

Journal of
Information
Systems
Education

Volume 33

Issue 3
Summer 2022

Teaching Tip
Using SQL to Create and Mine Large, Customizable

Datasets

Reagan Siggard, Pamela A. Dupin-Bryant, Robert J.
Mills, and David H. Olsen

Recommended Citation: Siggard, R., Dupin-Bryant, P. A., Mills, R. J., & Olsen, D.
H. (2022). Teaching Tip: Using SQL to Create and Mine Large, Customizable
Datasets. Journal of Information Systems Education, 33(3), 209-228.

Article Link: https://jise.org/Volume33/n3/JISE2022v33n3pp209-228.html

Initial Submission: 20 April 2021
Minor Revision: 24 August 2021
Accepted: 3 November 2021
Published: 15 September 2022

Full terms and conditions of access and use, archived papers, submission instructions, a search tool, and

much more can be found on the JISE website: https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://jise.org/Volume33/n3/JISE2022v33n3pp209-228.html
https://jise.org/

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

209

Teaching Tip

Using SQL to Create and Mine Large, Customizable
Datasets

Reagan Siggard
Department of Data Analytics and Information Systems

Utah State University
Logan, UT 84322, USA
reagan.siggard@usu.edu

Pamela A. Dupin-Bryant

Department of Data Analytics and Information Systems
Utah State University

Tooele, UT 84074, USA
pam.dupin-bryant@usu.edu

Robert J. Mills

Department of Data Analytics and Information Systems
Utah State University

Logan, UT 84322, USA
bob.mills@usu.edu

David H. Olsen

Department of Information Systems and Analytics
Dixie State University

St. George, UT 84770, USA
david.olsen@dixie.edu

ABSTRACT

The SQL-Explore Learning Module detailed in this teaching tip provides an opportunity for students to apply database course
knowledge beyond solving traditional pre-determined Structured Query Language (SQL) coding questions. In this unique
constructivist activity using the apropos 5E Instructional Model, students explore tables to locate data anomalies, trends, and other
key findings in a 100,000-invoice dataset. Detailed instructions and the source code needed to facilitate this innovative learning
experience are included. Based on student feedback, 100% of study participants strongly agree or somewhat agree that exploring
datasets through the SQL-Explore Activity enhances their knowledge of SQL.

Keywords: Structured query language (SQL), Constructivist learning, 5E instructional model, Data exploration, Data anomalies

1. INTRODUCTION

Business analytics is disrupting the marketplace. To prepare
students for future careers, instructors must provide students
with experiences in turning data into information. The market
for business analytics and data management graduates has
exploded in the past five years with no signs of slowing

(Glassdoor, 2021; Oostendorp, 2019; Sasso, 2018). Graduates
with a strong foundation in Structured Query Language (SQL)
are in high demand for careers in business analytics and big data
(Hale, 2020). Although students use several tools for data
analyses, SQL remains an effective tool for detecting data
anomalies (i.e., irregularities or inconsistencies in datasets). In
the oft-cited “beer and diapers” example, the original

mailto:reagan.siggard@usu.edu
mailto:pam.dupin-bryant@usu.edu
mailto:bob.mills@usu.edu
mailto:david.olsen@dixie.edu

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

210

connection was not found using “data mining or other types of
advanced analysis. Heath and her team used SQL queries”
(Swoyer, 2016, para. 7). By writing SQL queries, a correlation
was found between beer and diaper sales. While subsequent
studies showed mixed results on validity, the original
beer/diaper example highlights the potential benefits of SQL as
an exploratory tool. In this case, the example is used as a
motivational technique to excite students to dive deeper into the
data.

Effectively teaching data analysis includes both new and
familiar challenges. Faculty and training practitioners face an
evolving need for larger data sets to more effectively implement
analytics concepts (Yap & Drye, 2018). A familiar challenge to
design business analytics instruction relates to the lack of
instructional design background possessed by those responsible
for delivering the content. “Technology training is not immune
to spray-and-pray training techniques where information is
thrown out with the hope some of the content will stick” (Mills
et al., 2015, p. 20). Further, academic textbooks on data analysis
often focus on solving pre-determined coding questions rather
than creating activities to encourage data exploration. There is
an apparent need for activities rooted in systematic instructional
design that encourage data exploration of large datasets and

enhance student learning. This teaching tip provides an
innovative solution to this educational need by helping
educators (i) create large datasets, (ii) design an explorative
data analysis activity, and (iii) update exploratory activities and
anomalies.

The SQL-Explore Learning Module outlined in this paper
details an opportunity for students to apply their upper-division
or graduate database course knowledge to find data anomalies,
trends, and critical findings within a dataset. To overcome the
challenge of creating larger datasets, the Invoice Dataset SQL-
Setup Code (Appendix A) automatically generates random
invoices to the desired number of records in Microsoft SQL
Server. For this example, the SQL code generates 100,000
invoices, though an instructor implementing this activity can
select more (e.g., 1 million invoices) or fewer invoices based on
educational preference. The instructor can also update the
dataset (through the SQL-Setup Code) differently each iteration
to provide their students with an updated, unique dataset. Table
1 highlights the benefits of implementing this SQL exploratory
learning module in academic settings.

This teaching tip is organized as follows. Section 2
introduces the instructional design considerations used for
developing the SQL-Explore Learning Module. Section 3
guides instructors on creating the invoice dataset and embedded
anomalies used in the activity. Section 4 illustrates the SQL-
Explore Activity used in the study. Section 5 presents student
feedback based on SQL coding submissions along with
questionnaire results and instructor feedback. Section 6
provides conclusions, recommendations, and lessons learned
from this research project.

2. INSTRUCTIONAL DESIGN CONSIDERATIONS

2.1 Selecting an Instructional Design Strategy
Based on prior research, about 50 percent of instructional
design practitioners working in industry use specific
instructional design theories. In contrast, a higher percentage
(86 percent - not mutually exclusive) rely on brainstorming with
those involved in the project (Christensen & Osguthorpe,
2004). According to Mayer (2019), there are three phases in
conceptualizing learning, instruction, and assessment
(behaviorist, cognitivist, and constructivist). Among these,

behaviorism learning outcomes are based on response
strengthening (e.g., drill and practice), cognitivist on
information acquisition (e.g., increasingly complex practice
problems), and constructivist on knowledge construction and
exploration (e.g., learner developing their inquiries) (Mayer,
2019).

The primary goal of this SQL-Explore Learning Module is
for students to explore large invoice datasets to find data
anomalies, descriptive statistics, and trends within a dataset to
learn how to approach large data sets in their future careers.
Given the overriding goal, a constructivist approach to design
using the 5E Model of Instruction was selected (Jackson, 2021;
Pappas, 2016). A constructivist approach treats the role of the
learner as an explorer where the primary instructional strategy
is to create puzzlement to afford exploratory opportunities
(Christensen, 2008). Treating the learner as an explorer gives
the learner a role similar to industry, where they will seek
answers to questions through exploring rather than solving pre-
determined questions.

2.2 Implementing the 5E Instructional Model
The 5E is a constructivist model widely used in Science,
Technology, Engineering, and Math (STEM) education. The

Educational Challenge Teaching Module Benefit
Creating large datasets for students to
explore.

• Invoice Dataset-SQL Setup Code provided in Appendix A automatically
generates as many invoices as the instructor desires.
• 100,000 invoices in paper form would stack ~ 33 feet high. 
• 1,000,000 invoices in paper form would stack ~ 328 feet high. 

Limited SQL activities for data
exploration.

• Exploratory learning module utilizes a constructivist educational approach that
encourages students to explore data to locate data anomalies instead of being
limited to solving pre-determined coding questions.

Updating data anomalies each semester. • Invoice Dataset-SQL Setup Code provided in Appendix A can be easily updated
each semester to introduce a wide variety of unique data anomalies.

Table 1. Benefits of Implementing SQL Exploratory Teaching Module

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

211

philosophies of educational theorists John Dewey, Johann
Herbart, Jean Piaget, and Lev Vygotsky provide the foundation
for the 5E Instructional Model. The model emphasizes a
constructivist approach to learning in which people “construct”
knowledge and meaning through their experiences (Bybee,
2009; Bybee et al., 2006).

The phases of the 5E Instructional Model include (E1)
engagement – engage students in the learning task; (E2)
exploration – help students explore related ideas and skills; (E3)
explanation – provide students with a common use of terms,
skills, and concepts relative to the learning experience; (E4)
elaboration – challenge and extend students conceptual
understanding and skills; (E5) evaluation – provide feedback

on the adequacy of student explanations and abilities. Each of
the distinct phases is supported by research and has been widely
applied in diverse educational settings. Several studies
highlight the implementation of the 5E Instructional Model as
a successful guide for teaching data analytics and database
concepts (Dupin-Bryant & Olsen, 2014; Olsen & Dupin-
Bryant, 2016; Piyayodilokchai et al., 2013). Research indicates
students who learned SQL via the 5E constructivist model
significantly outperformed their peers in understanding SQL
concepts and the ability to apply SQL (Piyayodilokchai et al.,
2013). Table 2 highlights each phase in the 5E Instructional
Model and design considerations implemented in this SQL-
Explore Learning Module.

(Phase 1) Engagement – Engage students in the learning task.

• The instructor should showcase the importance of the SQL-Explore Activity and the augmentation of the industry practice.
Based upon the instructor’s experience/background, the method of showcasing the importance will vary. By sharing
interesting and relevant examples, students understand the significance of the task and become engaged in the learning
process.

• Instructors should introduce the ‘diapers and beer’ study to illustrate the potential benefits of using SQL to locate data
anomalies (Step 1 – SQL-Explore Activity).

• Before challenging the students to explore data, they should first complete several pre-created queries that help them prepare
to analyze the data (Step 2 – SQL-Explore Activity). These queries focus on summary statistics and other data understanding
techniques to help guide the student toward more exploratory questions.

(Phase 2) Exploration – Help students explore related ideas and skills.

• The main goal of this phase is for students to write exploratory queries to comprehend the dataset and locate data anomalies
(Step 2 – SQL-Explore Activity).

• This exploration experience provides students with a common base of activities to help them explore the dataset and generate
new ideas for query development.

(Phase 3) Explanation – Provide students with relevant terms, skills, and concepts.

• Prior knowledge of SQL and accounting will prove helpful in implementing this module. Students will need to know the
basic structure of an invoice and related accounts payable and receivable processes. The necessary SQL knowledge is
described in section 4.1 and should be familiar to students in an upper-division database management course.

• Students’ prior knowledge of accounting and SQL will be essential throughout the activity. Knowledge can be reinforced
using additional materials in textbooks, slide sets, and the course learning management system.

(Phase 4) Elaboration – Challenge and extend students' conceptual understanding and skills.

• After completing the exploratory queries, the instructor could add enhanced activities for students to encourage them to
explore the data with different technologies, including Tableau, Python, Excel, PowerPivot, or PowerBI, to better “tell the
story” of the invoice dataset.

• The instructor should provide an opportunity for students to verbalize and summarize their findings from their experience
exploring the invoice dataset (Step 3 and Step 4 – SQL-Explore Activity).

(Phase 5) Evaluation – Provide feedback on the adequacy of student explanation and abilities.

• The instructor should ask students to share their findings and conclusions (Step 4 – SQL-Explore Activity).
• After students share their discoveries, the instructor can reveal what anomalies are purposefully built into the dataset to test

their knowledge. To enhance learning SQL advanced coding techniques, the instructor may choose to share the complete
Invoice Dataset-Setup Code (Appendix A) with students.

• Students should take time to reflect and discuss what other resources would help complete this activity.

Table 2. 5E Instructional Model Summary and Constructivist Design Considerations

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

212

3. DESIGNING THE SQL - EXPLORE ACTIVITY

3.1 Preparing the SQL-Explore Activity
This section provides step-by-step instructions instructors can
use to build a 100,000-invoice dataset. The instructor begins by
setting up a generic, read-only account for all students to access
(e.g., Username: invoice and Password: invoice) in Microsoft
SQL Server. Before the SQL-Explore Activity, the instructor
should run the Invoice Dataset-SQL Setup Code (Appendix A)
to create the dataset.

This code runs as one fluid program yet contains five
unique sections. The following will highlight the purpose of
each code section. Comments are also provided in the code to
identify the section’s purpose. Section 1 of the code includes

preparation activities: (i) kills the process using the invoice
database if it already exists, (ii) drops the database if it already
exists, and (iii) creates and sets up a new database.

3.2 Creating the Tables and Stored Procedure
Section 2 of the code (i) generates the initial invoices table, (ii)
creates and populates the customer table, and (iii) creates a
stored procedure (USP_GENFAKEINVOICE) to generate the
100,000 random invoices. In the code, USE [Invoices] and
ALTER DATABASE [Invoices] direct the code to the database
(Invoices) used in the activity. Figure 1 illustrates the file
structure created for the SQL-Explore Activity, along with an
example invoice given to students as a visual representation of
invoice structure and corresponding field names.

3.3 Define Invoice Parameters and Execute the Stored
Procedure
Once the invoice table, customer table, and stored procedure
exist, the procedure USP_GENFAKEINVOICE is executed
(Section 3 of the code) to create the 100,000 invoices. The
instructor can use the default parameters or modify them
based on educational preferences
(EXEC USP_GENFAKEINVOICE 100000, ‘2000/01/01’,
‘2019/12/31’,60,2000,1000,100;). See specific stored
procedure parameters in Table 3.

Stored Procedure
Parameters

Purpose

1st Parameter
(100000)

of records in the database
created by the stored procedure

2nd Parameter
(‘2000/01/01’)

Start date for the invoice

3rd Parameter
(‘2019/12/31’)

End date for the invoice

4th Parameter (60) # of days between the invoice
date and invoice due date

5th Parameter (200) Upper bound of the invoice
6th Parameter (1000) Lower bound of the invoice
7th Parameter (100) # of customers built with the

routine

Table 3. Stored Procedure Parameters

Figure 1. Tables, Stored Procedures, and Example Invoice Created for SQL-Explore Activity

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

213

3.4 Add SQL Code to Introduce Variability into the
Dataset
For this study, data anomalies are any data point that
deviates from a randomized, normally distributed set of data.
The 100,000 invoices are randomly generated based on the
parameters specified in the USP_GENFAKEINVOICE
stored procedure. This final step in preparing the invoices for
the SQL-Explore Activity is to purposely introduce
variability and potential anomalies into the data. Section 4
and Section 5 of the code illustrate how variability is added.
Guidance for students can be specific or vague based on the
instructor’s objectives for the activity. Table 4 provides a list
of embedded variability included in this activity, each of
which the instructor can easily change when implementing
the code. See specific SQL code to create these embedded
anomalies in Appendix A – Section 5.

Once the stored procedure executes, the following
output will generate for the invoice table (Figure 2) and the
customer table (Figure 3).

Figure 2. SQL Relation Output of the 100,000 Invoice Rows

Figure 3. SQL Relation Output of the 100 Customer Rows

4. SQL-EXPLORE ACTIVITY

4.1 Classroom Activity – Setup
This SQL-Explore Activity is for an upper-division
undergraduate or graduate database management course. The
activity is recommended for students who understand basic
accounting principles (invoice structure and accounts payable)
and SQL principles, including SQL clauses, aggregate
functions, case expressions, and multi-table querying
techniques. Students should also have previous exposure to
Common Table Expressions (CTEs), derived tables, and
Window functions. Instructors can present this activity in
various delivery modes (online, broadcast, hybrid, or in-person
classroom delivery). Students should work independently or in
small, self-selected groups (2 to 4 students per group).

4.2 Classroom Activity – Instructions
At the beginning of the SQL-Explore Learning Module, the
instructor introduces the tables as part of a company’s invoice
tracking data. The SQL-Explore Activity includes five
components: (i) read and summarize the “beer and diapers”
article, (ii) explore the data by deriving coding questions and
solutions, (iii) summarize findings, (iv) participate in a follow-
up questionnaire, and (v) submit work and present activity
findings. Appendix B outlines the student activity (adapted
from an online format) that is amendable to individual course
needs.

Step 2 is the heart of the activity. This step helps orient the
student to the dataset, provides sample coding
questions/solutions, and asks the student to explore the dataset
by writing queries to identify trends, abnormal data distribution,
or some systematic difference. This step potentially includes

Embedded Variability in Invoice Dataset-SQL Setup
Code

Four invoice amounts are an even hundred-dollar
amount.
Multiple invoices for a single customer occur within
one week.
Some invoice due dates and invoice (creation) dates are
less than 60 days apart.
Some invoice dates are approximately 50 years older
than the others.
One invoice is due two days after purchase.
Females out-purchase males.
Incorrect invoice numbers (included characters).
Some invoices included large purchases (i.e., $50,000).
One invoice amount is equal to a dollar.
One invoice included a payment before the purchase
date.

Table 4. Examples of Embedded Anomalies

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

214

establishing rules that would hypothetically warrant further
investigation. See a list of potential rules in Appendix B – Step
2.

5. FEEDBACK AND EVALUATION

The SQL-Explore Activity was recently implemented as an
extra credit assignment in an online, upper-division database
management course to provide context for the module’s
effectiveness. Data collection was approved by the respective
Institutional Review Board (IRB) and found to be purely
educational. The data collected includes a nine-item
questionnaire (Appendix C) used to measure perceived benefits
and challenges to the SQL-Explore Activity along with
assignment submissions. Assessment data collected from the

assignment submissions include student-derived coding
questions, solutions, and summaries based on data exploration.
Thirty of forty-five students in the advanced database course
began the extra credit SQL-Explore Activity (Step 1 –
summarizing the “Beer and Diaper” article). Twenty-two of
those thirty students completed the entire SQL-Explore Activity
(Steps 1-5).

5.1 Student Feedback
Eight of the nine-item questionnaire (Appendix C) are based on
a five-point Likert scale with one (1) as strongly disagree and
five (5) as strongly agree. Find the results of the questionnaire
in Table 5.

5.2 Coding Examples and Evaluation
On the exploratory part of the activity, students submitted an
average of 8.45 SQL exploratory queries. A database expert
ranked the submissions as complex, moderate, or simple to
determine the complexity of the student’s SQL queries. Among
the 186 query submissions, 30 percent ranked complex, 42
percent moderate, and 28 percent were simple. Appendix D
highlights several student coding examples.

Students generally followed one of three approaches to
complete the exploratory activity. The first approach included
students responding to specific conditions given in the

assignment prompt (Appendix B – Step 2 provides a list of pre-
determined conditions). For instance, invoice amounts need to
be greater than $1,000. A second approach focused on trends
(e.g., worst customer in terms of payment history), and students
proceeded to write queries to discover the origin of the trend. A
third approach included students developing hypothetical
company invoice standards and writing queries to identify
invoices that violated the standards. Table 6 provides examples
of student-developed queries, query outputs, and descriptions
that demonstrate each of these three approaches.

Questionnaire Question Mean SD

1. Exploring datasets (i.e., invoice activity) enhances my knowledge of SQL 4.8 .39

2. Exploring datasets (i.e., invoice activity) will help improve my value at a future job. 4.7 .57

3. Exploring datasets (i.e., invoice activity) is more difficult than solving pre-determined coding questions. 4.1 .87

4. Exploring datasets (i.e., invoice activity) is more important than solving pre-determined coding
questions.

4.0 .84

5. After completing this activity, I want to spend more time learning how to explore datasets. 4.8 .43

6. After completing this activity, I want to spend more time learning other methods for exploring data. 4.7 .43

7. After completing this activity, I am more confident about my SQL coding abilities. 4.0 .95

8. After completing this activity, I am more excited to continue learning SQL. 4.6 .59

Table 5. Student Questionnaire Response Summary (n = 22)

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

215

Approach Category 1 – Responding to Specific Conditions in Assignment Prompt

Student Example 1 – Description: What is the median invoice amount?

SELECT AVG(1.0 * InvoiceAmount) AS 'Median Invoice
Amount'
FROM (
 SELECT InvoiceAmount
 FROM Invoices
 ORDER BY InvoiceAmount
 OFFSET (@c - 1) / 2 ROWS
 FETCH NEXT 1 + (1 - @c % 2) ROWS ONLY
) AS x;

Student Example 2 – Description: Number of Male/Female Customers: (Primary Customer = Female).

SELECT COUNT(CustomerGender) as 'Gender of Customers'
FROM Invoices
GROUP BY CustomerGender;

Student Example 3 – Description: Invoices due 60 days from the invoice date (all else considered problematic).

SELECT FirstName, LastName, i.InvoiceNumber
FROM FCustomers AS FC JOIN Invoices as I
 ON fc.CustomerID = i.CustomerNumber
WHERE DATEDIFF(day, i.InvoiceDate,
i.InvoiceDueDate)<>60;

Approach Category 2 – Trend Identification

Student Example 1 – Description: Which customers have the worst payment history (a tendency of being late), and on average,
how late are they on payments?

WITH LatePmtFlag
 AS
 (SELECT CustomerNumber, CustomerGender,
InvoiceAmount, InvoiceDueDate,
PaymentDate,
 CASE
 WHEN PaymentDate > InvoiceDueDate
 THEN 1
 ELSE 0
 END AS 'Late Flag',
 CASE
 WHEN PaymentDate > InvoiceDueDate
 THEN DATEDIFF(Day, InvoiceDueDate, PaymentDate)
 ELSE 0
 END AS 'Days Late'
 FROM Invoices)
 SELECT TOP 50 SUM(i.[Late Flag]) AS 'Sum Late Flag',
AVG(i.[Days Late]) AS 'Avg
Days Late', i.CustomerNumber, c.FirstName, c.LastName,
c.Gender
 FROM LatePmtFlag AS i LEFT JOIN FCustomers AS c
 ON i.CustomerNumber = c.CustomerID
 GROUP BY i.CustomerNumber, c.FirstName, c.LastName,
c.Gender
 ORDER BY [Sum Late Flag] DESC, [Avg Days Late] DESC;

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

216

Student Example 2 – Description: When evaluating the customer IDs associated with the invoices, it becomes apparent almost
all of the problematic invoices for the men are caused by two individuals (1000 and 1098). This could indicate some problem
with these two customers or just coincidence. Regardless, there is reason to look into the activity of these two customers.

SELECT FC.CustomerID, I.InvoiceID, I.InvoiceNumber,
FORMAT(I.InvoiceAmount,'C') AS 'InvoiceAmount',
DATEPART(MONTH,I.InvoiceDate) AS 'InvoiceDateMonth',
DATEPART(MONTH,I.InvoiceDueDate) AS
'InvoiceDueDateMonth',
DATEPART(MONTH,I.PaymentDate) AS
'PaymentDateMonth', FC.Gender
FROM INVOICES AS i JOIN FCUSTOMERS AS fc
ON i.CustomerNumber = fc.CustomerID
WHERE I.InvoiceAmount > 3500 OR I.InvoiceAmount <1000
ORDER BY I.InvoiceAmount DESC;

Student Example 3 – Description: The most interesting thing is that February is the slowest month for invoices. Far less are
processed during that month than any other, but the majority of problematic invoices are during that month. As a general trend,
women spend far more than men, and they are far more likely to spend over $3,500 in February. It can be postulated that women
are our best customers in this case.

SELECT DATEPART(MONTH,InvoiceDate) AS
'InvoiceMonth', COUNT(InvoiceID) AS 'NumberOfInvoices'
FROM INVOICES
GROUP BY DATEPART(MONTH,InvoiceDate)
ORDER BY NumberOfInvoices ASC;

Approach Category 3 – Developing Hypothetical Company Standards

Student Example 1 – Description: Customers that have under 30 monthly purchases with invoices less than $1,500 are
considered standard customers. How many standard customers are in this table?

SELECT CustomerNumber, COUNT(CustomerNumber) AS
[MonthlyPurchases]
FROM Invoices
WHERE InvoiceAmount < 1500
GROUP BY CustomerNumber
HAVING COUNT(CustomerNumber) <= 30
ORDER BY [MonthlyPurchases];

Student Example 2 – Description: The CustomerNumber is equivalent to the sum of the CustomerNumber divided by the count
of the CustomerNumber.

SELECT CustomerNumber,
SUM(CustomerNumber)/COUNT(CustomerNumber) AS
[InterestingFinding]
FROM Invoices
GROUP BY CustomerNumber;

Student Example 3 – Description: There is only one outlier below the second standard deviation, and it was a purchase for one
dollar. This is very different from the more than a dozen that are above the second standard deviation. This implies a lop-sided
bell curve in the InvoiceAmounts table.

WITH cte_Invoice
AS
(SELECT AVG(InvoiceAmount) as Average,
STDEV(InvoiceAmount) as StdDeviation,
AVG(InvoiceAmount)-STDEV(InvoiceAmount) AS
First_Deviation_below,
AVG(InvoiceAmount)-STDEV(InvoiceAmount)-
STDEV(InvoiceAmount) AS Second_Deviation_below,

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

217

5.3 Instructor Feedback
Based on the initial implementation of the SQL-Explore
activity, future instructional design considerations to improve
activity are possible. For instance, outstanding coding
examples from prior students may serve as a form of teacher
expectancy and create a Pygmalion effect where high-quality
examples result in high-quality query submissions. Further, a
follow-up activity providing feedback is
recommended. Ideally, after receiving quality feedback,
students would participate in an additional exploratory activity
in what Merrill (2002) refers to as encountering a progression
of problems, something recommended for effective design.

6. CONCLUSIONS

The SQL-Explore Learning Module detailed in this teaching tip
provides a unique opportunity for students to interact with large
numbers of invoices to identify summary statistics, trends, and
anomalies. Exploring datasets in SQL is a special type of
learning and requires a different mindset than more traditional
assignments where students solve pre-determined coding
problems. Combining conventional and exploratory activities
into the curriculum helps students develop a well-rounded
understanding of SQL coding practices. Instructors, students,
and employers understand that the future is rooted in analyzing
data and acting correctly on the findings.

Based on student feedback from the SQL-Explore Activity,
results suggest instructional design considerations in database
courses should move beyond traditional SQL teaching methods
of solving pre-determined coding questions. Instructors should

seek to incorporate constructivist learning activities where
students apply their knowledge in an explorative fashion. This
exploratory approach provides a more robust understanding of
SQL and prepares students for future employment opportunities
and applications. Students in this study believe activities that
require exploration of datasets enhance their knowledge of SQL
and improve their value in a future job. In addition, students
indicated they wanted to spend more time learning how to
explore datasets after completing the SQL-Explore Activity.

The overwhelmingly positive feedback related to the SQL-
Explore Activity was based, in part, on improvements made
during initial pilot studies. The activity presented in this
teaching tip represents a third-generation approach based on
two different pilot attempts. In the first iteration, students began
exploring immediately without prior readings or coding
examples. This approach did not provide enough context for
students and largely neglected the engagement and explanation
phases of the 5E Instructional Model. In the second iteration,
the instructor provided 20 pre-determined SQL queries, which
overwhelmed the students and resulted in fewer exploratory
queries. As such, the current SQL-Explore Activity included
appropriate context (i.e., initial reading activity), provided a
limited number of pre-determined coding questions, and
identified possible areas to investigate. These improvements
greatly enhanced the exploratory SQL coding experience.

One of the highlights of this teaching tip is the innovative,
custom-built Invoice Dataset SQL-Setup Code provided to help
instructors create countless customizable invoices and
introduce unique variability into datasets. Customization of
invoices and inserted anomalies allows the instructor to

AVG(InvoiceAmount)+STDEV(InvoiceAmount) AS
First_Deviation_above,
AVG(InvoiceAmount)+STDEV(InvoiceAmount)+STDEV(Inv
oiceAmount) AS Second_Deviation_above
FROM Invoices)
SELECT InvoiceID, InvoiceAmount,
CASE
 When InvoiceAmount > Second_Deviation_above THEN
'Above Second Standard Deviation - High Outlier'
 WHEN InvoiceAmount > First_Deviation_above THEN
'Above First Standard Deviation'
 When InvoiceAmount < Second_Deviation_below THEN
'Below Second Standard Deviation - Low Outlier'
 WHEN InvoiceAmount < First_Deviation_below THEN
'Below First Standard Deviation'
 Else 'Within First Standard Deviation'
 END AS Outliers
FROM cte_Invoice, Invoices
WHERE DATEDIFF(DAY, InvoiceDate, InvoiceDueDatE) <>
60
OR
InvoiceAmount < 1000
OR
InvoiceAmount > 3500
OR
InvoiceAmount%1 = InvoiceAmount
OR
InvoiceAmount = ROUND(InvoiceAmount, 0);

Table 6. Student Coding Examples

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

218

determine the focus of the exploratory activity. For instance, the
activity could focus on using analytics instead of locating
potential trends and anomalies. If technically feasible, the
instructor may generate larger datasets for students to explore
(e.g., a million invoices).

In this SQL-Explore Activity, a single database is created
for all students with generic credentials. While students do not
individually run the Invoice Dataset-SQL Setup Code, the
instructor may choose to share the entire code with students or
focus on the code that introduces variability into the dataset
after the activity is complete. If server space is adequate, the
instructor may ask each student to run the setup code to create
individual databases to explore. In sharing the code that creates
the database and introduces variability into the dataset, students
may recognize how easily arbitrary code and data anomalies are
embedded in datasets. Instructors should emphasize how easily
datasets can be manipulated and how individuals must always
be vigilant when working with large datasets.

This SQL-Explore Learning Module is for students taking
an advanced database/SQL course. As such, students were
familiar with more advanced coding strategies. Future research
is warranted to identify possible exploratory activities targeted
for introductory classes. Further, given the complexity of
student code specified in the study results, exploring how
coding solutions were derived would also merit further study.
For instance, were coding solutions primarily adapted from
online examples, based on samples found in the course textbook
(Ben-Gan’s T-SQL Fundamentals), or derived in another way?

As analytics and information systems instructors look for
innovative learning activities to help prepare students for future
employment opportunities, this SQL-Explore Learning Module
provides a valuable experience for students to practice
exploratory coding strategies, including analytics, statistics,
locating anomalies, and finding potential fraud. This teaching
tip offers the necessary elements to introduce data exploration
into any database course effortlessly. The SQL-Explore
Activity helps strengthen student understanding of SQL beyond
solving pre-determined coding questions and helps students
better understand any stories the data are telling.

7. REFERENCES

Bybee, R. W. (2009). The BSCS 5E Instructional Model and

21st Century Skills.
http://sites.nationalacademies.org/cs/groups/dbassesite/doc
uments/webpage/dbasse_073327.pdf

Bybee, R., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson,
J., Westbrook, A., & Landes, N. (2006). The BSCS 5E
Instructional Model: Origins and Effectiveness. Colorado
Springs, CO: BSCS.

Christensen, T. K., & Osguthorpe, R. (2004). How Do
Instructional-Design Practitioners Make Instructional-
Strategy Decision? Performance Improvement Quarterly,
17(3), 45-65.

Christensen, T. K. (2008). The Role of Theory in Instructional
Design: Some Views of an ID Practitioner. Performance
Improvement, 47(4), 25-32.

Dupin-Bryant, P. A., & Olsen, D. H. (2014). Business
Intelligence, Analytics and Data Visualization: A Heat Map
Project Tutorial. International Journal of Management &
Information Systems, 18(3), 185-200.

Glassdoor. (2021). 50 Best Jobs in America for 2021.
https://www.glassdoor.com/List/Best-Jobs-in-America-
LST_KQ0,20.htm

Hale, J. (2020). Most In-Demand Tech Skills for Data Analysts.
https://towardsdatascience.com/most-in-demand-tech-
skills-for-data-analysts-26d4ea4450f8

Jackson, D. K. (2021). Steps Toward Selecting Instructional
Strategies That Promote Academic Achievement.
https://academic.csuohio.edu/jackson_d/Dossier/Scholarsh
ip/Publications/Engaged_Learning/EnagedLearningJourna
lArticleDraft.pdf

Mayer, R. E. (2019). Thirty Years of Research on Online
Learning. Applied Cognitive Psychology, 33(2), 152-159.

Merrill, M. D. (2002). First Principles of
Instruction. Educational Technology Research and
Development, 50(3), 1042-1629.

Mills, R. J., Dupin-Bryant, P. A., & Olsen, D. H. (2015).
Designing SQL Database Modules Using Correlation
Coefficients and Linear Regression: A Content-Centered
Approach. Performance Improvement, 54(6), 20-31.

Olsen, D. H. & Dupin-Bryant, P. A. (2016). Integrating Data
Cleansing With Popular Culture: A Novel SQL Character
Data Tutorial. Review of Business Information Systems,
20(1), 13-28.

Oostendorp, N. (2019). Radical Change Is Coming to Data
Science Jobs.
https://www.forbes.com/sites/forbestechcouncil/2019/03/0
1/radical-change-is-coming-to-data-science-
jobs/?sh=6acc8223dfcc

Pappas, C. (2016). 8 Tips to Choose the Best Instructional
Design Model for Your Next eLearning Course.
https://elearningindustry.com/tips-choose-best-
instructional-design-model-elearning-course

Piyayodilokchai, H., Panjaburee, P., Laosinchai, P.,
Ketpichainarong, W., & Ruenwongsa, P. (2013). A 5E
Learning Cycle Approach–Based, Multimedia-
Supplemented Instructional Unit for Structured Query
Language. Educational Technology & Society, 16(4), 146-
159.

Sasso, M. (2018). Economics: This is America’s Hottest Job.
https://www.bloomberg.com/news/articles/2018-05-18/-
sexiest-job-ignites-talent-wars-as-demand-for-data-geeks-
soars

Swoyer, S. (2016). Beer and Diapers: The Impossible
Correlation, Transforming Data With Intelligence.
https://tdwi.org/articles/2016/11/15/beer-and-diapers-
impossible-correlation.aspx

Yap, A. Y., & Drye, S. L. (2018). The Challenges of Teaching
Business Analytics: Finding Real Big Data for Business
Students. Information Systems Education Journal, 16(1),
41-50.

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

219

AUTHOR BIOGRAPHIES

Reagan Siggard is an instructor in the data analytics &
information systems in the Jon M.
Huntsman School of Business at
Utah State University. Her
instruction areas include python
programming, data analytics, and
database management. Reagan
enjoys modifying course materials
based on industry demand and
deploying courses through online,

broadcast, and in-person methods. Reagan Siggard is currently
working on her doctoral program applications in hopes of
pursuing a career in instructional design and learning analytics.

Pam Dupin-Bryant is a professor of data analytics and

information systems in the Jon M.
Huntsman School of Business at
Utah State University. She earned
her Ph.D. at the University of
Wyoming and her master’s and
bachelor’s degrees at USU.
Throughout her career, Dr. Dupin-
Bryant has employed a wide variety
of delivery methods and educational

strategies to facilitate learning. Her primary teaching activities
include business applications programming, web
design/development, and data/information for business. Her
research and scholarly writings focus primarily on information
systems pedagogy and online/distance education. Pam Dupin-
Bryant has received many awards for her teaching innovations,
research, and service.

Robert J. Mills is a professor of data analytics & information

systems in the Jon M. Huntsman
School of Business at Utah State
University. His research interests
include computer-based learning
environments, knowledge transfer,
and MIS education. Bob Mills has
consulted on technology-based
training projects for a variety of
organizations, including Silicon

Graphics International (SGI), EnergySolutions Arena / Utah
Jazz, International Center for Captive Insurance Education
(ICCIE), and IBM. In addition, Mills designs and develops MIS
and database textbook supplements (Pearson Publishing).

David Olsen received his Ph.D. in management information
systems from the University of
Arizona in 1993 and taught at the
University of Akron accounting
department in accounting
information systems for five years.
Dr. Olsen joined the MIS department
at Utah State University in 1998 and
served as the MIS department head
from Fall 2012 to Summer 2019. He

is currently on the faculty at Dixie State University and teaches
primarily in data analytics using SQL, Python, Tableau, and
machine learning. His research has been published in journals
such as Communications of the ACM, Issues in Accounting
Education, and the Journal of Database Management.

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

220

APPENDICES

Appendix A. Invoice Dataset – SQL Setup Code

/*
SECTION 1
Kill the process using the Invoice database if it exists. Drop the database if it exists.
Create and set up the database.
*/

USE master;
GO
DECLARE @DatabaseName nvarchar(50)
SET @DatabaseName = N'Invoices'
DECLARE @SQL VARCHAR(MAX)
SELECT @SQL = COALESCE(@SQL,'') + 'Kill ' + Convert(varchar, SPId) + ';'
FROM MASTER..SysProcesses
WHERE DBId = DB_ID(@DatabaseName) AND SPId <> @@SPId

--SELECT @SQL--
EXEC(@SQL)
GO
IF DB_ID (N'Invoices') IS NOT NULL
DROP DATABASE Invoices;
GO
CREATE DATABASE Invoices;
GO

--Verify the database files and sizes--
SELECT name, size, size*1.0/128 AS [Size in MBs]
FROM sys.master_files
WHERE name = N'Invoices';
GO

/*
SECTION 2
Create the stored procedure that builds and populates the customers and invoices table.
*/

ALTER DATABASE [Invoices]
SET COMPATIBILITY_LEVEL = 130
GO
USE INVOICES
GO
CREATE PROCEDURE USP_GENFAKEINVOICE
@N INT,
@StartDate DATETIME,
@EndDate DATETIME,
@DueDiff INT,
@InvAmtUpperLimit Decimal(23, 10),
@InvAmtLowerLimit Decimal(23, 10),
@CN INT
AS

--Create Invoices table--
IF OBJECT_ID('dbo.FInvoices') IS NOT NULL
DROP TABLE dbo.FInvoices;
CREATE TABLE dbo.FInvoices
(
[InvoiceID] INT IDENTITY(1,1) NOT NULL,
[Invoice Code] CHAR(11) NOT NULL,
[Invoice Date] DATETIME NOT NULL,
[Due Date] DATETIME NOT NULL,
[Amount] DECIMAL(23,10) NOT NULL,

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

221

[Pay Date] DATETIME NOT NULL,
[CustomerID] INT NOT NULL
);

--Create Customers table--
IF OBJECT_ID('dbo.FCustomers') IS NOT NULL
DROP TABLE dbo.FCustomers;
CREATE TABLE dbo.FCustomers
(
[CustomerID] INT IDENTITY(1,1) NOT NULL,
[FirstName] CHAR(12) NOT NULL,
[MiddleInitial] CHAR(2) NOT NULL,
[LastName] CHAR(12) NOT NULL,
[Gender] CHAR(1) NOT NULL
);

--Generate fake customers--
DECLARE @CCurrentCount INT
SET @CCurrentCount = 0
WHILE @CCurrentCount < @CN
BEGIN
 DECLARE @Gender INT
 SET @Gender = (FLOOR(RAND()*(1-0+1))+1)
 INSERT INTO dbo.FCustomers
 SELECT
 CASE @Gender
 WHEN 1 THEN (SELECT TOP 1 value
 FROM
STRING_SPLIT('James,John,Robert,Michael,William,David,Richard,Joseph,Thomas,Charles,Christopher,Daniel,Matthew,A
nthony,Donald,Mark,Paul,Steven,Andrew,Kenneth,George,Joshua,Kevin,Brian,Edward,Ronald,Timothy,Jason,Jeffrey,Ryan,J
acob,Gary,Nicholas,Eric,Stephen,Jonathan,Larry,Justin,Scott,Brandon,Frank,Benjamin,Gregory,Raymond,Samuel,Patrick,Ale
xander,Jack,Dennis,Jerry,Tyler,Aaron,Henry,Jose,Douglas,Peter,Adam,Nathan,Zachary,Walter,Kyle,Harold,Carl,Jeremy,Ger
ald,Keith,Roger,Arthur,Terry,Lawrence,Sean,Christian,Ethan,Austin,Joe,Albert,Jesse,Willie,Billy,Bryan,Bruce,Noah,Jordan,
Dylan,Ralph,Roy,Alan,Wayne,Eugene,Juan,Gabriel,Louis,Russell,Randy,Vincent,Philip,Logan,Bobby,Harry,Johnny', ',')
 ORDER BY NEWID())
 ELSE (SELECT TOP 1 value
 FROM
STRING_SPLIT('Mary,Patricia,Jennifer,Linda,Elizabeth,Barbara,Susan,Jessica,Sarah,Margaret,Karen,Nancy,Lisa,Betty,Doro
thy,Sandra,Ashley,Kimberly,Donna,Emily,Carol,Michelle,Amanda,Melissa,Deborah,Stephanie,Rebecca,Laura,Helen,Sharon,
Cynthia,Kathleen,Amy,Shirley,Angela,Anna,Ruth,Brenda,Pamela,Nicole,Katherine,Samantha,Christine,Catherine,Virginia,D
ebra,Rachel,Janet,Emma,Carolyn,Maria,Heather,Diane,Julie,Joyce,Evelyn,Joan,Victoria,Kelly,Christina,Lauren,Frances,Mart
ha,Judith,Cheryl,Megan,Andrea,Olivia,Ann,Jean,Alice,Jacqueline,Hannah,Doris,Kathryn,Gloria,Teresa,Sara,Janice,Marie,Juli
a,Grace,Judy,Theresa,Madison,Beverly,Denise,Marilyn,Amber,Danielle,Rose,Brittany,Diana,Abigail,Natalie,Jane,Lori,Alexis
,Tiffany,Kayla', ',')
 ORDER BY NEWID())
 END AS [FirstName],
 CHAR(FLOOR(RAND()*(90-65+1))+65) AS [MiddleInitial],
 (SELECT TOP 1 value
 FROM
STRING_SPLIT('Smith,Johnson,Williams,Brown,Jones,Miller,Davis,Garcia,Rodriguez,Wilson,Martinez,Anderson,Taylor,Th
omas,Hernandez,Moore,Martin,Jackson,Thompson,White,Lopez,Lee,Gonzalez,Harris,Clark,Lewis,Robinson,Walker,Perez,H
all,Young,Allen,Sanchez,Wright,King,Scott,Green,Baker,Adams,Nelson,Hill,Ramirez,Campbell,Mitchell,Roberts,Carter,Phill
ips,Evans,Turner,Torres,Parker,Collins,Edwards,Stewart,Flores,Morris,Nguyen,Murphy,Rivera,Cook,Rogers,Morgan,Peterso
n,Cooper,Reed,Bailey,Bell,Gomez,Kelly,Howard,Ward,Cox,Diaz,Richardson,Wood,Watson,Brooks,Bennett,Gray,James,Rey
es,Cruz,Hughes,Price,Myers,Long,Foster,Sanders,Ross,Morales,Powell,Sullivan,Russell,Ortiz,Jenkins,Gutierrez,Perry,Butler,
Barnes,Fisher', ',')
 ORDER BY NEWID()),
 CASE @Gender
 WHEN 1 THEN 'M'
 ELSE 'F'
 END AS [Gender]
SET @CCurrentCount = @CCurrentCount + 1
END

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

222

--Generate fake invoices--
DECLARE @CurrentCount INT
SET @CurrentCount = 0
WHILE @CurrentCount < @N
BEGIN
 DECLARE @RandDate DATETIME
 SET @RandDate = CAST(FLOOR(RAND()*(DATEDIFF(DD, 1, @EndDate)-DATEDIFF(DD, 1,
@StartDate)+1))+DATEDIFF(DD, 1, @StartDate) AS DATETIME)
 INSERT INTO dbo.FInvoices
 SELECT CONCAT(CHAR(FLOOR(RAND()*(90-65+1))+65),
 CHAR(FLOOR(RAND()*(90-65+1))+65),
 CHAR(FLOOR(RAND()*(90-65+1))+65),
 CHAR(FLOOR(RAND()*(90-65+1))+65),
 FORMAT(FLOOR(RAND()*(9999999-1000000+1))+1000000, '0000000'))
 AS [Invoice Code],
 CONVERT(DATE, @RandDate) AS [Invoice Date],
 CONVERT(DATE, DATEADD(DD,@DueDiff,@RandDate)) AS [Due Date],
 RAND()*(@InvAmtUpperLimit-@InvAmtLowerLimit+1)+@InvAmtLowerLimit AS [Amount],
 CASE (FLOOR(RAND()*(1-0+1))+1)
 WHEN 1 THEN CONVERT(DATE, DATEADD(DD,-5,DATEADD(DD,@DueDiff,@RandDate)))
 ELSE CONVERT(DATE, DATEADD(DD,10,DATEADD(DD,@DueDiff,@RandDate)))
 END AS [Pay Date],
 (SELECT TOP 1 CustomerID
 FROM dbo.FCustomers
 ORDER BY NEWID()) AS [CustomerID]
SET @CurrentCount = @CurrentCount + 1
END
GO

/*
SECTION 3
Execute the stored procedure that creates and populates the invoices and customers tables.
*/

EXEC USP_GENFAKEINVOICE 100000, '2000/01/01', '2019/12/31',60,2000,1000,1100;
GO

/*
SECTION 4
Clean up the column names to be consistent and informative. Populate the CustomerGender column in the Invoices table.
*/

EXEC sp_rename 'FInvoices', 'Invoices'
GO
sp_rename 'Invoices.InvoiceID', 'InvoiceID', 'COLUMN';
GO
sp_rename 'Invoices.Invoice Code', 'InvoiceNumber', 'COLUMN';
GO
sp_rename 'Invoices.Invoice Date', 'InvoiceDate', 'COLUMN';
GO
sp_rename 'Invoices.Due Date', 'InvoiceDueDate', 'COLUMN';
GO
sp_rename 'Invoices.Amount', 'InvoiceAmount', 'COLUMN';
GO
sp_rename 'Invoices.Pay Date', 'PaymentDate', 'COLUMN';
GO
sp_rename 'Invoices.CustomerID', 'CustomerNumber', 'COLUMN';
GO
GO
ALTER TABLE Invoices
 ADD CustomerGender CHAR(2);
GO
UPDATE Invoices

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

223

 SET CustomerGender = fc.Gender
 FROM Invoices AS I JOIN FCustomers AS fc ON
 (i.CustomerNumber = fc.CustomerID)

/*
SECTION 5
Sample anomalies embedded in the data tables. Note: this will differ based upon instructor preference and the random
generation within the set-up code.
*/

--Create an invoice due two days after purchase--
UPDATE Invoices
SET InvoiceDueDate = '20180715'
WHERE InvoiceID = 7;
--Increase percentage of female purchases--
UPDATE Invoices
SET CustomerGENDER = 'F'
WHERE InvoiceID BETWEEN 40000 and 50000;
--Create incorrect invoicenumber--
UPDATE Invoices
SET InvoiceNumber = 'Hi1'
WHERE InvoiceID = 42757;
--Amend an invoice amount to be $50,000--
UPDATE Invoices
SET InvoiceAmount = 50000
WHERE InvoiceID = 42758;
--Amend an invoice amount to be $1-
UPDATE Invoices
SET InvoiceAmount = 1
WHERE InvoiceID = 99758;
--Create payment date before purchase--
UPDATE Invoices
SET PaymentDate = '20080101'
WHERE InvoiceID = 60147;
--Create four invoice amounts ending in an even hundred-dollar amount--
 WITH InvoiceAnomaly AS
(
SELECT TOP 4 InvoiceID, ROUND(InvoiceAmount,-2) AS InvoiceAmount,InvoiceNumber,
 ROW_NUMBER() OVER (ORDER BY InvoiceNumber DESC) AS RN
 FROM Invoices
)
UPDATE Invoices
SET InvoiceAmount = IA.InvoiceAmount
 FROM InvoiceAnomaly AS IA
 WHERE Invoices.InvoiceNumber = IA.InvoiceNumber;

--Push invoice dates back ~54 years for 4 random invoices--
WITH InvoiceAnomaly AS
(
SELECT TOP 4 InvoiceID + 68 AS InvoiceID, InvoiceDate - 20000 AS InvoiceDate,
 InvoiceDueDate - 20000 AS InvoiceDueDate,
 PaymentDate - 20000 AS PaymentDate,
ROW_NUMBER() OVER (ORDER BY InvoiceAmount DESC) AS RN
 FROM Invoices
)
UPDATE Invoices
SET InvoiceDate = IA.InvoiceDate,
 InvoiceDueDate = IA.InvoiceDueDate,
 PaymentDate = IA.PaymentDate
 FROM InvoiceAnomaly AS IA
 WHERE Invoices.InvoiceID = IA.InvoiceID;
GO

--Create multiple invoices for a single customer occur within a week--

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

224

USE INVOICES
GO
DBCC FREESYSTEMCACHE ('Temporary Tables & Table Variables')
GO
DECLARE @randomDate DATETIME
DECLARE @fromDate DATETIME='2019-06-16'
DECLARE @count INT
DECLARE @localVariable1 DATETIME;
DECLARE @Invoices TABLE (InvoiceID INT,
 CustomerNumber INT,
 InvoiceNumber CHAR(11),
 InvoiceDate DATETIME,
 RowNumbers INT);
SELECT @randomDate= (DATEADD(day, ROUND(DATEDIFF(day, @fromDate, @fromDate)
* RAND(CHECKSUM(NEWID())), 5),DATEADD(second, abs(CHECKSUM(NEWID())) % 886400,
@fromDate)));
WITH Oneweek AS
(
SELECT TOP 1 InvoiceID, CustomerNumber, InvoiceNumber, InvoiceDate,
 ROW_NUMBER() OVER (ORDER BY InvoiceNumber DESC) AS RN
 FROM Invoices
)
INSERT INTO @Invoices
SELECT InvoiceID, CustomerNumber, InvoiceNumber, InvoiceDate, RN
 FROM Oneweek;
WITH CustomerAnomaly AS
(
SELECT TOP 4 InvoiceNumber, CustomerNumber, InvoiceDate
 FROM Invoices
 WHERE CustomerNumber IN
 (SELECT CustomerNumber
 FROM @Invoices)
)
UPDATE Invoices
SET InvoiceDate = @randomdate + (CHECKSUM(NEWID()) % 6)
 FROM CustomerAnomaly AS a
 WHERE Invoices.InvoiceNumber = a.InvoiceNumber
GO

--Change Invoice due date to 1-6 days from the Invoice Date--
UPDATE Invoices
SET InvoiceDueDate = InvoiceDate + ABS(CHECKSUM(NEWID()) % 6) + 1
WHERE InvoiceID % 20000 = 0

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

225

Appendix B. SQL-Explore Activity

 Introduction: As you are aware, most SQL instruction includes demonstration of SQL principles followed by practice
opportunities where you solve a specific question. In this activity, you will spend much of your time exploring
100,000 invoices. Think about it, 100,000 invoices in paper form stacked on your desk would be about 10 meters high (i.e.,
~33 feet high). However, in SQL, you are able to scan through the data in just seconds to learn more about the invoices.

This activity includes four steps:
• Step 1 has you read a short article about ‘beer and diapers.’ [Time to complete ~20 minutes]
• Step 2 is the main exploration part of the activity and includes guiding instructions for completing this activity.

 [Time to complete ~90 minutes]
• Step 3 has you succinctly summarize your findings.  [Time to complete ~20 minutes]
• Step 4 is a brief 9 question survey.  [Time to complete ~10 minutes]
• Step 5 has you submit your work and present activity findings. [Time to complete ~10 minutes]

Step 1. Read about “Beer and Diapers” 
• Read the following article titled “Beer and Diapers: The Impossible Correlation” 

https://tdwi.org/articles/2016/11/15/beer-and-diapers-impossible-correlation.aspx  
• Provide a brief overview of the article in 3-4 sentences. 

Step 2. Explore the Invoices and Derive New Coding Questions and Solutions 
Read through entire assignment before beginning -- Be Creative!!!
• Login to the Invoice Dataset on our course SQL Server.  Username: invoice Password: invoice
• This dataset contains 100,000 invoices. 
• This database contains two tables:   Invoices and FCustomers

Try SELECT * FROM Invoices to make sure it is working!  Invoices is the main table you will be exploring.

Explore the Invoices and derive SQL questions and coding solutions that summarize data, and attempt to locate anomalies,
trends, or unique findings in the Invoice Table.  The Customer Table is available if you want to better describe your
findings by connecting names or other information with a customer ID.  Below are some potential questions, comments,
and suggestions to explore (please keep in mind you will likely focus on a few of the possible starting points): 

 What do we know about the Invoice Table?
1. Any invoices ending in a whole dollar amount are considered problematic.
2. All invoices are due 60 days from the invoice date.  Anything else is considered problematic.
3. Invoices are supposed to be above $1,000 and below $3,500.  Anything else is considered problematic.
4. The CIO is interested in learning more about the Invoice Tables.  He had some questions which include:

a. Is our primary customer male or female?
b. Who are our best customers?  Ones that spend a lot?  Ones that purchase a lot?
c. What months produce the most invoices?

5. Derive basic statistics about the invoices – means, median, mode, standard deviation.  Use Google to help locate
simple formulas if needed.  Find something that stands out whether by average, by standard deviation or some
systematic difference. 
• Come up with rules that need to be investigated (be creative).  For instance: Customers that made 10 purchases

over 2,500 within a month may be considered troublesome and warrant further investigation.  

SELECT CustomerNumber, COUNT(CustomerNumber) AS [PurchasedMoreThan10]
FROM Invoices
WHERE InvoiceAmount > 2500
GROUP BY CustomerNumber
HAVING COUNT(CustomerNumber) > 10
ORDER BY PurchasedMoreThan10 DESC;  

6. Use DATE FUNCTIONS (i.e., DATEDIFF), aggregate functions (MIN, MAX, AVG..), GROUP BY, HAVING, or
whatever you believe would help you better understand the 'story of the' invoices. 

Step 3. Summarize Findings
• Succinctly summarize your findings from step 2. Organize findings in a professional format. Include your

exploratory questions, coding solutions, screen captures, and a summary paragraph detailing your findings.

Step 4. Questionnaire (APPENDIX C)
After you have completed the module on 100,000 invoice exploration, please complete the questionnaire.

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

226

Step 5. Submit Your Work
• Submit your brief overview of the ‘beer and diapers’ article (~3-4 sentences).
• Submit your exploratory coding questions, coding solutions, and screen captures. If you focus on simpler

exploration, you will have more submissions than if you decide to focus on more complex formulas (from Step 3).
• Submit your summary paragraph. The summary paragraph should detail your findings of the invoices.  Make sure to

include any summary statistics, key findings, trends, or anomalies you discover (from Step 3).  
• Submit the student questionnaire (from Step 4).

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

227

Appendix C. Questionnaire

 Instructions: Please rate each question from 1 to 5 as follows:

1 = Strongly Disagree ● 2 = Somewhat Disagree ● 3 = Neutral ● 4 = Somewhat Agree ● 5 = Strongly Agree

1. Exploring datasets (i.e., invoice activity) enhances my knowledge of SQL.
2. Exploring datasets (i.e., invoice activity) will help improve my value at a future job.
3. Exploring datasets (i.e., invoice activity) is more difficult than solving pre-determined coding questions.
4. Exploring datasets (i.e., invoice activity) is more important than solving pre-determined coding questions.
5. After completing this activity, I want to spend more time learning how to explore datasets.
6. After completing this activity, I want to spend more time learning other methods for exploring data.
7. After completing this activity, I am more confident about my SQL coding abilities.
8. After completing this activity, I am more excited to continue learning SQL.
9. Open-Ended Question: What would you recommend to make this explorative activity more effective?

Journal of Information Systems Education, 33(3), 209-228, Summer 2022

228

Appendix D. Student Coding Examples

Student Coding Examples

Student Example 1 – Description: Compare InvoiceAmount with the PaymentDate and determine if lower purchase amounts
cause more customers to pay their invoices on time.

SELECT DATEDIFF(day, InvoiceDueDate,
PaymentDate) as 'Time to Pay',
COUNT(InvoiceID) as 'Total Invoices'
FROM Invoices
WHERE InvoiceAmount <= (SELECT
 AVG(InvoiceAmount)
 FROM Invoices)
GROUP BY DATEDIFF(day, InvoiceDueDate,
PaymentDate)
ORDER BY DATEDIFF(day, InvoiceDueDate,
PaymentDate);

Student Example 2 – Description: Discrepancy in payment: The payment is due before the invoice date.

SELECT *, DATEDIFF(Day, InvoiceDueDate,
PaymentDate) AS 'Days to pay after invoiced'
FROM Invoices
WHERE SIGN(DATEDIFF(Day,
InvoiceDueDate, PaymentDate)) < 1;
Student Example 3 – Description: Customers that constantly seem to get our lowest pricing.

SELECT CustomerNumber,
SUM(InvoiceAmount) AS 'sum of invoice
amount', COUNT(*) AS 'Number of Purchases',
AVG(InvoiceAmount) as 'Average Amount',
STDEV(InvoiceAmount)
FROM Invoices
GROUP BY CustomerNumber
HAVING AVG(InvoiceAmount) <
AVG(InvoiceAmount) - STDEV(InvoiceAmount)
ORDER BY 'Number of Purchases';

Information Systems & Computing Academic Professionals

Education Special Interest Group

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2022 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	JISE 2022 33(3) 209-228 First Page
	b-2104057TT Final-TCS
	1. INTRODUCTION
	2. INSTRUCTIONAL DESIGN CONSIDERATIONS
	Table 2. 5E Instructional Model Summary and Constructivist Design Considerations
	3. DESIGNING THE SQL - EXPLORE ACTIVITY
	4. SQL-Explore Activity

	5. FEEDBACK AND EVALUATION
	6. CONCLUSIONS

	JISE 2022 33(3) Copyright ISSN

