and Data Collection 
The DS course is thirteen (13) weeks long, and the research task 
was administered during the 9th week of the course. The 
research task (as described in Section 3.3.1) is built upon three 
prior assignments that were administered throughout the course 
(Table 1) and serve as its baseline. 
 

Week Activity Details 
Week 
6  

Assignment 
1 

The queue and stack structures 
were practiced using the black 
box model. Students were asked 
to implement a queue using two 
stacks. Afterward, the solution 
was presented and discussed by 
the tutors. The solution was 
demonstrated using a 
visualization of the data structure, 
and then through pseudocode. 

Week 
7  

Assignment 
2 

The queue and stack structures 
were practiced using the black 
box approach. Students were 
asked to implement a stack using 
two queues. Afterward, the 
solution was presented and 
discussed by the tutors. The 
solution was demonstrated using 
a visualization of the data 
structure, and then through 
pseudocode. 

Week 
8 

Assignment 
3 (starter 
assignment) 

This assignment’s purpose was to 
prepare the students for the 
research assignment. Students 
were asked to solve it 
independently during the lecture 
class. Afterward, the solution was 
presented and discussed by the 
tutors. One of the main goals of 
this assignment was to present 
and familiarize the students with 
the new data structures. 

Table 1. Preparation for the Study as Part of the 
Course Schedule 

 
3.3.1 The Research Task. The principle that guided us 
throughout the task’s construction was to create a compound 
yet complex data structure that embodies the “black box” 
approach’s characteristics – an object assembled from other 
“black box” objects. This approach enables the students to 
propose and devise new structures with minimal regard to their 
particular implementation details. However, only high levels of 
abstract thinking will allow students to achieve the required 
solution. 

For that purpose, we constructed unfamiliar compound data 
structures (double-ended queue and central queue, described in 
Appendix A) and asked the students to create a central queue 
using two double-ended queues. Since the purpose was to learn 
about abstract thinking levels rather than test students’ ability 
to grasp a new data structure, in Assignment 3 (starter 
assignment), students were asked to solve the same assignment 
without the space and time complexity requirements. This made 
it possible for us to investigate the students’ abstraction 
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thinking levels, as they were using familiar compound data 
structures. The research task is described in Appendices B and 
C. Table 2 describes the main features of the research task. 

 
Description Solution Principles Abstract 

Thinking 
Construction 

Construct a 
central queue, 
(required, 
compound, 
familiar data 
structure) using 
two double-
ended queues 
(required, 
compound, 
familiar data 
structure). 
Required time 
complexity – 
O(1). 

At any given 
moment the data is 
divided between 
two given data 
structures. No data 
transference is 
needed here except 
for a single item 
transference to 
balance the data 
between two given 
data structures. 
This allowed the 
extraction and 
insertion of data in 
the required 
complexity. 

The purpose of 
this assignment 
was to test the 
students’ ability 
to use high levels 
of abstraction 
when developing 
a new algorithm, 
using familiar 
data structures 
learned in 
Assignment 3. 
 

Table 2. Main Features of the Research Task 

 
3.3.2 Participants and Data Collection. This study focuses on 
an algorithmic problem given to students in a DS course taught 
at the School of Information Systems, in a higher education 
institution during the 2020–2021 academic year.  

The course participants were 136 undergraduate students 
studying in their first year toward a BSc. in IS. Thirteen students 
studying this course, aged 22 to 27, 6 males and 7 females, 
volunteered to participate in this study. Each student was 
assigned the abbreviation ST (student), which was 
accompanied by a unique number for the purpose of 
identification (ST01 to ST13). The size of this study population 
corresponds with the other studies in this field. For example, 
Aharoni (2000a) studied students’ thinking processes while 
dealing with simple data structures. In this qualitative research, 
nine students studying a CS course were interviewed, using 
semi-structured observational interviews. Aharoni (2000a) and 
Çakiroğlu and Mumcu (2020) explored problem-solving steps 
using qualitative method tools on 15 students studying an IT 
course.  

All participants had the following prerequisites: a 
programming introduction course (course taught in the C++ 
language), and mathematical introduction courses (including 
proofs using induction). In parallel to this course, the students 
participated in a Python programming language course. All the 
students participated in lectures and tutorials and submitted 
homework assignments.  

This study is based on the TA protocols of students’ 
solutions to the algorithmic problem given. The quotes in this 
study are translations of the original TA protocols. We 
remained as close as possible to the original expressions and 
idioms. To secure anonymity and confidentiality, we 
anonymized our respondents with code numbers. 
 

3.4 Data Analysis 
Our data analysis was based on principles of provisional coding 
(Miles et al., 2014), according to which: “Prior theorizing and 
empirical research are, of course, important inputs. It helps to 
lay out your own orienting frame and then map onto it the 
variables and relationships from the literature available, to see 
where the overlaps, contradictions, qualifications, and 
refinements are” (p. 41). Each step of the coding method was 
first performed by each of the authors of the paper separately 
and then discussed in a joint coding session. This resulted in the 
construction of categories and, ultimately, a conceptual 
framework. In this analysis approach, categories emerge from 
the data and are then validated and refined throughout the 
analysis process. Unanimous agreement on the emergent 
categories was achieved by all authors in this joint coding 
session. This was done to maintain a continuous dialogue 
between researchers and consistency of the coding (Walther et 
al., 2013) and to establish reliability to ensure the 
trustworthiness of the study (Miles et al., 2014). 

Our aim was to identify problem-solving processes and 
their characteristics while solving complex data structure 
problems. Thus, the categories materializing from the analysis 
referred to process-related phenomena. These categories are 
presented in the results section. We utilized Aharoni’s (2000a) 
framework as a base for the conceptual framework, which 
consists of two levels of abstraction. 

 
4. FINDINGS 

 
The findings of this study point to three cognitive components 
that affect the quality and correctness of the problem’s 
solutions: abstract thinking, knowledge toolbox, and solution 
approach. In Section 4.1 these cognitive components will be 
detailed, and Section 4.2 will focus on the students’ problem-
solving processes. 
 
4.1 Cognitive Components 
 
4.1.1 Abstract Thinking. The abstract thinking ability affected 
the problem-solving process. Students demonstrated different 
levels of abstract thinking, which we grouped into two 
categories: programming-free thinking and program-context 
thinking.  
 
4.1.1.1 Programming-Free Thinking. Programming-free 
thinking is a high level of abstract thinking where the solution 
is unrelated to the implementation of a data structure but 
regards each component as a black box. In this study, six 
students were observed acting at a high level of abstract 
thinking while solving the given problem. They used a double-
ended queue ADT, without referring to its implementation or 
other programming-oriented details. For example, ST08 said: 
“I understood that a central queue is based on two double-
ended queue structures, and therefore there is no need to use 
other structures such as a linked list.” Although all six students 
presented a programming-free thinking level, only three of 
them successfully solved the given problem.  
 
4.1.1.2 Programming-Context Thinking. The programming-
context thinking level combines low and middle levels of 
abstract thinking (Aharoni, 2000b). We decided not to 
differentiate between these two abstraction levels since we did 
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not find evidence of a specific language being used while 
solving the problem. Although the students had successfully 
completed the CS1 course, taught in the C++ language, and had 
studied the Python language in a parallel course, we decided to 
use pseudocode when describing the data structures, without 
any reference to a specific language.  

Five students presented programming-context thinking. For 
example, ST03 conceptualized the central queue as an array: “I 
can describe the central queue as an array where the first index 
is the head, and the last index is the tail.” ST13 internalized the 
central queue as a linked list receiving its input from the double-
ended queues: “I am thinking of how to connect the two double-
ended queues to a linked list which is a central queue.” ST04 
was not sure how to address the functions of the double-ended 
queues: “I am not sure whether to implement the double-ended 
queue functions or just use them.” 

Two other students shifted between the programming-
context thinking level and the programming-free thinking level 
during the problem-solving process. The first student, ST06, 
presented the programming-free thinking level during the 
problem-understanding phase: “The two double-ended queues 
behave like a central queue.” However, at the solution phase, 
ST06 suddenly started to use programming-context thinking: 
“In order to count the number of items in the double-ended 
queue I should subtract the head from the tail.” (the terms head 
and tail referred to the indices). The second student, ST09, 
presented the opposite behavior, starting from the 
programming-context thinking level during the problem 
comprehension phase, using the concepts of arrays and indices: 
“In order to insert an item into the central queue tail, I should 
define some pointer to the end. I should define it as an array, 
this double-ended queue.” Later, when ST09 was asked to write 
pseudocode, she re-read the problem description and started to 
show the programming-free thinking level: “I should use the 
following double-ended queue functions: extraction from tail 
and insertion to head.” This phenomenon may happen when the 
formation of the data structure type has started but is still a weak 
mental structure that does not take control unless there is no 
other option (Aharoni, 2000b). 

 
4.1.2 Knowledge Toolbox. The students’ control of the 
knowledge toolbox affected the problem-solving process. 
Students are expected to use previous knowledge and 
experience they had acquired and accumulated, which we refer 
to as the knowledge toolbox. This toolbox is built from layers 
of knowledge, including programming concepts and languages 
acquired in CS courses, ADTs acquired in this course, 
knowledge of compound data structures acquired in the solution 
of preliminary assignments 1 to 3 (see Table 1), and the 
internalization of the “black box” approach. 

A lack of knowledge fostered misconceptions, which 
ultimately affected the solution to the task. For example, ST01 
said: “We will move to another structure which is an array, 
which is a stack.” The student confused a data structure, 
“stack,” with its implementation, “array.” Another example was 
ST05, who said: “I should insert items to both sides of a new 
stack […] Items should be inserted into a new array or queue.” 
In this case, we can see the former misconception along with a 
misconception regarding the “stack” data structure’s 
capabilities. Some students mixed basic data structures with the 
complex data structures described in the given assignment. An 
example is ST03, who said: “The central queue is a data 

structure of a queue, which is similar to a stack or an array.” 
In addition, this student said: “What I can think of is a linked 
list. This is what we learned in a CS course. I programmed a 
linked list in this course.” We can learn from this statement that 
this student chose to rely on his most “accessible” knowledge, 
although it contradicted the black box approach. 

 
4.1.3 The Approach to Solution. The manner in which 
students approached the task and its solution affected their 
problem-solving process. The research task (see Table 2) 
included a list of operations that had to be implemented. 
However, the order in which they were presented is not 
necessarily the optimal order in which they should be 
implemented (see Appendix A). Although the first operation 
has a simple solution per se, in combination with the two 
subsequent operations, its solution needs to be reconstructed 
and refined. In this regard, we observed two solution processes: 
the linear process – where students solved the problem based 
on the presentation order of the assignment operations – and the 
flexible process – where students demonstrated flexibility in 
changing earlier proposed algorithms or changing the order of 
the operation’s execution based on an overview of the entire 
assignment.  

Six students followed the linear process approach. We 
found that none of them were successful in solving the given 
problem. In this category, we identified students from both 
abstraction levels (programming-free thinking level and 
programming-context thinking level). Consequently, we may 
conclude that the linear approach hinders the ability to conceive 
and promote successful problem-solving algorithms that 
involve data structures. Students who used this approach 
reported that they felt stuck and did not know how to proceed. 
For example, ST12 said: “From what I understand, to insert 
and extract an item (referring to the edges) is not a problem. 
The only issue is what to do with the middle. I should do 
something different with it. I feel stuck.” 

Seven students demonstrated the flexible process approach. 
A single student (ST11), who exhibited the programming-
context thinking level, solved the assignment’s operations in the 
order of their occurrence and then retraced back to adjust the 
algorithms of the previous operations. During the solution-
planning step, when he recognized that the algorithm he had 
initially proposed failed, he returned to his prior steps in order 
to review their solutions: “The length of the central queue is the 
sum of the double-ended queue lengths. This requires me to 
change the insertion [meaning the insertion to the tail].” He 
successfully solved the problem. The other six students began 
by overviewing the operations in an attempt to identify the main 
requirement of the assignment, and they then used this as the 
starting point for the development of an algorithm. Three of the 
students (ST02, ST07, ST08) had a programming-free thinking 
level. Of these, ST08 and ST02 successfully solved the given 
problem. The other three students (ST03, ST05, ST13), who 
were at the programming-context thinking level, failed to solve 
the given problem.  

 
4.2 Problem-Solving Process 
We identified three main steps of problem solving, which are 
aligned with the problem-solving steps defined in the literature 
by Pólya (1945) in the field of mathematics and adjusted by 
Çakiroğlu and Mamcu (2020) for CS. The steps we identified 
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in the current study are: (1) understanding the problem, (2) 
planning the solution, and (3) implementation.  
 
4.2.1 Step 1 – Understanding the Problem. In the TA 
sessions, all (13) students demonstrated an attempt to 
understand the given problem. Following the research task 
description in Table 2, at this stage, the students had already 
solved Assignment 3 (which was identical to the research task 
except for the required complexity). All aspects of Assignment 
3 were explained in class, including the given abstract data 
structures, the required complexity, and the solution. It was 
expected that after all these explanations, students would 
adequately understand the task’s data structures and 
requirements.  

Misconceptions were observed regarding the research task 
requirements. Students were expected to refer to the central 
queue as two double-ended queues that act together as a central 
queue. Instead, some of them perceived the central queue and 
the two double-ended queues as entirely separate structures. 
Students with the programming-context thinking level did not 
understand the ADTs defined in the assignment with their 
operations and relationships, in addition to their black box 
approach misconceptions. These students applied the same 
solution given to Assignment 3 to the research task, ignoring 
the required O(1) complexity. For example, ST13 said: “I need 
to extract items from the double-ended queues and merge them 
to a linked list … I am thinking how to connect H and T [the 
double-ended queues] to a linked list, a structure called the 
central queue.” Another example is ST01: “I am using an array 
which is a queue, which is a double-ended queue. I will move 
the data to another structure which is an array which is a 
stack.”  

Students exhibiting the programming-free thinking level 
showed misconceptions related to the research task as well yet 
showed no black-box approach misconceptions. It appears 
these students did not fully internalize the knowledge related to 
the assignment’s data structures, acquired in Assignment 3. 

For example, ST07 said: “I am not sure whether to insert 
items to H and T [the double-ended queues] separately or 
whether I should refer to them together as a central queue.” 
One of the students, ST11, managed to reach a solution once he 
overcame this misconception and identified that the central 
queue is constructed from two double-ended queues: “If the 
central queue is composed of two double-ended queues, I can 
say that the central queue is expressed by both of them. I can 
insert an item at the head of one of them and say that I inserted 
the item in the middle. The length of the central queue is the 
length of both double-ended queues.”  

 
4.2.2 Step 2 – Planning the Solution. To understand the 
problem and devise a solution, students were aided by various 
utility tools: 
 
4.2.2.1 Visualization – A tool that helps lower the abstraction 
level. Throughout the Data Structures course discussed in this 
paper, visualization was constantly used to describe new 
material and to solve problems. Visualizations were used for 
both illustrations of the data structures and for simulating 
algorithms. 

Twelve (12) students visualized data structures in the first 
two steps of problem solving (understanding the given problem 
and planning the solution). Only one student, ST03, did not 

draw any structure while planning his solution. Table 4 shows 
the first use of a visualization in the process of solving the 
assignment per student, divided between the two abstract 
thinking levels observed. 

 
Programming-Free Thinking Programming-Context 

Thinking 
Step 
1 

Step 
2 

Step 1: 
Another 
attempt 

Step 
1 

Step 
2 

Step 1: 
Another 
attempt 

ST12 
ST10 
ST07 

ST08 
ST02 

ST11  ST09 
ST04 
ST05 
ST06 
ST01 

ST13 

Table 3. Students Mapped by Abstraction Level and 
Problem-Solving Steps Related to the First Use of 

Visualization 

 
Half of the students located at the programming-free 

thinking level (ST07, ST10, and ST12) began using 
visualization during the “understanding the given problem” 
step (step 1). They drew data structures while reading the 
assignment. Later, they were aided by these visualizations 
while designing algorithms for the solution. Two more students, 
ST02 and ST08, began using visualizations only after reading 
the entire assignment, during the solution-planning step (step 
2), as they claimed they already understood the given data 
structures from solving Assignment 3. A single student, ST11, 
after several attempts to plan an algorithm that would solve the 
assignment without using any form of visualization, returned to 
re-reading the exercise and only thereafter started to draw data 
structures. Students from this group drew central queues and 
double-ended queues in an abstract manner without adding 
specific details. For example, ST11, when starting to draw, said: 
“I am drawing a queue that looks like an array. I am not writing 
indices because it is not an array.”  

None of the students with a programming-context thinking 
level used visualization tools during step 1 (understanding the 
given problem). After a while, most of them began sketching 
during the solution-planning phase, and one of them, ST13, did 
so after returning for further reading in an attempt to understand 
the problem. As mentioned before, all of them failed to solve 
the given problem. 

Students from the abovementioned group drew visual 
representations with implementation details, which led to some 
misconceptions. For example, ST05, when starting to draw, 
said: “I will draw again and see in the new array how I should 
do it”; ST06 said: “I will try to draw. I have two arrays. I should 
find the middle. I am wondering whether the head or the tail 
marks some sort of an index?” 

 
4.2.2.2 Pseudocode – A tool that can be used to understand a 
problem and for considering algorithms. Using pseudocode to 
formulate a solution corresponds to a level of abstraction that is 
neither too low (it is not a programming language) nor too high 
(a verbal description). Pseudocode can thus play an important 
intermediate role in the decomposition of a problem (Copus & 
Copus, 2018). We observed the use of pseudocode as a 
solution-planning tool in four students, ST11, ST09, ST08, and 
ST04. For example, ST11 (programming-free thinking): “I am  
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writing pseudocode in order to make it clear.” Another example 
is ST09, who acted at the programming-context level, and the 
use of pseudocode made her contemplate the way she 
understood the problem: “I am not sure whether I can use the 
function (the double-ended queue’s function) or if I should  
implement it.” 
 
4.2.2.3 The Quality of Algorithm Ideas. In general, when 
solving programming assignments, an algorithm is first 
planned, and then it is implemented in a computer program 
environment. In data structure assignments, the culmination of 
the solution occurs before the implementation phase. The 
student must develop several propositions for algorithms that 
aim to solve the problem at hand and test them using visual 
simulations. For these reasons, the phases of planning and 
execution that take place while solving data structure exercises 
occur intermittently and are mixed with one another. Each 
student considered several algorithms, from which, during the 
analysis stage, they selected the highest quality algorithm. By 
highest quality algorithm, we refer to the algorithm that is 
closest to the solution. The following list includes five 
algorithm categories, scaled from 1 to 5, where 1 represents the 
highest quality algorithm.  

1. Divide the items between the double-ended queues 
during insertion while re-balancing the double-ended 
queues. This is the correct solution (selected by three 
students). 

2. Divide the items between double-ended queues during 
insertion without re-balancing (selected by three 
students). 

3. Moving items to another structure, to support operations 
performed at the center of the queue. This algorithm is 
a repetition of the starter assignment solution (selected 
by three students). 

4. Finding the item in the middle by using array indices 
(selected by three students). 

5. No solution. One student was not able to provide an 
algorithm for a solution. 

 
Table 4 summarizes the distribution of the students in 

accordance with the above scale, vs. the previously described 
cognitive attributes of the problem solver, detailed in Section 
4.1. Six students who acquired the programming-free thinking 
level suggested high-quality algorithms (categories 1 and 2 
from the above scale). Of the three students who successfully 

solved the problem (proposed the algorithm from category 1), 
all displayed programming-free thinking, did not exhibit any 
misconceptions, and solved the problem using the flexible 
process approach. The other three students who displayed 
programming-free thinking but exhibited misconceptions or 
solved the problem in a linear approach came up with the 
second-best solution. Misconceptions were apparent in all the 
students who displayed a programming-context thinking level. 
These students offered low-quality algorithms (categories 3–4) 
or could not suggest one (category 5). 

 
4.2.3 Step 3 – Implementation. The last step in problem-
solving activities is writing the solution and verifying the 
correctness of the algorithm. This is achieved by running the 
algorithm on all the required ADT operations using pseudocode 
(as a solution to the assignment). In our study, we observed four 
cases of writing pseudocode. However, only one student (ST08) 
used pseudocode exclusively during the implementation step, 
while the others used pseudocode as a supporting tool for their 
thinking process (described in “planning the solution step”).  
 

5. DISCUSSION 
 
This study aimed to explore and describe IS students’ problem-
solving processes involving a high level of abstract thinking. To 
achieve this aim, students’ problem-solving processes were 
analyzed during a “black box” approach-based task in an effort 
to capture different cognitive aspects and challenges. 

This study mapped three main requirements that impact the 
success of a problem-solving process: obtain program-free 
thinking level, no misconceptions (which stems from a solid 
“knowledge toolbox”), and exhibit flexibility during the 
solution process. Only students who mastered these three 
components could solve the research task (see Figure 2). 
Students who lacked one or more components failed to solve 
the research task.  

The study shows that only 6 out of 13 students (46%) were 
able to apply the programming-free abstract thinking level 
when solving the research task. This finding corresponds with 
that of Aharoni (2000a), who concludes that the phenomenon 
of low abstraction levels is common in DS courses and stems 
from the fact that students were not sufficiently exposed to 
abstract thinking practices. Although in our study, students 
practiced problems involving different levels of complexity, it 

Proposed algorithms 
scale 

Abstraction level Misconceptions Flexible process 

 Programming
-free thinking 

Programming
-context 
thinking 

Yes No Yes No 

1 (The correct 
solution)  

ST02 ST08 
ST11 

  ST02 ST08 
ST11  

ST02 ST08 
ST11  

 

2 ST12 ST07 
ST10 

 ST07 ST12 ST10 ST07 ST10 ST12 

3  ST01 ST05 
ST13 

ST01 ST05 
ST13  

 ST05 ST13  ST01  

4  ST04 ST06 
ST09 

ST04 ST06 
ST09 

  ST04 ST06 
ST09  

5 (No solution)  ST03  ST03 ST03  

Table 4. Distribution of Students by the Proposed Algorithms Scale and by Cognitive Attributes of the Problem Solver 
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can be argued that at this stage of the course, students had not 
yet acquired the required expertise. 

 

 
Figure 2. Mapping of Students Based on Abstract 

Thinking, Flexibility, and Misconceptions 

 
We observed several types of misconceptions related to the 

acquired knowledge in different data structures and to the black 
box approach, which prevented students from solving the 
complex problem. This finding is consistent with the claim of 
Smith et al. (1994) that students’ prior knowledge is a major 
source of their misconceptions. Following the findings 
presented by this study earlier, all students who had 
misconceptions failed to solve the assignment.  

Two approaches were applied when solving the research 
task: a linear approach and a flexible approach (non-linear). 
These approaches are mentioned in several studies. Pólya 
(1945) described four stages that must be followed in a linear 
sequence when solving a problem. Mason et al. (1982) and 
Schoenfeld (1985) suggested that the process of problem-
solving is not always strictly linear and that it can include 
forward and backward steps between analyzing, planning, and 
exploring a problem. Wilson et al. (1993) proposed a dynamic 
and cyclic interpretation of Pólya’s stages, which allows for 
forward and backward movement between all phases of 
problem solving, even after the looking-back phase. Similarly, 
Yimer and Ellerton (2010) proposed a model that includes 
transitions between all phases of problem solving, emphasizing 
the non-linear nature of the process. Our interpretation of the 
flexible approach that was observed in our study is that students 
apply a process of monitoring and self-regulation, which is 
referred to by Schoenfeld (1992) as the “control” factor (ways 
in which students monitor their own problem-solving process, 
use their observations of partial results to guide future problem-
solving actions and decide how and when to use available 
resources and heuristics). Following the findings presented 
earlier in this study, all the students who used the linear 
approach failed to solve the assignment.  

We used visualizations throughout the course (mentioned 
in Section 3.1) as a primary tool for explaining algorithms and 
simulating their execution. Visual representation of a data 
structure is used to reduce the abstraction level by making the 
data structure more concrete and familiar (Aharoni, 2000b). 
The use of visualization as a teaching tool is supported by 
Akram and Fang (2015), who found that using visualization 
prototype applications during lessons in a DS course engaged 
students’ attention toward cognitive learning. They concluded 
that graphic representations, such as pictures, graphs, charts, 

and diagrams, help people grasp the meaning and attain an 
understanding of information more easily and quickly.  

In our study, visualization tools were used by most students 
at various stages of solving the research assignment, but these 
tools did not necessarily help. We found that the quality of the 
use of the visual tools depended on the student’s level of 
abstract thinking. This phenomenon can be explained by 
students operating at an inadequate level of abstraction, which 
caused difficulties in problem comprehension and an inability 
to simplify the problem by drawing. Some of the students’ 
visualizations were not effective, because the drawings did not 
fit the required data structures presented in the assignment. For 
example, one student drew an array instead of a double-ended 
queue. The ineffectiveness of using visualization is explained 
by Aharoni (2000a) as being caused by misconceptions of some 
of that data structure’s properties. When visualizing a data 
structure, its picture should not include the implementation 
details but only its properties and organization (Aharoni, 
2000b). In our study, the drawings of the students located at the 
programming-context thinking level contained implementation 
details, which contributed to their misconceptions. 

 
6. CONCLUSIONS AND RECOMMENDATIONS 

 
The purpose of this study was to characterize what is required 
from IS students to solve complex problems. Results showed 
that to solve a complex problem successfully, an IS student 
should have a programming-free abstract thinking level, no 
misconceptions regarding concept comprehension and problem 
understanding, and be able to apply a flexible problem-solving 
process. In our study, the assignments were designed with 
increasing difficulty levels to prepare the students for the 
research task (see Table 1). However, 10 out of 13 students 
failed to solve the assignment. Most of these students (7 out of 
10) did not exhibit the required level of abstract thinking. For 
these students, using visualization as a supporting tool for 
solving the problem contributed to their misconceptions.  

Based on these results, recommendations can be made for 
two groups of stakeholders. (a) Faculty members can consider 
highlighting common misconceptions while teaching this 
course (and similar ones); better explaining what an appropriate 
visualization is vs. a lacking one; exploring more examples that 
require a high level of abstraction during the class; and aiming 
to develop in students a flexible approach to solving complex 
problems by applying appropriate assignments, such as class 
examples demonstrating the flexible approach to solving 
problems and presenting common mistakes created by a linear 
approach. In addition, faculty members should evaluate the 
student’s level of abstraction and variations in abstract thinking 
while the course is being taught and adjust their teaching 
methodologies and assignments accordingly (formative 
evaluation). (b) Policymakers can consider developing new 
abstract thinking development tools in basic courses and 
postponing this specific course (DS) to an advanced level of the 
IS curriculum, where the students’ abstract thinking is likely to 
be more developed.  

 
7. LIMITATIONS AND FUTURE RESEARCH 

 
This study was conducted as part of an introductory course 
where students had not yet established and refined their 
problem-solving skills. The study serves as a first step in 
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investigating thinking processes and solving complex problems 
as performed by IS students. We suggest expanding this study 
to more advanced courses, such as the Information Retrieval 
course given to students in their last year, where complicated 
algorithms using different data structures are presented.  

Due to the COVID-19 pandemic, the course was conducted 
through video conference meetings, and it is not entirely clear 
how this might have affected teaching, learning, and data 
acquisition. Out of 136 students in the course, only 13 
volunteered for this study, which may limit the generalization 
of the difficulties we observed. Quantitative tools should be 
developed and implemented at a larger scale to overcome this 
limitation. 
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APPENDICES 
 

Appendix A. Research Assignment Description 
 
The central queue is a data structure that supports all the activities defined for a regular queue, in addition to insertion, extraction, 
and reading from the middle of the queue. 
 
The index of the middle of the queue is defined as the highest integer at or below n/2 in a queue that contains n elements; for 
example, if the queue contains 10 elements, then the index of the middle of the queue is the 5th element. If the queue contains 11 
elements, then the index of the middle of the queue is also the 5th element. 
 
Suggest an implementation of the central queue, based on two double-ended queue structures, H and T. 
 
Below is the description of the structure of a double-ended queue: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Below is the description of the structure of a central queue: 
Insert item (performed to the tail of the central queue): insert_tail(MQ, X) (complexity O(1)) 
Read item ((performed on the head of the central queue): read_head(MQ) (complexity O(1)). 
Extract item ((performed to the head of the central queue): delete_head(MQ) (complexity O(1)). 
Insert item in the middle (performed to the middle of the central queue): insert_mid(MQ,X) (complexity O(1)). 
 
Read item from the middle ((performed on the middle of the central queue): read_mid(MQ) (complexity O(1)). 
Extract item ((performed to the middle of the central queue): delete_mid(MQ) (complexity O(1)). 
Is the central queue empty?: is_empty(MQ) (complexity O(1)). 

a. Write a verbal description of a data structure than supports the description of the central queue. 
b. Implement by a verbal description and by pseudocode the following activities which the central queue supports (all 

activities with a time complexity of O (1)): 
i. Insertion to the tail of the queue  

ii. Insertion in the middle of the queue 
iii. Deletion from the middle of the queue 

c. Explain the complexity of each activity. 

  

Double-ended queue 
Data structure on which the following actions are defined: 
Insert item to the head of the structure – insert_head(Q, X) 
Insert item to the tail of the structure – insert_tail(Q, X) 
Read item from the head of the structure – read_head(Q) 
Read item from the tail of the structure – read_tail(Q) 
Extract item from the head of the structure – delete_head(Q) 
Extract item from the tail of the structure – delete_tail(Q) 
Is the structure empty? – is_empty(Q) 
Complexity 
For all activities: time complexity O(1); space complexity 
O(n) 
*The double-ended queue structure is implemented via an 
array 
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Appendix B. Research Assignment Description of Compound Data Structures and Solution 
 
Central Queue 
 
A central queue is a compound data structure that supports all data operations of a queue, in addition to supporting those activities 
performed on the middle of the queue. Figure B-1 illustrates the operations performed on a central queue. 

 
 

Figure B-1. Illustration of a Central Queue 
 
Double-Ended Queues 
 
The central queue is built from two double-ended queues. Figure B-2 illustrates the operations performed on a double-ended queue. 
A double-ended queue is an enhancement of a queue that supports all data operations of a queue performed from both sides (front 
and back).  

 
 

Figure B-2. Illustration of a Double-Ended Queue 
  
Central Queue Operations 
 
Students were asked to solve three operations using double-ended queue operations: 

• Insert to tail 
• Insert in middle 
• Delete from middle 

The “insert to tail” solution is simple when considered independently of the two other operations. The insert_tail(Q, X) operation 
of the double-ended queue is used (see Appendix A). 
 
However, to support the other two operations, “insert in middle” and “delete from middle,” a new algorithm should be developed, 
ensuring that items are divided between the two double-ended queues. Figure B-3 illustrates the “insert tail” operation using the 
two double-ended queues. 

 
 

Figure B-3. Illustration of the “Insert Tail” Operation 
 
  
The “insert tail” operation contains the following actions: 

• Insert an item to the front of H (head of the double-ended queue). To do that, use the double-ended queue’s 
insert_head(Q, X) operation (see Appendix A). 

• Balancing H (Head) and T (Tail) double-ended queues. 
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The “insert in middle” operation contains the following actions: 
• Insert an item to the tail of H. To do that, use the double-ended queue’s insert_tail(Q, X) operation. 
• Balancing H (Head) and T (Tail) double-ended queues.  

 
The “delete from middle” operation contains the following actions: 

• Delete an item from the tail of H. To do that, use the double-ended queue’s delete_tail(Q) operation. 
• Balancing H (Head) and T (Tail) de-queues.  

 
Balancing H (Head) and T (Tail) double-ended queues: 

• If H contains more items than T, pass one item from H to T. 
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