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ABSTRACT 
 

Educators who teach programming subjects are often wondering “which programming language should I teach first?”. The debate 
behind this question has a long history and coming up with a definite answer to this question would be farfetched. Nonetheless, 
several efforts can be identified in the literature wherein pros and cons of mainstream programming languages are examined, 
analysed, and discussed in view of their potential to facilitate the didactics of programming concepts especially to novice 
programmers. In line with these efforts, we explore the latter question by comparing the syntactic difficulty of two modern, but 
fundamentally different, programming languages: Java and Python. To achieve this objective, we introduce a standalone and purely 
data-driven method which stores the code submissions and clusters the errors occurred under the aid of a custom transition 
probability matrix. For the evaluation of this model a total of 219,454 submissions, made by 715 first-year undergraduate students, 
in 259 unique programming exercises were gathered and analysed. The results indicate that Python is an easier-to-grasp 
programming language and is, therefore, highly recommended as the steppingstone in introductory courses. Besides, the adoption 
of the described method enables educators to not only identify those students who struggle with coding (syntax-wise) but further 
paves the pathway for the adoption of personalised and adaptive learning practices. 
 
Keywords: Computer programming, Computer science, Data analytics, Higher education, Information systems education, Program 
assessment & design 
 
 

1. INTRODUCTION 
 

Computer Science and Information Systems academic 
programs have many distinguishable goals but also share many 
elements in common. Therefore, considering the commonalities 
in these fields, it is important that educators share knowledge 
and good practices. To this end, an important concern for 
instructors from both fields is regarding the choice of the “first 
programming language” (Mahatanankoon & Wolf, 2021; 
Robins, 2019; Sharma et al., 2020; Sobral, 2021). Indeed, 
selecting a programming language that is easy to grasp—yet 
useful for novices—is critical (Wainer & Xavier, 2018) as it 
greatly influences students’ future academic and professional 
development (Medeiros et al., 2018; Quille & Bergin, 2019; 
Smith & Jones, 2021). 

Historically, the first programming languages that have 
been taught and recommended for introductory programming 
courses have been PL1, Ada, and Pascal (Sobral, 2021). Today, 

Java and Python are amongst the most popular languages 
(Perera et al., 2021), an outcome which naturally forces higher 
education professors to adopt and integrate them into the 
syllabus as early as possible (Zhang et al., 2020). 

Despite the wide adoption of these languages, their 
fundamental structure and application differ considerably. 
Therefore, gauging their advantages and disadvantages, 
especially in view of the needs and capacity that novices have, 
has received great attention (Khoirom et al., 2020; Lukkarinen 
et al., 2021). There are several requirements for choosing a 
language for an introductory programming course. These 
include trends and changes, the pedagogical aspects, and the 
language popularity both in the “real world” and in other 
academic institutions (Sobral, 2021). Trends and changes relate 
to the fluctuations in popularity of programming paradigms; the 
paradigms of popular first languages have shifted from 
procedural programming to the more modern object-oriented 
programming. Pedagogic aspects should also not be forgotten, 
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as some languages are deemed “more difficult” on the grounds 
of more verbose syntax, or conceptually difficult topics in 
programming—such as pointer arithmetic—which novice 
programmers need not worry themselves with. These 
extraneous concepts are identified as noise and any 
programming language taught to novices should have as little 
of it as possible (Pellet et al., 2019). Educational institutions are 
also setting boundaries on which languages can be taught. For 
instance, if advanced courses at an institute are taught with 
language X, is it pedagogically justified to first teach students 
language Y? All things considered, motivating students to learn 
a language that has no future use is hard to justify. 

Within the last decade, Python has risen steadily in the 
popularity ranks of programming languages (Kruglyk & Lvov, 
2012). Another measure of language popularity, which also 
considers introductory programming courses, is the “Richard 
Reid’s List of First Programming Languages” (Siegfried et al., 
2012). In Reid’s 2016 List, Python overtook the second place 
that C++ was holding, while Java has steadily held the first 
position (Siegfried et al., 2016). 

Python is a multi-paradigm language praised for its short 
and readable syntax. Learning the syntax of Python is like 
learning pseudocode (i.e., it removes the need to “unlearn” 
syntactic peculiarities when learning other languages) 
(Siegfried et al., 2016). Python is also a multi-paradigm 
language meaning that it can be used in teaching the very basics 
of imperative programming, object-oriented programming, and 
even functional programming if chosen so by the educator. 
Python also features dynamic typing which, on the one hand, 
decreases the cognitive load of learners. On the other hand, it 
“hides” the types of variables that may introduce bugs or, in the 
worst case, even faulty mental models of programming 
(Donaldson, 2003; Jain et al., 2020). Python also has 
indentation as an intrinsic part of its syntax: blocks are indented 
by whitespace, making the “art” of indenting code part of 
learning the language (Dierbach, 2014). 

Java is a purely object-oriented language. It is attractive as 
a first language because of its popularity, the existence of broad 
and complete libraries, as well as its strong static typing (Ren 
& Ji, 2021). Researchers (Khoirom et al., 2020; Sabharwal, 
1998) praise Java for its data abstraction capabilities through 
abstract data types—such as lists, hashmaps, and most of all, 
custom classes—while also pointing out several pitfalls such as 
the inconsistent naming conventions and confusing design 
decisions (e.g., the Date class). 

Ultimately, the choice of first programming language 
should be based on curricular issues and the educational 
context, whereas strong emphasis should also be paid to the 
prevalence of the language in the industry. Given that both 
Python and Java are prevalent in the industry, the remaining 
factors to consider are the advanced courses that are taught in 
an institute. This is naturally affected by the choices of the 
introductory programming languages and the pedagogical 
merits such as the syntax of the language. 

In the context of this work, we focus on the pedagogical 
aspects of those languages and seek to answer the following two 
research questions (RQs): 

RQ1: How do students’ errors differ when programming in 
Java versus when programming in Python? 
RQ2: Which language (Python, Java) is more appropriate 
for introductory programming courses in view of syntactic 
difficulty? 

2. RELATED WORK 
 

Pears et al. (2007) conducted a systematic literature review on 
empirical studies that described findings from introductory 
programming courses. For the analysis of the included works, 
the authors categorised the manuscripts in the following broad 
categories: (a) studies that discuss the language choice, (b) 
studies that compare different languages, and (c) studies that 
discuss the language selection criteria. In view of this 
classification, we discuss the key findings and implications that 
emerge from more recent works related to introductory 
programming courses. 

The comparative study that McMaster et al. (2017) 
performed contends that educators often follow a textbook, thus 
arguing that the choice of the textbook has a profound effect on 
the contents of the course. The authors computed how often 
important introductory topics are mentioned in Java and Python 
textbooks by measuring the repetition rates of specific 
programming terms. The end-goal was to shed light on the 
views that the authors of the textbooks have with regard to 
“what is considered to be important for the language.” Despite 
the efforts made, no clear conclusions were reached in view of 
the question put forward (i.e., which language would be more 
suitable to be taught as the first programming language?). 

Khoirom et al. (2020) performed an in-depth feature 
comparison of Java and Python based on diverse tests. Their 
key findings suggest that while Java executes faster, Python has 
smaller file sizes and less lines of code. They also list several 
advantages and disadvantages of both languages. The main 
advantages of Python are the learner-friendly syntax of the 
language, its open-source nature, and its multi-paradigm nature. 
On the other hand, the advantages of Java lie in its strict 
structure to guide learners’ computational thinking, its Security 
Manager which offers run-time security assurance, and the 
strict static typing that the language inherently presents. In view 
of these conclusions, they recommend educators to choose the 
first programming language on the grounds of the projects that 
the students will be working on in the future. For instance, 
future courses in developing applications should emphasise 
teaching Java first whereas institutes with courses in Machine 
Learning or Artificial Intelligence, should explore Python. 

In a language-choice paper, Uysal (2012) reports using Java 
as their introductory programming language. Since Java is at 
heart object-oriented, it forces institutions to decide early on 
whether to teach programming algorithms-first or objects-first. 
The author further argues that students who were taught Java 
objects-first, using the BlueJ IDE along with all its 
visualisations, performed better than a group of students who 
were taught objects-late, using text-based tools. An open 
question which is recommended for further examination 
concerns the impact that visualisations have when compared to 
text-based solutions. A more recent study performed by 
Rubiano et al. (2015) also concluded that teaching objects-first 
produces better results, albeit they concede that the matter of 
objects-first or algorithms-first is still under active discussion. 

Goldman et al. (2008) created a list of difficult 
programming concepts using a Delphi process in which experts 
first individually came up with a number of concepts and rated 
them according to their difficulty. Subsequently, the experts 
were provided with statistics describing how others ranked the 
same concepts. The experts then provided their final ranking 
based on this new data. The three most difficult concepts in 
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programming, starting from most difficult, were identified as: 
(1) Inheritance, (2) Recursion, tracing, and designing, and (3) 
Procedure design. 

Xinogalos et al. (2006) identified and divided the most 
frequent errors that novice Java programmers make into 10 
categories and urged educators to pay special attention to these 
when teaching Object-Oriented Programming. The categories 
include the “typical” difficulties related to syntax and general 
computational thinking, but also the difficulties like 
instantiating objects, declaring constructors, and specifying 
inheritance relationships. It is notable that all the provided 
categories were still pertinent and as challenging in the more 
recent study that Goldman et al. (2008) performed. 

Jadud (2005) analyzed 1,926 errors generated by 
undergraduate students using the BlueJ Java IDE. The key 
element that was considered for the analysis was the rate of 
moving between executable and non-executable code. The 
findings of this work were later incorporated into the Error 
Quotient metric (Jadud, 2006). According to Jadub (2005), “the 
five most common errors account for 58% of all errors 
generated by students while programming: missing semicolons 
(18%), unknown symbol: variable (12%), bracket expected 
(12%), illegal start of expression (9%), and unknown symbol: 
class (7%)” (p. 30). A surprising statement by Jadud (2005) is 
that for any given failed compilation event, the next event will 
also be a failed event with a probability of 44%. Kohn (2019) 
analyzed 4,091 secondary school students’ Python errors using 
a custom-made parser. Three of the most frequent error 
messages were: (a) name error (35.7%), (b) indentation error 
(14.9%), and (c) type error (8.5%). These types together already 
add up to 59.1% of all student errors in Python. 

The work of analysing student behaviour statistically has 
been taken to the next level, as machine learning models have 
been brought to bear on the problem. Pereira et al. (2021) 
describes one such machine learning method, which they prove 
significantly outperforms the traditional measures. They use 
multiple different variables, such as mid-term grades, different 
patterns in keystrokes, and copy-paste events. The model 
presented in this study is simpler, as it only uses student code 
submissions. 

An interesting comparison is to see how Kohn’s (2019) 
ratios of Python errors compare to Jadud’s (2005) Java error 
ratios. The Java version of “name error” (i.e., unknown symbol) 
can be found in Jadud’s (2005) list of novice errors with 19% 
of errors being of this type. The Java version of “type error” 
(i.e., incompatible types) is 4.3% compared to 8.5% in Python. 
Indentation error from Python is not so simple to transform to 
strict Java-errors, but generally related to it are the error classes 
“Bracket expected” (especially those related to { or } ), “illegal 
start of expression” (which occurs when students write code 

outside a method), and “class of interface expected” (which 
occurs when students write code outside a class). Summing 
these three error classes gives us a sum of 24.61%. Since all 
these errors certainly are not block-related, we can 
conservatively estimate a third of these being block-related. 
This gives us an 8.2% error in indentation in Java versus 14.9% 
in Python.  

Although there are several studies (Khoirom et al., 2020; 
Pellet et al., 2019) that compare programming languages in 
general or the syntactic features of Java and Python in 
particular, we were unable to identify any study that measures 
the difficulty of the syntax of a given language using a data-
driven approach. Based on this inadequacy of the literature, in 
the present work, we compare Python and Java in terms of the 
errors novice students make with the language. Accordingly, 
we determine which language is easier for students to program 
in using a data-driven approach. 

 
3. MATERIALS AND METHODS 

 
The data was collected using a learning management system 
called ViLLE (Laakso et al., 2018). The platform enables 
teachers to distribute automatically assessed exercises, such as 
programming assignments or multiple-choice questions, to 
students. For the needs of this study, we chose two Python and 
two Java courses. In total, we collected code submissions 
(n=219,454) from 259 programming exercises made by 715 
undergraduate Computer Science students (first-year college 
students). Although we do not control for demographics 
explicitly, the sample consisted mostly of Caucasian adults (18-
22 years of age). The dataset contained two students who took 
both the Java and the Python course. 

Each submission contained the following data points: (a) 
user, (b) timestamp, (c) code, and (d) score. The courses were 
given in one of the following Higher Education institutions: (a) 
University of Turku, (b) Open University of Turku, or (c) Turku 
University of Applied Sciences. It should be noted that the 
Open University of Turku offers undergraduate courses from 
the University of Turku, to the general public for a fee. Thus, 
courses C1 and C2 used the same course materials but C3 and 
C4 different. Additionally, courses C2 and C3 were taught by 
the same instructor. A more detailed description of the data can 
be found in Table 1. 

 
4. PROPOSED METHOD 

 
To analyse learners’ programming behavior, we propose a 
novel method which—for simplicity purposes—we call “the 
transition matrix.” Computing the transition matrix is possible 
given the following data points: (a) the submission history of a 

        
Course Code Year Language Institution Students Assignments Submissions 
Algorithms & 
Programming 

C1 2017 Java University of Turku 294 86 124,697 

Algorithms & 
Programming 

C2 2018 Java Open University of Turku 58 73 24,291 

Introduction to 
Programming 

C3 2020 Python University of Turku 92 55 21,164 

Introduction to 
Programming 

C4 2020 Python Turku University of 
Applied Sciences 

273 45 49,302 

Table 1. Overview of the Primary Data 
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student and (b) the timestamp for each submission. We use the 
term “submission” for the generated program code via which a 
student attempts to solve the given assignment. Further data 
points can be inferred from these given two data points, such as 
whether executing the code ended in an error or an infinite loop. 

To compute the transition matrix, we introduced a state 
machine based on the following states (Sx): 

S1 Met success, when the student first succeeds in 
compiling the code after one or more unsuccessful 
compilation attempts. 

S2 Met error, when the student first encounters an error 
that prevents execution of code. 

S3 Confused, when the student’s previous attempt was 
not successful and the current attempt also gave an 
error. 

S4 Runtime error, when the student’s attempt ended with 
a runtime error. 

S5 Unmodified error submission, when the student 
resubmits an erroneous code with no modifications. 

S6 Unmodified success submission, when the student 
resubmits an executable code with no modifications. 

S7 Repeated success, when the student submits 
compiling code after one or more successful attempts. 

S8 Success on first attempt, when the student’s first 
submission is correct and solves the given assignment 
with full marks. 

 
The adjacency matrix for the state machine is shown in 

Table 2. The algorithm to compute the transition matrix is as 
follows: 

1) Create consecutive pairs from all compilation events in 
a session: (𝑒𝑒1, 𝑒𝑒2), (𝑒𝑒2, 𝑒𝑒3), . . . , (𝑒𝑒𝑛𝑛−1, 𝑒𝑒𝑛𝑛) based on the 
event timestamp. 

2) For each event pair, mark which state transition 
occurred in the transition matrix. 

3) For each cell in the transition matrix, divide the value of 
the cell by the sum of all events on the same row. 

 
This results in a matrix of the probabilities which describes 

the probability of each state transition for a given student. This 
matrix can then be used for further analysis to, for instance, 
cluster students based on their transition matrices or to derive a 
single value corresponding to the skill level of the student. 

 
 S1 S2 S3 S4 S5 S6 S7 
S1  X  X X  X 
S2 X  X  X X  
S3 X  X  X X  
S4  X  X X  X 
S5 X  X  X X  
S6 X  X  X X  
S7  X  X X  X 

Table 2. The State Machine Adjacency Matrix (rows are 
start states and columns are the end states) 

 
5. RESULTS 

 
All submissions were first compiled and any compiler error 
messages were collected. The Java code was compiled with 
JDK13 and the Python code using the inbuilt compile method. 

The successfully compiled submissions were then executed and 
any run-time errors were collected. If program execution took 
longer than 2 seconds, the program was terminated and the 
submission was marked as “infinite loop.” The submission 
details are presented in Table 3. 

As mentioned earlier, Python is marketed as an easy-to-
learn language with simple syntax, whereas Java is more 
difficult due to the inherently verbose syntax (Khoirom et al., 
2020). This conclusion is verified as, nearly 60% of all student 
Java submissions, could not be executed successfully, whereas 
the error rate for Python is only slightly over 50% (Table 3). To 
determine whether this difference is statistically significant, we 
performed a chi-square (χ2) test of independence. The test 
confirmed the significance of the result with p<0.001 (χ2(1, 
219,454)=1070.2719). This leads us to conclude that novice 
programmers are, indeed, more likely to create working and 
executable code in Python. Interestingly, C4 has noticeably 
more compilation errors but fewer run time errors than C3, even 
though both are Python courses. As the courses were given in 
different universities, we hypothesised that this may be 
attributed to the pedagogical focus each course had. For 
instance, the quality of course materials, the delivery method, 
or students’ differences in pre-existing knowledge of 
programming may also explain the difference in part. 
Nevertheless, we do not possess any data to explore these 
hypotheses any further and thus, this observation is 
recommended for future research (i.e., How much do each of 
these differences contribute to overall error counts?). A 
startling observation is that more than half of the student 
attempts ended in an error. This naturally raises the following 
question: What were the errors that students received? In view 
of this question, we list the most frequent errors that learners 
received for both Python and Java in the following sections. 

 
5.1 Java Errors 
The five most common errors in Java comprise 50% of all the 
errors students encounter and are as follows (Table 4): (1) 
“Missing semicolon” (11.19%), (2) Unknown variable (10.9%), 
(3) Missing bracket (10.13%), (4) Type errors (9.15%), and (5) 
Unknown method (8.68%). 

 
5.2 Python Errors 
The two most frequent errors in Python account for 52% of all 
errors students encountered (Table 5). These errors are: (a) 
“Invalid syntax” (30.32%) and (b) “Using undeclared 
variables” (21.68%). The “Invalid syntax” error is encountered 
when compiling (using the inbuilt compile-method) Python 
code and is given when students, for instance, forget colons, 
parentheses, or commas. In order to make a reasonable 
comparison to Java, the Python error “Invalid syntax” roughly 
corresponds to a combination of the Java errors at ranks 1, 3, 6, 
8, 15, and 16 for a combined error ratio of 31.26%, which is not 
that different from the rate of syntax errors for Python. 

 
5.3 Cluster Analysis of the Courses 
After generating the transition matrix for each student, an 
unsupervised machine learning technique was utilised to 
identify inferences from the gathered data. For the needs of this 
work, the k-means clustering algorithm was utilised. When  
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clustering students, we ignored all transitions which ended in 
either 𝑆𝑆5 (unmodified error submission) or 𝑆𝑆6 (unmodified 
success submission), as these states do not give any meaningful 
information on the skill of the student (e.g., a student may 
resubmit code to verify an error message or to reread the 
output). 

 

 
 
 
 

 
 

Rank Error Rate Rank Error Rate 

1 Semicolon expected 11.19 % 11 Reached end of file while 
parsing 2.53 % 

2 Unknown variable 10.90 % 12 op application error 2.45 % 
3 Bracket expected 10.13 % 13 Method application error 2.34 % 
4 Incompatible types 9.15 % 14 String index out of bounds 2.28 % 
5 Unknown method 8.68 % 15 Not a statement 2.18 % 
6 Illegal start of expression 5.65 % 16 Illegal start of type 2.11 % 
7 Missing return statement 4.16 % 17 Unknown class 2.08 % 
8 <identifier> expected 3.82 % 18 Variable already defined 1.56 % 

9 Array index out of bounds 3.07 % 19 invalid method signature; 
return type required 1.13 % 

10 class, interface, or enum 
expected 2.57 % 20 ‘else’ without ‘if’ 1.04 % 

Table 4. Most Common Errors in Java 
 

Rank Error Ratio Rank Error Ratio 
1 Invalid syntax 30.32 % 11 Using variable before assignment 1.59 % 
2 Using undeclared variable 21.68 % 12 Wrong number of parameters passed 1.42 % 
3 Invalid literal for base conversion 5.33 % 13 Object not callable 1.10 % 
4 Unsupported operand type(s) 4.51 % 14 Non-integer index 1.10 % 

5 Using missing attribute 4.37 % 15 Not all args converted in string 
formatting 0.84 % 

6 Expected an indented block 4.22 % 16 Object not subscriptable 0.81 % 
7 Unexpected indent 2.89 % 17 Wrong type parameter passed 0.81 % 
8 Index out of range 2.37 % 18 Wrong types for concatenation 0.74 % 
9 Object to iterable 2.31 % 19 ‘return’ outside function 0.70 % 

10 Unindent does not match outer 
indentation 1.90 % 20 Using missing object attribute 0.60 % 

Table 5. Most Common Errors in Python 
 

 Cluster N Avg. submissions Avg. time on task Avg. error rate % 
Java G1 131 596.74 1187.74 61.82 

G2 178 370.81 807.31 48.49 
G3 43 111.84 538.06 32.18 

Python G1 159 304.02 1739.41 49.06 
G2 151 121.85 972.04 48.21 
G3 55 67.76 565.0 35.82 

Table 6. Naïve Metrics of Skill for Clusters’ Creation 

Course Language Successes Compile errors Run-time errors Timeouts Error rate 
C1 Java 51,250 67,207 5,280 960 58.9% 
C2 Java 9,780 13,211 1,026 274 59.7% 
C3 Python 10,075 3,418 7,492 179 52.4% 
C4 Python 24,013 13,402 11,398 489 51.3% 

Table 3. Overview of the Submissions Made across the Four Courses 



Journal of Information System Education, 34(1), 84-93, Winter 2023 

89 

For both programming languages, group G1 performs 
poorly on all these metrics, whereas group G3 outperforms all 
the other clusters. In order to verify this observation, we 
examined the distribution of the data (number of average 
submissions, average time on task, error rate of both languages) 
separately, using the Shapiro-Wilks Normality Test, and 
accordingly performed an Analysis of Variance (ANOVA) on 
the attributes. All tests yielded significant variation between the 
groups (p<.05). Given that the one-way ANOVA does not 
specify which groups are different, however, we performed a 
post-hoc Tukey’s HSD test to verify the observed differences. 
We found statistically significant differences between the 
attributes of all groups (p<.001) except two: the “Error rate” in 
Python between G1 and G2 and the “Average time on task,” 
also in Python, between G2 and G3. 

Further analysis of the formed clusters revealed that the 
distribution of errors within clusters is remarkably similar. 
Figure 1 shows the seven most common compiler error types in 
Java and how many students made the error, ordered into 
descending order by G3, which we believe is the cluster 
containing the top-performers. 

The data for Python errors revealed a similar phenomenon, 
hence no figure is provided. The ordering of errors is not 

surprising, however. The interesting observation here is that the 
number of errors made by the different clusters follows a 
seemingly similar ratio. This implies that generating these 
errors tends to be more a matter of lack of attentiveness and 
routine as opposed to a misconception about programming or 
lack of skill. An interesting outlier in the most common errors 
is the type compiler.err.cant.deref, which manifests in error 
messages such as “int cannot be dereferenced.” This is caused 
by attempting to call a method on a primitive value, as in the 
following code snippet: “int i=5; i.methodCall();”. This begs 
the question “which errors are those that G3 did not make, but 
G1 and G2 did?”. 

While all clusters made errors, G1 made the most number 
of distinct error types (67), G3 the least (38) and G2 in between 
these (61). This further confirms our assumption that the 
formed clusters represent groups of students with different 
programming skill levels. We found a total of 31 different error 
types that were made only by either G1 or G2, but not G3. A 
majority of these errors occurred only a few times. Table 7 
shows, for Java, the errors which were done most often. We 
chose the cutoff point to be the mean value of the occurrences 
(8). The same analysis for Python data indicated that all errors 
made by G1 and G2 were also created by G3. 

 
Figure 1. Top 7 Errors Ranked in Descending Order According to G3 
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Error Occurrences 

(students) 
Unclosed string literal 47 
Array dimension missing 39 
Empty character literal 22 
Illegal start of statement 18 
Missing method body 17 
Break outside loop or switch-case 16 
Integer literal too large 11 
Cannot assign value to final variable 10 

Table 7: Java Errors Which Were Made by G1 and 
G2, but Not G3 

 
To facilitate the reading of the above mentioned 

observations, we plotted the students according to their total 
score and their number of submissions in view of cohort-
clusters. As Figure 2 illustrates, strong students clumped 
together with high scores and low submissions, whereas the 
total score of the others grows with the number of submissions. 

 

 
Figure 2. Clustering of Python Students in C3 and C4 

Using a Model Trained with Python Data 

 
When interpreting Figure 2, it should be noted that students 

in the course had been continuously encouraged by the lecturer 
to work collaboratively. It is, therefore, likely that some 
students from G1 were helped by their peers which, in turn, 
enabled them to achieve the maximum score on the course. In 
either case, based on the available data, we can conclude that 
clustering the transition matrix using the k-means algorithm 
can, indeed, separate students into distinct groups. 

Next, we determined whether the difficulty of Java and 
Python is comparable. Our null hypothesis is that there is no 
difference in the difficulty of the two languages. If this 
hypothesis holds true (i.e., the two languages are indeed of 
equal difficulty), using a trained k-means model from one 
course to cluster the other should not produce a significant 
change in the clustering result. To test our hypothesis, we 
computed a transition matrix for all students in C1 and C2 and 
trained the model (k=3). We then computed transition matrices 
for all students from C3 and C4 and used the trained model to 
cluster them. The results are described in Table 8. 

 
Cluster Size Avg. 

submissions 
Avg. time 
on task 

Avg. error 
rate % 

G1 9 407.78 2498.0 58.72 
G2 181 266.29 1563.42 49.74 
G3 175 106.27 841.76 42.97 

Table 8. Python Data Clustered with a Model Trained 
on Java Data (compare with Table 6) 

 
The resulting clustering was strikingly different (Figure 3). 

Not only did the cluster sizes change significantly, but 
remarkably most students “moved up” from their cluster, when 
compared to Figure 2. 

Precisely, most students in G1 in the Python-trained model 
were in G2 in the Java-trained model and nearly all students 
from G3 in the Python-trained model remained in the best-
performing cluster. Consider our null hypothesis of no 
difference in difficulty. If the students on the Python courses 
had been on the Java courses and performed as they did on the 
Python course, almost none of them would have been in the 
struggling group (G1). Thus, we reject the null hypothesis and 
accept that Python and Java are different in their difficulty, with 
Python being the easier language to create working code. 

 

 
Figure 3. Clustering of Python Students in C3 and C4 

Using a Model Trained with Java Data 

 
6. DISCUSSION 

 
In this work, we sought to find which language—Java or 
Python—is syntactically easier for novice programmers to 
learn. In our mission to attain this objective, we introduced a 
complete, data-driven approach, which can be used to examine 
and compare the difficulty of different programming languages. 
This is especially true when introduced in the context of 
introductory programming courses and further highlighted the 
differences that novices face when learning one of the two most 
commonly used first languages. In the remaining discussion, 
while considering the two-fold contribution of this work, we 
provide direct answers to the Review Questions put forward and 
further complement them with guidelines that can assist 
educators and instructors to reform and reconstruct their 
courses (be it introductory or advanced). 

The choice of first programming language is important, but 
not critical (Pellet et al., 2019), as introductory programming 
courses tend to have high dropout rates (McCracken et al., 
2001; Medeiros et al., 2018; Quille & Bergin, 2019). Choosing 
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a language where students make, on average, fewer mistakes is 
beneficial to improving self-efficacy as it is highly linked with 
motivation (Öqvist & Malmström, 2018). The data that 
emerged from this exploratory study shows that Python is easier 
for students to program in, at least when compared to Java. 
They make fewer errors and, therefore, need fewer attempts to 
compile working code. In view of this, we can expect a positive 
motivational boost on their attitude toward programming, 
especially at this fragile stage where most of the concepts taught 
are new. This outcome does not ultimately mean that Python is 
“the best” choice. Other factors need to be considered as well, 
such as which related courses that the institution offers (Sobral, 
2021). 

The choice of language does not seem to affect the types of 
errors students make. Receiving errors like “syntax error” and 
attempting to use “undefined variables” top the charts for both 
languages. Having awareness of the most common errors that 
novices make enables more efficient teaching. Developers, 
therefore, are advised to create tools, error messages, and other 
resources—specifically addressed for novices—on how to 
solve these errors. Teachers and instructors can focus on the 
causes and how to correct them in-class, enabling students to 
quickly build better programming routines. Researchers can 
utilise this knowledge to build better models and possibly 
design even better programming languages for novice 
programmers. 

While analysing the errors of both languages, it became 
apparent that roughly 30% of them were related to syntax. 
When considering all the errors, the difference between 
languages grew to roughly 60% of attempts for Java and only 
slightly over 50% for Python. The three most commonly made 
errors in Java were “Missing semicolon,” “Missing bracket,” 
and “Unknown variable.” These three errors account for 
roughly 30% of all errors made. The three most commonly 
made errors in Python were syntax errors (such as missing 
commas or semicolons), using “undeclared variables,” and 
“providing faulty arguments” to the inbuilt int-method, which 
transforms strings of digits into an integer. These three error 
types cover over 55% of all errors encountered by students in 
our dataset. Educators and instructors, therefore, are advised to 
pay particular emphasis when delving into these topics. 

Another way to facilitate students learning can be via the 
provision of more exercises targeted to these topics. Since the 
provided data-driven approach was seemingly able to divide 
students into similarly performing clusters, teachers and 
educators can focus their efforts on the worst-performing 
cluster and offer these exercises to the portion of students who 
truly need them. How to most effectively help the students 
identified as needing help is outside the scope of this paper and 
remains subject to further study. 

The merits and the challenges that Python and Java present, 
when introduced in introductory programming courses have 
been examined via the proposed transition matrix in which we 
trained a k-means clustering model using independent datasets 
(Java or Python groups). To facilitate the clustering process, we 
chose the number of groups to be three (k=3), so as to divide 
students into a high-performing group (G3), average group 
(G2), and low-performing group (G1). We proved that these 
groups were distinct, as determined by the average number of 
submissions, the average time spent on assignments, and the 
error rates.  

We created one clustering of the transition matrices for the 
Python group (C3 and C4 from Table 1), using the Java-trained 
model, and another using the Python-trained model, then 
compared them. With the Java trained model, G3 comprised 
nearly half of the students and G2 the other half. Only nine 
students were left in G1, the low-performing group. Whereas 
with the Python-trained model, both G3 and G2 comprised of 
over 40% of the sample, whereas G1 enclosed 15% of all 
students. This difference in cluster sizes can be explained by 
considering the difference in language difficulty.  

Since these are all introductory programming courses, we 
assume that, in terms of distributions, no major knowledge-
related differences exist between the students who took the Java 
course and those who took the Python course. That is, we 
assume that the percentage of students who have previous 
experience in programming is similar between all courses, as 
well as the percentage of students who do not have any previous 
experience. This allows us to interpret the difference in the 
cluster sizes to the mean values under the assumption that, all 
else being equal, if the students who took the Python course had 
instead taken the Java course, only 9 students out of 356 would 
have struggled with programming. This result is very unlikely, 
given the extensive literature on the difficulty of programming 
(e.g., McCracken et al., 2001; Jadud, 2005; Kohn 2019; Quille 
& Bergin, 2019). Thus, we can safely conclude that Python is 
easier for novice programmers to grasp. 

 
7. LIMITATIONS AND FUTURE DIRECTIONS 

 
For the replicability of the study, the following limitations and 
delimitations should be taken into account. First, we did not 
check what percentage of exercises was shared between courses 
with the same language. For instance, if one course had 
exercises which had significantly harder questions with longer 
answers, it is possible that differences in error rates and counts 
are due to the exercise difficulty. This could partially explain 
why C4 had significantly more compile errors and fewer run-
time errors than C3. Nevertheless, we mitigated this issue by 
including two courses in our dataset as a means to average out 
any differences. We also did not account for different 
pedagogic approaches used in the different courses. As the 
courses using the same programming language had almost 
exactly the same error rate (overall), however, we believe the 
courses applied the same pedagogic approach. We currently 
have no explanation for why C3 and C4 error types (compile 
versus run time) differed to such a degree. Finally, we did not 
introduce any test to identify cohorts’ prior experience with 
programming or programming skills. Therefore, it is possible, 
albeit very unlikely, that the students in the Python group had 
significantly more programming experience than the students in 
the Java group. We have no reason to believe any drastic 
difference exists in the starting skill level between novice Java 
learners and novice Python learners, given that both cohorts are 
first-year undergraduate students with no previous contact with 
programming or individuals (from the general public) who are 
simply interested in learning programming. 

This study only scratched the surface regarding the 
different error types that students of different skill levels 
generate. We observed that the students identified as top-
performers did not make certain types of errors at all. Further 
studies should find fruitful ground in determining whether 
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specific errors or patterns of generated errors correspond 
directly to a misconception in programming. 

The data collection model and the clustering method 
described in this work can be adopted by educators and 
practitioners worldwide to discover their learners’ 
programming patterns or trends as well as their skill levels so 
that they can efficiently cluster them into distinct groups. These 
groups can be offered targeted exercises to aid in learning 
programming. For instance, the worst performing group may be 
offered simpler syntax-based exercises (since that is what they 
struggle with), whereas the other groups may instead be given 
more challenging algorithmic or problem-solving focused 
exercises. 

This study also paves the way for interesting research 
directions. By clustering programming students, educators can 
provide learners with adaptive exercises, adjusted to their 
particular needs and tailored to their capabilities. Combining 
the capability to cluster students and existing models for 
processes that cause errors in student programming (c.f., Ko & 
Myers 2003) can further increase our understanding of 
programming errors, their causes, and better ways to teach 
programming. Other future works can look into the verification 
of the clusters, their validity, and practical application. In 
addition, researchers may consider the collection of qualitative 
data so that the key findings can be further related to and cross-
referenced with the clusters. For instance, exploring learners’ 
feelings over programming may reveal whether the worst-
performing students also have negative feelings toward 
programming. Finally, in terms of adaptive and personalised 
learning, another direction may be the introduction of 
procedures capable of providing struggling students with 
additional learning material (e.g., recommendations for further 
reading) or targeted exercises. The impact of such intervention 
can then be evaluated on a weekly basis as new data will 
emerge. 
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