

Journal of
Information
Systems
Education

Volume 34

Issue 1
Winter 2023

A Data-Driven Approach to Compare the Syntactic
Difficulty of Programming Languages

Erno Lokkila, Athanasios Christopoulos,

and Mikko-Jussi Laakso

Recommended Citation: Lokkila, E., Christopoulos, A., & Laakso, M.-J. (2023). A
Data-Driven Approach to Compare the Syntactic Difficulty of Programming
Languages. Journal of Information Systems Education, 34(1), 84-93.

Article Link: https://jise.org/Volume34/n1/JISE2023v34n1pp84-93.html

Received: January 13, 2022
Revised: March 27, 2022
Accepted: April 29, 2022
Published: March 15, 2023

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://jise.org/Volume34/n1/JISE2023v34n1pp84-93.html
https://jise.org/

Journal of Information System Education, 34(1), 84-93, Winter 2023

84

A Data-Driven Approach to Compare the Syntactic
Difficulty of Programming Languages

Erno Lokkila
Department of Computing

University of Turku
Turku, 20014, Finland

eolokk@utu.fi

Athanasios Christopoulos
Mikko-Jussi Laakso

Centre for Learning Analytics
University of Turku

Turku, 20014, Finland
atchri@utu.fi, milaak@utu.fi

ABSTRACT

Educators who teach programming subjects are often wondering “which programming language should I teach first?”. The debate
behind this question has a long history and coming up with a definite answer to this question would be farfetched. Nonetheless,
several efforts can be identified in the literature wherein pros and cons of mainstream programming languages are examined,
analysed, and discussed in view of their potential to facilitate the didactics of programming concepts especially to novice
programmers. In line with these efforts, we explore the latter question by comparing the syntactic difficulty of two modern, but
fundamentally different, programming languages: Java and Python. To achieve this objective, we introduce a standalone and purely
data-driven method which stores the code submissions and clusters the errors occurred under the aid of a custom transition
probability matrix. For the evaluation of this model a total of 219,454 submissions, made by 715 first-year undergraduate students,
in 259 unique programming exercises were gathered and analysed. The results indicate that Python is an easier-to-grasp
programming language and is, therefore, highly recommended as the steppingstone in introductory courses. Besides, the adoption
of the described method enables educators to not only identify those students who struggle with coding (syntax-wise) but further
paves the pathway for the adoption of personalised and adaptive learning practices.

Keywords: Computer programming, Computer science, Data analytics, Higher education, Information systems education, Program
assessment & design

1. INTRODUCTION

Computer Science and Information Systems academic
programs have many distinguishable goals but also share many
elements in common. Therefore, considering the commonalities
in these fields, it is important that educators share knowledge
and good practices. To this end, an important concern for
instructors from both fields is regarding the choice of the “first
programming language” (Mahatanankoon & Wolf, 2021;
Robins, 2019; Sharma et al., 2020; Sobral, 2021). Indeed,
selecting a programming language that is easy to grasp—yet
useful for novices—is critical (Wainer & Xavier, 2018) as it
greatly influences students’ future academic and professional
development (Medeiros et al., 2018; Quille & Bergin, 2019;
Smith & Jones, 2021).

Historically, the first programming languages that have
been taught and recommended for introductory programming
courses have been PL1, Ada, and Pascal (Sobral, 2021). Today,

Java and Python are amongst the most popular languages
(Perera et al., 2021), an outcome which naturally forces higher
education professors to adopt and integrate them into the
syllabus as early as possible (Zhang et al., 2020).

Despite the wide adoption of these languages, their
fundamental structure and application differ considerably.
Therefore, gauging their advantages and disadvantages,
especially in view of the needs and capacity that novices have,
has received great attention (Khoirom et al., 2020; Lukkarinen
et al., 2021). There are several requirements for choosing a
language for an introductory programming course. These
include trends and changes, the pedagogical aspects, and the
language popularity both in the “real world” and in other
academic institutions (Sobral, 2021). Trends and changes relate
to the fluctuations in popularity of programming paradigms; the
paradigms of popular first languages have shifted from
procedural programming to the more modern object-oriented
programming. Pedagogic aspects should also not be forgotten,

mailto:eolokk@utu.fi
mailto:atchri@utu.fi
mailto:milaak@utu.fi

Journal of Information System Education, 34(1), 84-93, Winter 2023

85

as some languages are deemed “more difficult” on the grounds
of more verbose syntax, or conceptually difficult topics in
programming—such as pointer arithmetic—which novice
programmers need not worry themselves with. These
extraneous concepts are identified as noise and any
programming language taught to novices should have as little
of it as possible (Pellet et al., 2019). Educational institutions are
also setting boundaries on which languages can be taught. For
instance, if advanced courses at an institute are taught with
language X, is it pedagogically justified to first teach students
language Y? All things considered, motivating students to learn
a language that has no future use is hard to justify.

Within the last decade, Python has risen steadily in the
popularity ranks of programming languages (Kruglyk & Lvov,
2012). Another measure of language popularity, which also
considers introductory programming courses, is the “Richard
Reid’s List of First Programming Languages” (Siegfried et al.,
2012). In Reid’s 2016 List, Python overtook the second place
that C++ was holding, while Java has steadily held the first
position (Siegfried et al., 2016).

Python is a multi-paradigm language praised for its short
and readable syntax. Learning the syntax of Python is like
learning pseudocode (i.e., it removes the need to “unlearn”
syntactic peculiarities when learning other languages)
(Siegfried et al., 2016). Python is also a multi-paradigm
language meaning that it can be used in teaching the very basics
of imperative programming, object-oriented programming, and
even functional programming if chosen so by the educator.
Python also features dynamic typing which, on the one hand,
decreases the cognitive load of learners. On the other hand, it
“hides” the types of variables that may introduce bugs or, in the
worst case, even faulty mental models of programming
(Donaldson, 2003; Jain et al., 2020). Python also has
indentation as an intrinsic part of its syntax: blocks are indented
by whitespace, making the “art” of indenting code part of
learning the language (Dierbach, 2014).

Java is a purely object-oriented language. It is attractive as
a first language because of its popularity, the existence of broad
and complete libraries, as well as its strong static typing (Ren
& Ji, 2021). Researchers (Khoirom et al., 2020; Sabharwal,
1998) praise Java for its data abstraction capabilities through
abstract data types—such as lists, hashmaps, and most of all,
custom classes—while also pointing out several pitfalls such as
the inconsistent naming conventions and confusing design
decisions (e.g., the Date class).

Ultimately, the choice of first programming language
should be based on curricular issues and the educational
context, whereas strong emphasis should also be paid to the
prevalence of the language in the industry. Given that both
Python and Java are prevalent in the industry, the remaining
factors to consider are the advanced courses that are taught in
an institute. This is naturally affected by the choices of the
introductory programming languages and the pedagogical
merits such as the syntax of the language.

In the context of this work, we focus on the pedagogical
aspects of those languages and seek to answer the following two
research questions (RQs):

RQ1: How do students’ errors differ when programming in
Java versus when programming in Python?
RQ2: Which language (Python, Java) is more appropriate
for introductory programming courses in view of syntactic
difficulty?

2. RELATED WORK

Pears et al. (2007) conducted a systematic literature review on
empirical studies that described findings from introductory
programming courses. For the analysis of the included works,
the authors categorised the manuscripts in the following broad
categories: (a) studies that discuss the language choice, (b)
studies that compare different languages, and (c) studies that
discuss the language selection criteria. In view of this
classification, we discuss the key findings and implications that
emerge from more recent works related to introductory
programming courses.

The comparative study that McMaster et al. (2017)
performed contends that educators often follow a textbook, thus
arguing that the choice of the textbook has a profound effect on
the contents of the course. The authors computed how often
important introductory topics are mentioned in Java and Python
textbooks by measuring the repetition rates of specific
programming terms. The end-goal was to shed light on the
views that the authors of the textbooks have with regard to
“what is considered to be important for the language.” Despite
the efforts made, no clear conclusions were reached in view of
the question put forward (i.e., which language would be more
suitable to be taught as the first programming language?).

Khoirom et al. (2020) performed an in-depth feature
comparison of Java and Python based on diverse tests. Their
key findings suggest that while Java executes faster, Python has
smaller file sizes and less lines of code. They also list several
advantages and disadvantages of both languages. The main
advantages of Python are the learner-friendly syntax of the
language, its open-source nature, and its multi-paradigm nature.
On the other hand, the advantages of Java lie in its strict
structure to guide learners’ computational thinking, its Security
Manager which offers run-time security assurance, and the
strict static typing that the language inherently presents. In view
of these conclusions, they recommend educators to choose the
first programming language on the grounds of the projects that
the students will be working on in the future. For instance,
future courses in developing applications should emphasise
teaching Java first whereas institutes with courses in Machine
Learning or Artificial Intelligence, should explore Python.

In a language-choice paper, Uysal (2012) reports using Java
as their introductory programming language. Since Java is at
heart object-oriented, it forces institutions to decide early on
whether to teach programming algorithms-first or objects-first.
The author further argues that students who were taught Java
objects-first, using the BlueJ IDE along with all its
visualisations, performed better than a group of students who
were taught objects-late, using text-based tools. An open
question which is recommended for further examination
concerns the impact that visualisations have when compared to
text-based solutions. A more recent study performed by
Rubiano et al. (2015) also concluded that teaching objects-first
produces better results, albeit they concede that the matter of
objects-first or algorithms-first is still under active discussion.

Goldman et al. (2008) created a list of difficult
programming concepts using a Delphi process in which experts
first individually came up with a number of concepts and rated
them according to their difficulty. Subsequently, the experts
were provided with statistics describing how others ranked the
same concepts. The experts then provided their final ranking
based on this new data. The three most difficult concepts in

Journal of Information System Education, 34(1), 84-93, Winter 2023

86

programming, starting from most difficult, were identified as:
(1) Inheritance, (2) Recursion, tracing, and designing, and (3)
Procedure design.

Xinogalos et al. (2006) identified and divided the most
frequent errors that novice Java programmers make into 10
categories and urged educators to pay special attention to these
when teaching Object-Oriented Programming. The categories
include the “typical” difficulties related to syntax and general
computational thinking, but also the difficulties like
instantiating objects, declaring constructors, and specifying
inheritance relationships. It is notable that all the provided
categories were still pertinent and as challenging in the more
recent study that Goldman et al. (2008) performed.

Jadud (2005) analyzed 1,926 errors generated by
undergraduate students using the BlueJ Java IDE. The key
element that was considered for the analysis was the rate of
moving between executable and non-executable code. The
findings of this work were later incorporated into the Error
Quotient metric (Jadud, 2006). According to Jadub (2005), “the
five most common errors account for 58% of all errors
generated by students while programming: missing semicolons
(18%), unknown symbol: variable (12%), bracket expected
(12%), illegal start of expression (9%), and unknown symbol:
class (7%)” (p. 30). A surprising statement by Jadud (2005) is
that for any given failed compilation event, the next event will
also be a failed event with a probability of 44%. Kohn (2019)
analyzed 4,091 secondary school students’ Python errors using
a custom-made parser. Three of the most frequent error
messages were: (a) name error (35.7%), (b) indentation error
(14.9%), and (c) type error (8.5%). These types together already
add up to 59.1% of all student errors in Python.

The work of analysing student behaviour statistically has
been taken to the next level, as machine learning models have
been brought to bear on the problem. Pereira et al. (2021)
describes one such machine learning method, which they prove
significantly outperforms the traditional measures. They use
multiple different variables, such as mid-term grades, different
patterns in keystrokes, and copy-paste events. The model
presented in this study is simpler, as it only uses student code
submissions.

An interesting comparison is to see how Kohn’s (2019)
ratios of Python errors compare to Jadud’s (2005) Java error
ratios. The Java version of “name error” (i.e., unknown symbol)
can be found in Jadud’s (2005) list of novice errors with 19%
of errors being of this type. The Java version of “type error”
(i.e., incompatible types) is 4.3% compared to 8.5% in Python.
Indentation error from Python is not so simple to transform to
strict Java-errors, but generally related to it are the error classes
“Bracket expected” (especially those related to { or }), “illegal
start of expression” (which occurs when students write code

outside a method), and “class of interface expected” (which
occurs when students write code outside a class). Summing
these three error classes gives us a sum of 24.61%. Since all
these errors certainly are not block-related, we can
conservatively estimate a third of these being block-related.
This gives us an 8.2% error in indentation in Java versus 14.9%
in Python.

Although there are several studies (Khoirom et al., 2020;
Pellet et al., 2019) that compare programming languages in
general or the syntactic features of Java and Python in
particular, we were unable to identify any study that measures
the difficulty of the syntax of a given language using a data-
driven approach. Based on this inadequacy of the literature, in
the present work, we compare Python and Java in terms of the
errors novice students make with the language. Accordingly,
we determine which language is easier for students to program
in using a data-driven approach.

3. MATERIALS AND METHODS

The data was collected using a learning management system
called ViLLE (Laakso et al., 2018). The platform enables
teachers to distribute automatically assessed exercises, such as
programming assignments or multiple-choice questions, to
students. For the needs of this study, we chose two Python and
two Java courses. In total, we collected code submissions
(n=219,454) from 259 programming exercises made by 715
undergraduate Computer Science students (first-year college
students). Although we do not control for demographics
explicitly, the sample consisted mostly of Caucasian adults (18-
22 years of age). The dataset contained two students who took
both the Java and the Python course.

Each submission contained the following data points: (a)
user, (b) timestamp, (c) code, and (d) score. The courses were
given in one of the following Higher Education institutions: (a)
University of Turku, (b) Open University of Turku, or (c) Turku
University of Applied Sciences. It should be noted that the
Open University of Turku offers undergraduate courses from
the University of Turku, to the general public for a fee. Thus,
courses C1 and C2 used the same course materials but C3 and
C4 different. Additionally, courses C2 and C3 were taught by
the same instructor. A more detailed description of the data can
be found in Table 1.

4. PROPOSED METHOD

To analyse learners’ programming behavior, we propose a
novel method which—for simplicity purposes—we call “the
transition matrix.” Computing the transition matrix is possible
given the following data points: (a) the submission history of a

Course Code Year Language Institution Students Assignments Submissions
Algorithms &
Programming

C1 2017 Java University of Turku 294 86 124,697

Algorithms &
Programming

C2 2018 Java Open University of Turku 58 73 24,291

Introduction to
Programming

C3 2020 Python University of Turku 92 55 21,164

Introduction to
Programming

C4 2020 Python Turku University of
Applied Sciences

273 45 49,302

Table 1. Overview of the Primary Data

Journal of Information System Education, 34(1), 84-93, Winter 2023

87

student and (b) the timestamp for each submission. We use the
term “submission” for the generated program code via which a
student attempts to solve the given assignment. Further data
points can be inferred from these given two data points, such as
whether executing the code ended in an error or an infinite loop.

To compute the transition matrix, we introduced a state
machine based on the following states (Sx):

S1 Met success, when the student first succeeds in
compiling the code after one or more unsuccessful
compilation attempts.

S2 Met error, when the student first encounters an error
that prevents execution of code.

S3 Confused, when the student’s previous attempt was
not successful and the current attempt also gave an
error.

S4 Runtime error, when the student’s attempt ended with
a runtime error.

S5 Unmodified error submission, when the student
resubmits an erroneous code with no modifications.

S6 Unmodified success submission, when the student
resubmits an executable code with no modifications.

S7 Repeated success, when the student submits
compiling code after one or more successful attempts.

S8 Success on first attempt, when the student’s first
submission is correct and solves the given assignment
with full marks.

The adjacency matrix for the state machine is shown in

Table 2. The algorithm to compute the transition matrix is as
follows:

1) Create consecutive pairs from all compilation events in
a session: (𝑒𝑒1, 𝑒𝑒2), (𝑒𝑒2, 𝑒𝑒3), . . . , (𝑒𝑒𝑛𝑛−1, 𝑒𝑒𝑛𝑛) based on the
event timestamp.

2) For each event pair, mark which state transition
occurred in the transition matrix.

3) For each cell in the transition matrix, divide the value of
the cell by the sum of all events on the same row.

This results in a matrix of the probabilities which describes

the probability of each state transition for a given student. This
matrix can then be used for further analysis to, for instance,
cluster students based on their transition matrices or to derive a
single value corresponding to the skill level of the student.

 S1 S2 S3 S4 S5 S6 S7
S1 X X X X
S2 X X X X
S3 X X X X
S4 X X X X
S5 X X X X
S6 X X X X
S7 X X X X

Table 2. The State Machine Adjacency Matrix (rows are
start states and columns are the end states)

5. RESULTS

All submissions were first compiled and any compiler error
messages were collected. The Java code was compiled with
JDK13 and the Python code using the inbuilt compile method.

The successfully compiled submissions were then executed and
any run-time errors were collected. If program execution took
longer than 2 seconds, the program was terminated and the
submission was marked as “infinite loop.” The submission
details are presented in Table 3.

As mentioned earlier, Python is marketed as an easy-to-
learn language with simple syntax, whereas Java is more
difficult due to the inherently verbose syntax (Khoirom et al.,
2020). This conclusion is verified as, nearly 60% of all student
Java submissions, could not be executed successfully, whereas
the error rate for Python is only slightly over 50% (Table 3). To
determine whether this difference is statistically significant, we
performed a chi-square (χ2) test of independence. The test
confirmed the significance of the result with p<0.001 (χ2(1,
219,454)=1070.2719). This leads us to conclude that novice
programmers are, indeed, more likely to create working and
executable code in Python. Interestingly, C4 has noticeably
more compilation errors but fewer run time errors than C3, even
though both are Python courses. As the courses were given in
different universities, we hypothesised that this may be
attributed to the pedagogical focus each course had. For
instance, the quality of course materials, the delivery method,
or students’ differences in pre-existing knowledge of
programming may also explain the difference in part.
Nevertheless, we do not possess any data to explore these
hypotheses any further and thus, this observation is
recommended for future research (i.e., How much do each of
these differences contribute to overall error counts?). A
startling observation is that more than half of the student
attempts ended in an error. This naturally raises the following
question: What were the errors that students received? In view
of this question, we list the most frequent errors that learners
received for both Python and Java in the following sections.

5.1 Java Errors
The five most common errors in Java comprise 50% of all the
errors students encounter and are as follows (Table 4): (1)
“Missing semicolon” (11.19%), (2) Unknown variable (10.9%),
(3) Missing bracket (10.13%), (4) Type errors (9.15%), and (5)
Unknown method (8.68%).

5.2 Python Errors
The two most frequent errors in Python account for 52% of all
errors students encountered (Table 5). These errors are: (a)
“Invalid syntax” (30.32%) and (b) “Using undeclared
variables” (21.68%). The “Invalid syntax” error is encountered
when compiling (using the inbuilt compile-method) Python
code and is given when students, for instance, forget colons,
parentheses, or commas. In order to make a reasonable
comparison to Java, the Python error “Invalid syntax” roughly
corresponds to a combination of the Java errors at ranks 1, 3, 6,
8, 15, and 16 for a combined error ratio of 31.26%, which is not
that different from the rate of syntax errors for Python.

5.3 Cluster Analysis of the Courses
After generating the transition matrix for each student, an
unsupervised machine learning technique was utilised to
identify inferences from the gathered data. For the needs of this
work, the k-means clustering algorithm was utilised. When

Journal of Information System Education, 34(1), 84-93, Winter 2023

88

clustering students, we ignored all transitions which ended in
either 𝑆𝑆5 (unmodified error submission) or 𝑆𝑆6 (unmodified
success submission), as these states do not give any meaningful
information on the skill of the student (e.g., a student may
resubmit code to verify an error message or to reread the
output).

Rank Error Rate Rank Error Rate

1 Semicolon expected 11.19 % 11 Reached end of file while
parsing 2.53 %

2 Unknown variable 10.90 % 12 op application error 2.45 %
3 Bracket expected 10.13 % 13 Method application error 2.34 %
4 Incompatible types 9.15 % 14 String index out of bounds 2.28 %
5 Unknown method 8.68 % 15 Not a statement 2.18 %
6 Illegal start of expression 5.65 % 16 Illegal start of type 2.11 %
7 Missing return statement 4.16 % 17 Unknown class 2.08 %
8 <identifier> expected 3.82 % 18 Variable already defined 1.56 %

9 Array index out of bounds 3.07 % 19 invalid method signature;
return type required 1.13 %

10 class, interface, or enum
expected 2.57 % 20 ‘else’ without ‘if’ 1.04 %

Table 4. Most Common Errors in Java

Rank Error Ratio Rank Error Ratio
1 Invalid syntax 30.32 % 11 Using variable before assignment 1.59 %
2 Using undeclared variable 21.68 % 12 Wrong number of parameters passed 1.42 %
3 Invalid literal for base conversion 5.33 % 13 Object not callable 1.10 %
4 Unsupported operand type(s) 4.51 % 14 Non-integer index 1.10 %

5 Using missing attribute 4.37 % 15 Not all args converted in string
formatting 0.84 %

6 Expected an indented block 4.22 % 16 Object not subscriptable 0.81 %
7 Unexpected indent 2.89 % 17 Wrong type parameter passed 0.81 %
8 Index out of range 2.37 % 18 Wrong types for concatenation 0.74 %
9 Object to iterable 2.31 % 19 ‘return’ outside function 0.70 %

10 Unindent does not match outer
indentation 1.90 % 20 Using missing object attribute 0.60 %

Table 5. Most Common Errors in Python

 Cluster N Avg. submissions Avg. time on task Avg. error rate %
Java G1 131 596.74 1187.74 61.82

G2 178 370.81 807.31 48.49
G3 43 111.84 538.06 32.18

Python G1 159 304.02 1739.41 49.06
G2 151 121.85 972.04 48.21
G3 55 67.76 565.0 35.82

Table 6. Naïve Metrics of Skill for Clusters’ Creation

Course Language Successes Compile errors Run-time errors Timeouts Error rate
C1 Java 51,250 67,207 5,280 960 58.9%
C2 Java 9,780 13,211 1,026 274 59.7%
C3 Python 10,075 3,418 7,492 179 52.4%
C4 Python 24,013 13,402 11,398 489 51.3%

Table 3. Overview of the Submissions Made across the Four Courses

Journal of Information System Education, 34(1), 84-93, Winter 2023

89

For both programming languages, group G1 performs
poorly on all these metrics, whereas group G3 outperforms all
the other clusters. In order to verify this observation, we
examined the distribution of the data (number of average
submissions, average time on task, error rate of both languages)
separately, using the Shapiro-Wilks Normality Test, and
accordingly performed an Analysis of Variance (ANOVA) on
the attributes. All tests yielded significant variation between the
groups (p<.05). Given that the one-way ANOVA does not
specify which groups are different, however, we performed a
post-hoc Tukey’s HSD test to verify the observed differences.
We found statistically significant differences between the
attributes of all groups (p<.001) except two: the “Error rate” in
Python between G1 and G2 and the “Average time on task,”
also in Python, between G2 and G3.

Further analysis of the formed clusters revealed that the
distribution of errors within clusters is remarkably similar.
Figure 1 shows the seven most common compiler error types in
Java and how many students made the error, ordered into
descending order by G3, which we believe is the cluster
containing the top-performers.

The data for Python errors revealed a similar phenomenon,
hence no figure is provided. The ordering of errors is not

surprising, however. The interesting observation here is that the
number of errors made by the different clusters follows a
seemingly similar ratio. This implies that generating these
errors tends to be more a matter of lack of attentiveness and
routine as opposed to a misconception about programming or
lack of skill. An interesting outlier in the most common errors
is the type compiler.err.cant.deref, which manifests in error
messages such as “int cannot be dereferenced.” This is caused
by attempting to call a method on a primitive value, as in the
following code snippet: “int i=5; i.methodCall();”. This begs
the question “which errors are those that G3 did not make, but
G1 and G2 did?”.

While all clusters made errors, G1 made the most number
of distinct error types (67), G3 the least (38) and G2 in between
these (61). This further confirms our assumption that the
formed clusters represent groups of students with different
programming skill levels. We found a total of 31 different error
types that were made only by either G1 or G2, but not G3. A
majority of these errors occurred only a few times. Table 7
shows, for Java, the errors which were done most often. We
chose the cutoff point to be the mean value of the occurrences
(8). The same analysis for Python data indicated that all errors
made by G1 and G2 were also created by G3.

Figure 1. Top 7 Errors Ranked in Descending Order According to G3

Journal of Information System Education, 34(1), 84-93, Winter 2023

90

Error Occurrences

(students)
Unclosed string literal 47
Array dimension missing 39
Empty character literal 22
Illegal start of statement 18
Missing method body 17
Break outside loop or switch-case 16
Integer literal too large 11
Cannot assign value to final variable 10

Table 7: Java Errors Which Were Made by G1 and
G2, but Not G3

To facilitate the reading of the above mentioned

observations, we plotted the students according to their total
score and their number of submissions in view of cohort-
clusters. As Figure 2 illustrates, strong students clumped
together with high scores and low submissions, whereas the
total score of the others grows with the number of submissions.

Figure 2. Clustering of Python Students in C3 and C4

Using a Model Trained with Python Data

When interpreting Figure 2, it should be noted that students

in the course had been continuously encouraged by the lecturer
to work collaboratively. It is, therefore, likely that some
students from G1 were helped by their peers which, in turn,
enabled them to achieve the maximum score on the course. In
either case, based on the available data, we can conclude that
clustering the transition matrix using the k-means algorithm
can, indeed, separate students into distinct groups.

Next, we determined whether the difficulty of Java and
Python is comparable. Our null hypothesis is that there is no
difference in the difficulty of the two languages. If this
hypothesis holds true (i.e., the two languages are indeed of
equal difficulty), using a trained k-means model from one
course to cluster the other should not produce a significant
change in the clustering result. To test our hypothesis, we
computed a transition matrix for all students in C1 and C2 and
trained the model (k=3). We then computed transition matrices
for all students from C3 and C4 and used the trained model to
cluster them. The results are described in Table 8.

Cluster Size Avg.

submissions
Avg. time
on task

Avg. error
rate %

G1 9 407.78 2498.0 58.72
G2 181 266.29 1563.42 49.74
G3 175 106.27 841.76 42.97

Table 8. Python Data Clustered with a Model Trained
on Java Data (compare with Table 6)

The resulting clustering was strikingly different (Figure 3).

Not only did the cluster sizes change significantly, but
remarkably most students “moved up” from their cluster, when
compared to Figure 2.

Precisely, most students in G1 in the Python-trained model
were in G2 in the Java-trained model and nearly all students
from G3 in the Python-trained model remained in the best-
performing cluster. Consider our null hypothesis of no
difference in difficulty. If the students on the Python courses
had been on the Java courses and performed as they did on the
Python course, almost none of them would have been in the
struggling group (G1). Thus, we reject the null hypothesis and
accept that Python and Java are different in their difficulty, with
Python being the easier language to create working code.

Figure 3. Clustering of Python Students in C3 and C4

Using a Model Trained with Java Data

6. DISCUSSION

In this work, we sought to find which language—Java or
Python—is syntactically easier for novice programmers to
learn. In our mission to attain this objective, we introduced a
complete, data-driven approach, which can be used to examine
and compare the difficulty of different programming languages.
This is especially true when introduced in the context of
introductory programming courses and further highlighted the
differences that novices face when learning one of the two most
commonly used first languages. In the remaining discussion,
while considering the two-fold contribution of this work, we
provide direct answers to the Review Questions put forward and
further complement them with guidelines that can assist
educators and instructors to reform and reconstruct their
courses (be it introductory or advanced).

The choice of first programming language is important, but
not critical (Pellet et al., 2019), as introductory programming
courses tend to have high dropout rates (McCracken et al.,
2001; Medeiros et al., 2018; Quille & Bergin, 2019). Choosing

Journal of Information System Education, 34(1), 84-93, Winter 2023

91

a language where students make, on average, fewer mistakes is
beneficial to improving self-efficacy as it is highly linked with
motivation (Öqvist & Malmström, 2018). The data that
emerged from this exploratory study shows that Python is easier
for students to program in, at least when compared to Java.
They make fewer errors and, therefore, need fewer attempts to
compile working code. In view of this, we can expect a positive
motivational boost on their attitude toward programming,
especially at this fragile stage where most of the concepts taught
are new. This outcome does not ultimately mean that Python is
“the best” choice. Other factors need to be considered as well,
such as which related courses that the institution offers (Sobral,
2021).

The choice of language does not seem to affect the types of
errors students make. Receiving errors like “syntax error” and
attempting to use “undefined variables” top the charts for both
languages. Having awareness of the most common errors that
novices make enables more efficient teaching. Developers,
therefore, are advised to create tools, error messages, and other
resources—specifically addressed for novices—on how to
solve these errors. Teachers and instructors can focus on the
causes and how to correct them in-class, enabling students to
quickly build better programming routines. Researchers can
utilise this knowledge to build better models and possibly
design even better programming languages for novice
programmers.

While analysing the errors of both languages, it became
apparent that roughly 30% of them were related to syntax.
When considering all the errors, the difference between
languages grew to roughly 60% of attempts for Java and only
slightly over 50% for Python. The three most commonly made
errors in Java were “Missing semicolon,” “Missing bracket,”
and “Unknown variable.” These three errors account for
roughly 30% of all errors made. The three most commonly
made errors in Python were syntax errors (such as missing
commas or semicolons), using “undeclared variables,” and
“providing faulty arguments” to the inbuilt int-method, which
transforms strings of digits into an integer. These three error
types cover over 55% of all errors encountered by students in
our dataset. Educators and instructors, therefore, are advised to
pay particular emphasis when delving into these topics.

Another way to facilitate students learning can be via the
provision of more exercises targeted to these topics. Since the
provided data-driven approach was seemingly able to divide
students into similarly performing clusters, teachers and
educators can focus their efforts on the worst-performing
cluster and offer these exercises to the portion of students who
truly need them. How to most effectively help the students
identified as needing help is outside the scope of this paper and
remains subject to further study.

The merits and the challenges that Python and Java present,
when introduced in introductory programming courses have
been examined via the proposed transition matrix in which we
trained a k-means clustering model using independent datasets
(Java or Python groups). To facilitate the clustering process, we
chose the number of groups to be three (k=3), so as to divide
students into a high-performing group (G3), average group
(G2), and low-performing group (G1). We proved that these
groups were distinct, as determined by the average number of
submissions, the average time spent on assignments, and the
error rates.

We created one clustering of the transition matrices for the
Python group (C3 and C4 from Table 1), using the Java-trained
model, and another using the Python-trained model, then
compared them. With the Java trained model, G3 comprised
nearly half of the students and G2 the other half. Only nine
students were left in G1, the low-performing group. Whereas
with the Python-trained model, both G3 and G2 comprised of
over 40% of the sample, whereas G1 enclosed 15% of all
students. This difference in cluster sizes can be explained by
considering the difference in language difficulty.

Since these are all introductory programming courses, we
assume that, in terms of distributions, no major knowledge-
related differences exist between the students who took the Java
course and those who took the Python course. That is, we
assume that the percentage of students who have previous
experience in programming is similar between all courses, as
well as the percentage of students who do not have any previous
experience. This allows us to interpret the difference in the
cluster sizes to the mean values under the assumption that, all
else being equal, if the students who took the Python course had
instead taken the Java course, only 9 students out of 356 would
have struggled with programming. This result is very unlikely,
given the extensive literature on the difficulty of programming
(e.g., McCracken et al., 2001; Jadud, 2005; Kohn 2019; Quille
& Bergin, 2019). Thus, we can safely conclude that Python is
easier for novice programmers to grasp.

7. LIMITATIONS AND FUTURE DIRECTIONS

For the replicability of the study, the following limitations and
delimitations should be taken into account. First, we did not
check what percentage of exercises was shared between courses
with the same language. For instance, if one course had
exercises which had significantly harder questions with longer
answers, it is possible that differences in error rates and counts
are due to the exercise difficulty. This could partially explain
why C4 had significantly more compile errors and fewer run-
time errors than C3. Nevertheless, we mitigated this issue by
including two courses in our dataset as a means to average out
any differences. We also did not account for different
pedagogic approaches used in the different courses. As the
courses using the same programming language had almost
exactly the same error rate (overall), however, we believe the
courses applied the same pedagogic approach. We currently
have no explanation for why C3 and C4 error types (compile
versus run time) differed to such a degree. Finally, we did not
introduce any test to identify cohorts’ prior experience with
programming or programming skills. Therefore, it is possible,
albeit very unlikely, that the students in the Python group had
significantly more programming experience than the students in
the Java group. We have no reason to believe any drastic
difference exists in the starting skill level between novice Java
learners and novice Python learners, given that both cohorts are
first-year undergraduate students with no previous contact with
programming or individuals (from the general public) who are
simply interested in learning programming.

This study only scratched the surface regarding the
different error types that students of different skill levels
generate. We observed that the students identified as top-
performers did not make certain types of errors at all. Further
studies should find fruitful ground in determining whether

Journal of Information System Education, 34(1), 84-93, Winter 2023

92

specific errors or patterns of generated errors correspond
directly to a misconception in programming.

The data collection model and the clustering method
described in this work can be adopted by educators and
practitioners worldwide to discover their learners’
programming patterns or trends as well as their skill levels so
that they can efficiently cluster them into distinct groups. These
groups can be offered targeted exercises to aid in learning
programming. For instance, the worst performing group may be
offered simpler syntax-based exercises (since that is what they
struggle with), whereas the other groups may instead be given
more challenging algorithmic or problem-solving focused
exercises.

This study also paves the way for interesting research
directions. By clustering programming students, educators can
provide learners with adaptive exercises, adjusted to their
particular needs and tailored to their capabilities. Combining
the capability to cluster students and existing models for
processes that cause errors in student programming (c.f., Ko &
Myers 2003) can further increase our understanding of
programming errors, their causes, and better ways to teach
programming. Other future works can look into the verification
of the clusters, their validity, and practical application. In
addition, researchers may consider the collection of qualitative
data so that the key findings can be further related to and cross-
referenced with the clusters. For instance, exploring learners’
feelings over programming may reveal whether the worst-
performing students also have negative feelings toward
programming. Finally, in terms of adaptive and personalised
learning, another direction may be the introduction of
procedures capable of providing struggling students with
additional learning material (e.g., recommendations for further
reading) or targeted exercises. The impact of such intervention
can then be evaluated on a weekly basis as new data will
emerge.

8. REFERENCES

Dierbach, C. (2014). Python as a First Programming Language.

Journal of Computing Sciences in Colleges, 29(3), 73-73.
Donaldson, T. (2003). Python as a First Programming

Language for Everyone. Proceedings of the 2003 Western
Canadian Conference on Computing Education (pp. 1-2).

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk,
L., Loui, M. C., & Zilles, C. (2008). Identifying Important
and Difficult Concepts in Introductory Computing Courses
Using a Delphi Process. Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education (pp.
256-260). Portland, USA: ACM.

Jadud, M. C. (2005). A First Look at Novice Compilation
Behaviour Using BlueJ. Computer Science Education,
15(1), 25-40.

Jadud, M. C. (2006). Methods and Tools for Exploring Novice
Compilation Behaviour. Proceedings of the 2nd
International Workshop on Computing Education Research
(pp. 73-84). Canterbury, United Kingdom: ACM.

Jain, S. B., Sonar, S. G., Jain, S. S., Daga, P., & Jain, R. S.
(2020). Review on Comparison of Different Programming
Language by Observing Its Advantages and Disadvantages.
Research Journal of Engineering and Technology,11(3),
133-137.

Khoirom, S., Sonia, M., Laikhuram, B., Laishram, J., & Singh,
T. D. (2020). Comparative Analysis of Python and Java for
Beginners. International Research Journal of Engineering
and Technology, 7(8), 4384-4407.

Ko, A. J., & Myers, B. A. (2003). Development and Evaluation
of a Model of Programming Errors. Proceedings of the
IEEE Symposium on Human Centric Computing
Languages and Environments (pp. 7-14). Auckland, New
Zealand: IEEE.

Kohn, T. (2019). The Error Behind the Message: Finding the
Cause of Error Messages in Python. Proceedings of the 50th
ACM Technical Symposium on Computer Science
Education (pp. 524-530). Minneapolis, USA: ACM.

Kruglyk, V., & Lvov, M. (2012). Choosing the First
Educational Programming Language. Proceedings of the
8th International Conference on ICT in Education,
Research, and Industrial Applications (pp. 188-189).
Kherson, Ukraine: CEUR Workshop Proceedings.

Laakso, M. J., Kaila, E., & Rajala, T. (2018). ViLLE–
Collaborative Education Tool: Designing and Utilizing an
Exercise-Based Learning Environment. Education and
Information Technologies, 23(4), 1655-1676.

Lukkarinen, A., Malmi, L., & Haaranen, L. (2021). Event-
Driven Programming in Programming Education: A
Mapping Review. ACM Transactions on Computing
Education, 21(1), 1-31.

Mahatanankoon, P., & Wolf, J. (2021). Cognitive Learning
Strategies in an Introductory Computer Programming
Course. Information Systems Education Journal, 19(3), 11-
20.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan,
D., Kolikant, Y. B. D., ... & Wilusz, T. (2001). A Multi-
National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students. Working
Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education (pp. 125-180). Canterbury,
UK: ACM.

McMaster, K., Sambasivam, S., Rague, B., & Wolthuis, S.
(2017). Java vs. Python Coverage of Introductory
Programming Concepts: A Textbook Analysis. Information
Systems Education Journal, 15(3), 4-13.

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A
Systematic Literature Review on Teaching and Learning
Introductory Programming in Higher Education. IEEE
Transactions on Education, 62(2), 77-90.

Öqvist, A., & Malmström, M. (2018). What Motivates
Students? A Study on the Effects of Teacher Leadership
and Students’ Self-Efficacy. International Journal of
Leadership in Education, 21(2), 155-175.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., ... & Paterson, J. (2007). A Survey of
Literature on the Teaching of Introductory Programming.
Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education (pp. 204-223).
Dundee, Scotland: ACM.

Pellet, J. P., Dame, A., & Parriaux, G. (2019). How Beginner-
Friendly Is a Programming Language? A Short Analysis
Based on Java and Python Examples. Proceedings of the
12th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives (pp. 1-13). Larnaca,
Cyprus: Springer.

Journal of Information System Education, 34(1), 84-93, Winter 2023

93

Pereira, F. D., Fonseca, S. C., Oliveira, E. H., Cristea, A. I.,
Bellhäuser, H., Rodrigues, L., ... & Carvalho, L. S. (2021).
Explaining Individual and Collective Programming
Students’ Behavior by Interpreting a Black-Box Predictive
Model. IEEE Access, 9, 117097-117119.

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R.,
& Chathuranga, B. (2021). A Systematic Review of
Introductory Programming Languages for Novice Learners.
IEEE Access, 9, 88121-88136.

Quille, K., & Bergin, S. (2019). CS1: How Will They Do? How
Can We Help? A Decade of Research and Practice.
Computer Science Education, 29(2-3), 254-282.

Ren, Y., & Ji, S. (2021). A Study of Teaching International
Students Java Programming at Shanghai Dianji University.
International Journal of Science, 8(3), 71-74.

Robins, A. V. (2019) Novice Programmers and Introductory
Programming. In S. A. Fincher & A. V. Robins (Eds.), The
Cambridge Handbook of Computing Education Research
(pp. 327-376), Cambridge, UK: Cambridge University
Press.

Rubiano, S. M. M., López-Cruz, O., & Soto, E. G. (2015).
Teaching Computer Programming: Practices, Difficulties
and Opportunities. Proceedings of the 2015 IEEE Frontiers
in Education Conference (pp. 1-9). Texas, USA: IEEE.

Sabharwal, C. L. (1998). Java, Java, Java. IEEE Potentials,
17(3), 33-37.

Sharma, M., Biros, D., Ayyalasomayajula, S., & Dalal, N.
(2020). Teaching Programming to the Post-Millennial
Generation: Pedagogic Considerations for an IS course.
Journal of Information Systems Education, 31(2), 96-105.

Siegfried, R. M., Greco, D., Miceli, N., & Siegfried, J. (2012).
Whatever Happened to Richard Reid’s List of First
Programming Languages?. Information Systems Education
Journal, 10(4), 24-30.

Siegfried, R. M., Siegfried, J., & Alexandro, G. (2016). A
Longitudinal Analysis of the Reid List of First
Programming Languages. Information Systems Education
Journal, 14(6), 47-54.

Smith, T. C., & Jones, L. (2021). First Course Programming
Languages within US Business College MIS Curricula.
Journal of Information Systems Education, 32(4), 283-293.

Sobral S. R. (2021). The Old Question: Which Programming
Language Should We Choose to Teach to Program?.
Proceedings of the 2021 International Conference on
Advances in Digital Science (pp. 351-364). Salvador,
Brazil: Springer.

Uysal, M. P. (2012). The Effects of Objects-First and Objects-
Late Methods on Achievements of OOP Learners. Journal
of Software Engineering and Applications, 5(10), 816-822.

Wainer, J., & Xavier, E. C. (2018). A Controlled Experiment
on Python vs C for an Introductory Programming Course:
Students’ Outcomes. ACM Transactions on Computing
Education, 18(3), 1-16.

Xinogalos, S., Sartatzemi, M., & Dagdilelis, V. (2006).
Studying Students’ Difficulties in an OOP Course Based on
Bluej. Proceedings of the International Conference on
Computers and Advanced technology in Education (pp. 82-
87). Lima, Peru: ACTA Press.

Zhang, X., Crabtree, J. D., Terwilliger, M. G., & Jenkins, J. T.
(2020). Teaching Introductory Programming from A to Z:
Twenty-Six Tips from the Trenches. Journal of Information
Systems Education, 31(2), 106-118.

AUTHOR BIOGRAPHIES

Erno Lokkila is a doctoral candidate in the Department of

Computing at the University of
Turku, Finland. He is currently
working as a university lecturer and
teaches several first year computer
science courses. His PhD thesis
involves improving programming
education by identifying the students
in need and providing them with
targeted assistance. His other

research interest are gamification, learning analytics, and
programming language theory.

Athanasios Christopoulos is a Research Fellow in the Faculty

of Science at the University of
Turku, Finland. Dr. Christopoulos is
currently working for the Centre for
Learning Analytics where he
investigates matters related to digital
inclusion, educational technology
advancement, immersive
technologies, and learning analytics.
The Centre is also developing

“ViLLE,” a digital learning platform, that includes content and
exercises for studying mathematics, programming, and
languages.

Mikko-Jussi Laakso is the director of the Centre for Learning

Analytics at the University of Turku,
Finland. His main research interests
are Learning Analytics, Computer
Assisted Learning, Math &
Programming Education,
Gamification, Learning Design,
Machine Learning & AI in
Education. He has 20 years of
experience from university and

research-based development of the education through
educational technology solutions. He has published more than
100 international peer-reviewed articles, and collected more
than 4M € in R&D projects. The centre is developing an
UNESCO-awarded tool named “ViLLE” – The collaborative
education platform. The system is utilized by 60% of schools
and learners are doing more than 200,000,000 tasks annually.

Information Systems & Computing Academic Professionals

Education Special Interest Group

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2023 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2023 34(1) 84-93 First Page
	g-2201010 Final-MGT-LAM
	JISE 2023 34(1) Copyright ISSN

