

Journal of
Information
Systems
Education

Volume 31

Issue 4
Fall 2020

Constructive Use of Errors in Teaching the UML Class

Diagram in an IS Engineering Course

Ronit Shmallo and Tammar Shrot

Recommended Citation: Shmallo, R. & Shrot, T. (2020). Constructive Use of Errors in Teaching
the UML Class Diagram in an IS Engineering Course. Journal of Information Systems Education,
31(4), 282-293.

Article Link: http://jise.org/Volume31/n4/JISEv31n4p282.html

Initial Submission: 21 October 2019
Accepted: 17 March 2020
Abstract Posted Online: 8 September 2020
Published: 10 December 2020

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume31/n4/JISEv31n4p282.html
http://jise.org/

Constructive Use of Errors in Teaching the UML Class
Diagram in an IS Engineering Course

Ronit Shmallo
Industrial Engineering and Management Department

Shamoon College of Engineering
Ashdod, Israel

ronits1@sce.ac.il

Tammar Shrot
Software Engineering Department
Shamoon College of Engineering

Ashdod, Israel
tammash@sce.ac.il

ABSTRACT

A class diagram is one of the most important diagrams of Unified Modeling Language (UML) and can be used for modeling the
static structure of a software system. Learning from errors is a teaching approach based on the assumption that errors can promote
learning. We applied a constructive approach of using errors in designing a UML class diagram in order to (a) categorize the students’
errors when they design a class diagram from a text scenario that describes a specific organization and (b) determine whether the
learning-from-errors approach enables students to produce more accurate and correct diagrams. The research was conducted with
college students (N = 45) studying for their bachelor’s degree in engineering. The approach is presented, and the learning-from-
errors activity is illustrated. We present the students’ errors in designing the class diagram before and after the activity, together with
the students’ opinions about applying the new approach in their course. Twenty errors in fundamental components of the class
diagram design were observed. The students erred less after the activity of learning from errors. The displayed results show the
relevance and potential of embedding our approach in teaching. Furthermore, the students viewed the learning-from-errors activity
favorably. Thus, one of the benefits of our developed activity is increased student motivation. In light of the improved performance
of the task, and the students’ responses to the learning-from-errors approach, we recommend that information systems teachers use
similar activities in different fields and on various topics.

Keywords: IS education, Object-oriented modeling, Unified modeling language (UML), Active learning, Peer evaluation

1. INTRODUCTION

Unified Modeling Language (UML) is the standard formalism
for the object-oriented analysis and design of software systems
(Berardi, Calvanese, and De Giacomo, 2005), and it provides a
graphical representation of the analysis and design of the system
models (Dranidis, Stamatopoulou, and Ntika, 2015; Störrle,
2017). Class diagrams are perceived as one of the most
important components of UML, mapping out the static structure
of a system by modeling its classes, attributes, methods, and the
relationships between classes. It is critical that the class
diagrams present information clearly, but the reasoning of UML
class diagrams can be a complex task for novice designers
(Berardi, Calvanese, and De Giacomo, 2005).

Learning how to model and create class diagrams has
become a necessity for information systems (IS) students and a
substantial challenge arising before IS educators. Novice

designers tend to make errors when learning to design models,
and it is important to address the errors at a very early stage of a
modeler’s education (Bogdanova and Snoeck, 2018). When one
is designing a system in the real world, it is crucial to detect
errors as early as possible in the development process to reduce
later development costs (Cabot, Clarisó, and Riera, 2014).

Everyone errs; however, learning from errors has been
proven to be as profitable as, if not more than, learning the
correct form to begin with (Ginat and Shmallo, 2013). The
learning-from-errors approach involves an aspect of
constructivism since the utilization of errors is based on
students’ prior knowledge which may be inaccurate or faulty.
Therefore, learning from errors can be useful if there is a
constructivist construction. The review of one’s knowledge and
procedures involves a metacognitive aspect that refers to one’s
knowledge concerning one’s own cognitive processes or the
learning of relevant properties of information or data (Flavell,

Journal of Information Systems Education, Vol. 31(4) Fall 2020

282

mailto:ronits1@sce.ac.il
mailto:tammash@sce.ac.il

1976). The improvement of one’s metacognitive skill is an
additional constructive means for learning (Schoenfeld, 2009).
It appears that using errors in a structured learning process,
followed by feedback, discussion, and correction, leads to a
better understanding (Tulis, Steuer, and Dresel, 2016; Metcalfe,
2017). Engaging with errors is difficult, but the difficulty can be
a powerful means for learning (Borasi, 1996; Bjork, 2012) if the
errors are used to scaffold the construction of learner
knowledge. Engagement with errors also has the benefits of
deep discussion of thought processes and a learning
environment that challenges students to be actively involved in
the learning process (de Freitas, Silva, and Marsicano, 2016).

This paper presents a study of constructive learning from
errors in a theoretical IS course in engineering studies. The
novelty of this paper is the implementation of the learning-from-
errors approach in an IS engineering teaching process. The
approach was applied in the analysis and design of an IS course
of 45 undergraduate students. The main goal was to improve the
learning process by integrating the learning-from-errors
approach into the process of studying class diagrams. We
examined whether this integration enabled students to better
understand UML class diagrams and improve their designs to
make them correct and more accurate.

2. BACKGROUND

2.1 UML Class Diagrams
UML is a standard language for modeling object-oriented
systems that is commonly used in the software industry (Silva,
Steinmacher, and Conte, 2017). Object-oriented models are
based on objects, and objects are instances of classes. Classes
have properties, behavior (functionality), and relationships of
several kinds with other classes. The object-oriented model can
be presented as a UML class diagram, which displays in one
picture the set of classes and a set of relationships between them,
such as inheritance (generalization), association, aggregation,
and composition.

Although class diagrams are only one of the diagram types
included in UML, research has shown that they are perceived as
the most important (e.g., Erickson and Siau, 2004). Changing
system requirements causes changes in the structure of the
system, and they need to be reflected in modifications of the
class diagrams. Hence, it is important to develop diagrams that
can easily incorporate changes (Genero, Piattini, and Calero,
2000).

UML class diagrams for modeling software systems can be
large and complex in the design, analysis, and maintenance
stages. Students face difficulties while learning how to model
complete and correct class diagrams and that can affect the final
software quality, since these diagrams would represent the
software incompletely and incorrectly (Siau and Loo, 2006;
Szmurło and Śmiałek, 2006; Lethbridge, 2014).

One of the support options in the design of the class
diagrams phase is to use an intelligent tutoring system or
computer-aided software engineering (CASE) tools. Educators
use a variety of educational tools in order to help their students
with conceptual modeling software systems, but most of those
tools are rather small and limited, with a small subset of UML
features (Dranidis, Stamatopoulou, and Ntika, 2015). For
example, Baghaei, Mitrovic, and Irwin (2007) presented a tutor
that teaches how to design UML class diagrams and how to

provide feedback on collaboration using the same formalism.
Gutwenger et al. (2003) suggested a new approach for
visualizing UML class diagrams leading to a balanced mixture
of some aesthetic criteria. Ramollari and Dranidis (2007)
developed StudentUML as a modeling tool that supports
consistency checking of all the UML taught diagrams, including
class diagrams. Cabot, Clarisó, and Riera (2014) presented
methods for the verification of UML class diagrams extended
with Object Constraint Language (OCL) constraints. In addition,
CASE tools are commonly adopted for student use: power
designer (https://sybase-powerdesigner.apponic.com), visible
analyst (https://dbmstools.com/tools/visible-analyst), or visual
paradigm (https://www.visual-paradigm.com). However, none
of those tutoring systems or support tools can prevent novice
designers from making various forms of inaccuracies,
omissions, or redundancies in their class diagram designs.

2.2 Learning-from-Errors Approach
The literature describes a variety of errors that beginners tend to
run into, but it rarely offers solutions that deal with these errors.
In many cases, the suggested methods for overcoming errors are
specific to a single scope, addressing one instance of an error
(e.g., Watson, 2006; Sanders and Thomas, 2007; Booth et al.,
2013; Casterella and Vijayasarathy, 2019). The cause of an error
is an erroneous perception, which frequently derives from overly
general knowledge structures or from vague, faulty, or missing
knowledge components (Ohlsson, 1996). Errors are experienced
as conflicts between the knowledge that the learner believes to
be correct and what the learner perceives as the present situation.
This knowledge gap should be closed by error-detection and
error-correction (Mathan and Koedinger, 2005). Error-detection
will reveal gaps by comparing actual with expected outcomes.
Error-correction will close the gaps by specializing faulty
knowledge structures so that they become active only in
situations in which they are appropriate. The cognitive conflict
will stimulate the learner’s process of reflection and critical
thinking (Borasi, 1996), which will lead the student to
understand the source of the error. This in turn will lead to a
revision of the learner’s knowledge (Ohlsson, 1996).

The constructivist view of how knowledge is attained has
important implications for an educational approach to errors
(Borasi, 1996). Constructive use of errors as a teaching approach
is based on students’ prior knowledge, which is inaccurate or
somewhat vague. Learners cannot progress in learning if they do
not have the relevant mental-model modification at which the
instruction was aimed (Ben-Ari, 1998). The goal is to improve
students’ knowledge and skills by creating cognitive conflict
through errors. Constructivist studies support the notion of
conflict as a catalyst for learning (e.g., Borasi, 1996; Ginat and
Shmallo, 2013). Conflict causes examination of learner
knowledge and procedures (Confrey, 1990) and leads to a
deeper conceptual understanding and greater awareness of the
errors to be avoided.

In the past two decades, researchers have presented
convincing evidence of the benefits of the learning-from-errors
approach in different domains, such as mathematics, physics,
and computer science (e.g., Borasi, 1996; Pinkerton, 2005;
Yerushalmi and Polingher, 2006; Ginat and Shmallo, 2013).
Learning from errors can promote learning, and errors can be
used as a motivator for learning (e.g., Borasi, 1994; Siegler,
2002; Curry, 2004; Große and Renkl, 2007; Siegler and Chen,

Journal of Information Systems Education, Vol. 31(4) Fall 2020

283

https://sybase-powerdesigner.apponic.com/
https://dbmstools.com/tools/visible-analyst
https://www.visual-paradigm.com/

2008; Ginat and Shmallo, 2013; Bogdanova and Snoeck, 2018).
There is a growing consensus that students can learn

effectively from their errors. However, textbooks do not usually
include incorrect examples, and creating materials that include
incorrect examples can be time consuming for teachers (Booth,
Begolli, and McCann, 2016). Furthermore, teachers prefer to
avoid talking about errors in class because they are afraid their
students will adopt the errors in their own problem-solving
(Santagata, 2004).

Researchers have shown the benefits of using the learning-
from-errors approach in various activities. For example, some
offer supportive visual environments (Melis, Sander, and
Tsovaltzi, 2010). Others have students think about and correct
their own errors (Henderson and Harper, 2009; Cherepinsky,
2011); some use erroneous statements that the students are asked
to analyze and diagnose (Yerushalmi and Polingher, 2006);
some integrate incorrect examples into class assignments (Booth
et al., 2013); and some use self-explanations of both correct and
incorrect solutions (Siegler, 2002; Curry, 2004; Große and
Renkl, 2007).

To the best of our knowledge, no researchers have con-
ducted studies on the learning-from-errors approach in IS except
Bogdanova and Snoeck (2018). They examined a primarily
learning-from-errors activity, with master’s students, to build a
simple UML model based on textual case description. Their aim
was to teach conceptual modeling by identifying the most
common errors in students’ models and then introducing error-
based step-by-step exercises. Error detection related only to
class-level errors and association-level errors. Their primary
conclusion was that the step-by-step exercises were effective, at
least when it concerns the immediately following exercise.

3. RESEARCH DESCRIPTION

3.1 Research Rationale and Questions
Numerous studies have been conducted over the years on
techniques for modeling class diagrams and ways to improve the
students’ designs (e.g., Berardi, Calvanese, and De Giacomo,
2005; Bock and Yager, 2005; Carte, Jasperson, and Cornelius,
2006; Watson, 2006; Queralt and Teniente, 2012; Cabot,
Clarisó, and Reira, 2014). The rationale for our research was to
suggest a new approach for teaching novice designers how to
design a correct and accurate UML class diagram. The research
had two intentions. The first was to map and catalog errors that
students make in modeling the class diagrams of their chosen
organization. The second was to examine a new teaching
method that integrates explicit orientation toward errors and
striving to learn from them. We wished to examine whether
using the learning-from-errors approach improved students’
class diagram designs. The research questions were the
following:

• What errors do students make when they are designing
class diagrams?

• Do students improve their class diagrams as a result of
using the learning-from-errors approach?

• Do students like the learning-from-errors approach?
• Do students believe it advanced their knowledge and

understanding of class diagrams?

3.2 Research Participants
The research was conducted with 45 students studying for an
undergraduate degree in engineering in the Department of
Industrial Engineering and Management (IEM). The course was
the Analysis and Design of Information Systems.

3.3 Research Tool and Methods
The research applied a mixed-method approach combining
qualitative and quantitative methods (Creswell and Creswell,
2017). The study used quantitative analysis and qualitative
research methods to expand and complement the quantitative
findings. The research tools were the learning-from-errors
activity and an attitudes questionnaire about the learning-from-
errors approach.

3.3.1 Learning-from-errors activity. The goal was to design a
class diagram for an organization that the students had chosen
for the final project in their degree. Each student pair and one
student without a partner selected a specific organization, such
as an information system for students interested in higher
education, a system for assigning replacement teachers in
schools, an information system for the management of online
purchasing groups, or a system for a charity organization. The
activity had two steps: (1) designing a class diagram of the
chosen organization according to a text scenario that described
the organization and its main process and (2) refining the
diagrams from the first step by using the approach of learning
from errors (a detailed description about the activity appears in
section 3.5).

3.3.2 Attitudes questionnaire. A questionnaire was distributed
in the classroom. It asked students their opinion on aspects of
the learning-from-errors approach that they encountered during
their class diagram activity.

3.4 Analysis and Design of Information Systems Course
The course Analysis and Design of Information Systems is
taught in the IEM department and is part of the IS track. This is
a required course in the 6th semester. The prerequisite for this
course is the Object-Oriented Programming (OOP) course.

The Analysis and Design of Information Systems course
familiarizes students with the methodologies, tools, and methods
for developing a software or information system. The course
focuses on systems developed on the basis of OOP paradigms
and is based on the book Systems Analysis & Design: An Object-
Oriented Approach with UML (Dennis, Wixom, and Tegarden,
2015).

System development is introduced using the UML tools in
general, while focusing on the main diagrams: use case, class,
activity, state machine, and sequence. Information about those
UML tools and how to build them is based on Guide to Applying
the UML (Alhir, 2006).

The learning outcomes of the course are that upon successful
completion, the students will be able to do the following:

1. Use an object-oriented approach to describe and
implement the stages in developing software or
information systems.

2. Define user functional and non-functional requirements.
3. Create use case and activity diagrams to define user

functional requirements.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

284

4. Use class diagrams to design the system components.
5. Use sequence diagrams to model the functionality of a

system.
6. Use activity and state machine (state-chart) diagrams to

describe the dynamic aspects of, and flows in, the
system.

7. Integrate various diagrams in order to analyze and
design a full system.

This paper focuses on the fourth target of the course:

students using class diagrams to design the components of their
chosen organization.

3.5 Process
The learning-from-errors activity was divided into five stages:

1. During 2 weeks of the 14-week course, the students
attended a weekly 3-hour lecture on how to design
system components using class diagrams. The students
were given a task of describing their chosen
organization (a text scenario) and designing a class
diagram accordingly. They were divided into pairs and
given 2 weeks to submit their solutions.

2. The teacher sent a personal e-mail to each pair with
another pair’s task solution and the description of their
organization. Each pair was asked to examine the
solution they received and to mark any errors they found
in their colleagues’ solution regarding the presented
organization. Students were expected to submit this
second assignment two weeks later (the “Before” stage).

3. Course staff sent each pair a file containing their
colleagues’ comments. Students were told to carefully
examine the comments they received from their
colleagues since there was no guarantee that the
comments were correct.

4. The students were asked to submit a revised class
diagram design in two weeks, and the course staff
graded this final assignment (only). The course staff
analyzed students’ solutions after stages 2 and 4. The
solutions were compared to identify the errors that the
students found in their colleagues’ solutions and to
discover whether the refined class diagram, which was
submitted after the learning-from-errors activity, had
gained accuracy. Emphasis was placed on errors in the
following fundamental components of the class diagram
design: identifying the keys, attributes, classes; the class
relationships type (aggregation, inheritance,
associations); the names of relationships (written in the
middle of the association line); and multiplicity (how
many objects of each class take part in the
relationships). The points that the course staff did not
check for errors were visibility of class attributes and
methods, the class notation, and abstract classes (the
“After” stage).

5. Finally, the teacher initiated a classroom discussion of
typical errors that frequently appeared in students’
solutions. The discussion was general, since each pair
had based their diagram on a different organization.
However, the teacher emphasized the common errors,
such as how to recognize an aggregation relation, an
inheritance relation, a primary key, and an attribute of a

class. At the end of the course, the students submitted a
final version of all the UML diagrams of their system,
including the class diagram.

4. RESULTS

4.1 Study
Twenty-three solutions were analyzed from 45 students divided
into 22 pairs and 1 sole student. The solutions included students’
written answers about the errors they found in their colleagues’
class diagram designs after stage 2. The analysis determined
which components the students emphasized when they were
searching for errors in their colleagues’ solutions, as can be seen
in Table 1. We classified the error types according to those
components while counting the number of students that erred in
each type, as presented in Table 1 (“Before the Activity”
column). We also analyzed the students’ errors in the class
diagram design after stage 4 in order to compare the two stages
and to see if there was improvement after the applied approach.
We did not search for new errors after stage 4. The students’
errors that were found after stage 4 can be seen in Table 1
(“After the Activity” column).

Shmallo, Ragonis, and Ginat (2012) used a dichotomous
categorization of expansion–reduction to classify the error types
made by novice programmers learning OOP concepts. Katz and
Shmallo (2015) used the terms addition/omission and classified
novice designers’ errors in understanding the conceptual
modeling of relational databases. They found that the most
common errors made by students are the addition type, but errors
of omission are also quite prevalent.

On the basis of those classifications, we also classified the
errors that we found in the basic components of the class
diagram designs according to a dichotomous categorization of
addition/omission, as presented in Table 1. The purpose was to
check if educators can get an additional perspective on common
errors that novice designers make when they design class
diagrams.

All errors made by all pairs were counted. When a pair was
wrong in several component types, their errors were counted
separately for each type. However, if a pair erred several times
in the same error type, their errors were counted only once. After
analyzing the students’ errors, we divided the errors into four
basic components of the class diagram: keys (3 errors), attributes
(3 errors), classes (4 errors), and relations (10 errors). Most of
the errors deal with the relations components. Students mostly
err in identifying relations between classes. The most common
error, before and after the activity, was that “the relation
specified between classes was incorrect or unnecessary (and it is
not an aggregation or inheritance relation).” A high percentage
of students also erred in “identifying the relation of aggregation
between classes.”

From the frequency of errors appearing in Table 1, we
noticed a total of 60 of the omission type (58%) versus 44 errors
of the addition type (42%) from the first stage, and those
proportions switched in the second stage to 23 (43%) versus 31
(57%), respectively. Over the two stages, students made slightly
more omission errors (53%) than addition errors (47%), but the
difference appeared insignificant (p > 0.05), consistent with the
non-significant differences between the two types in each stage.
This means that we cannot argue for more errors of one type
over the other.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

285

Addition/
Omission

After the
Activity (%)

Before the
Activity (%) Error Component

Addition 8.696 17.391 The definition of a primary key is not unique. Keys
Addition 13.043 13.043

21.739

A primary key is defined in existence dependency
instead of a partial key.

Omission 4.348 The marking of a primary key is lacking.
Addition 13.043 8.696 Attributes described in the text scenario are

declared in wrong class.
Attributes

Omission 8.696 34.784 Attributes described in the text scenario are
missing from the class diagram.

Addition 13.043 26.087 Unnecessary attributes that appear in the class
diagram were not mentioned in the text scenario.

Addition 8.696 13.043 There is an unnecessary class in the diagram. Classes
Addition 4.348 4.348 There is an unnecessary associative class in the

diagram.
Omission 0 8.696 There is a missing class in the class diagram.
Omission 4.348 13.043 There is a missing associative class in the class

diagram.
Omission 26.087 60.870 The diagram is lacking an aggregation relation

between classes.
Relations

Omission 4.348 17.391 The diagram is lacking an inheritance relation
between classes.

Addition 17.391 21.739 There is an unnecessary relation in the class
diagram that was not mentioned in the scenario.

Omission 21.739 30.435 Relation described in the scenario is missing from
the class diagram.

Addition 8.696 13.043 The aggregation or inheritance relation between
two classes is wrong.

Omission 8.696 21.739 The diagram lacks marking of the role of the
relation type between classes.

Addition 47.826 73.913 A relation specified between two classes is
incorrect or unnecessary (and it is not an
aggregation or inheritance relation).

Omission 13.043 26.087 The diagram is missing relation type between two
classes.

Omission 8.696 26.087 The diagram is missing the multiplicity between
two classes.

Omission 0 13.043 The diagram is lacking marking of X (eXclusive)
and T (Total cover) in an inheritance relation
between classes.

Table 1. Errors Made by Students and Their Frequency (N = 23 Solutions)

4.2 Modeling Strategy and Methods
This study aims at assessing the potential of the learning-from-
errors approach by comparing individuals’ errors over time
(before vs. after the learning-from-errors activity). The study is
subject to our hypothesis that teaching students how to design
class diagrams using learning from errors is expected to reduce
the individual’s subsequent level of errors. To test this
hypothesis, we use a series of two-level logistic regression
models that look at the probability of making each type of error
before versus after the learning activity. In these logistic models
we use the generalized estimating equations (GEE) approach,
which allows for repeatedly measured individuals; that is, each
individual student is measured twice, and correlations within
individuals are assumed. The GEE approach takes on various
distribution types, among which is logistic distribution (logit
model). This model generates marginal probabilities for making
the error before and after the constructive learning and compares

across them (Hardin and Hilbe, 2012). For the overall level of
error, we use the generalized linear mixed model (GLMM) with
log link and Poisson distribution, where the Poisson distribution
is a unique, discrete distribution with the mean equal to the
variance (Hilbe, 2017). Put differently, the total number of
errors is a count variable that receives integer, non-negative
values and has a right-hand tail of small frequencies.

In Table 2, we show the frequency of making an error across
the 20 types of possible errors examined. Clearly, there is a
reduction in the total number of errors from the preliminary test
to the subsequent test (F(1,22) = 65.75, p < 0.001). Overall, from
almost 5 out of 20 possible errors before the learning, the mean
number is reduced to only 2.35 out of 20 after the learning. This
change in the total distribution of errors is illustrated in Figure
1.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

286

No. of Errors
Before After F Test

F(1,22), p, ηp
2 Freq. % Freq. %

0 0 0 1 4.3 65.74, < 0.001, 0.749
1 0 0 1 4.3
2 0 0 11 47.8
3 3 13.0 9 39.1
4 8 34.8 1 4.3
5 7 30.4 0 0
6 4 17.4 0 0
7 1 4.3 0 0

Total N 23 100.0 23 100.0
No. of errors 107 54
Mean 4.65 2.35
SE 0.22 0.17

Table 2. Frequency of Errors by Time

Figure 1. Number of Errors Made Before and After the
Learning Activity

Note: Horizontal axis shows frequencies across the 23
solutions; vertical axis, number of error.

We can also see from Figure 1 that at least the after-learning
distribution follows the Poisson distribution, with one student
making no errors at all and half of them making one or two
errors, whereas before the learning each student made at least
three errors.

A finer analysis that looked at each type of error is presented
in Table 3. The table shows the time effect as estimated by the
GEE procedure with correlated response.

The reduction in the probability of making a certain error
over time appears to be significant for error “Attributes
described in the text scenario are declared in wrong class”
(Attributes error) (b = −1.72, p = 0.012); error “The diagram is
lacking an aggregation relation between classes” (Relations
error) (b = −1.48, p = 0.001); error “A relation specified between
two classes is incorrect or unnecessary (and it is not an
aggregation or inheritance relation)” (Relations error) (b =
−1.13, p = 0.007); and error “The diagram is missing the
multiplicity between two classes” (Relations error) (b = −1.31,
p = 0.040). Although this trend is limited to those errors, the
marginal probabilities show that at the “Before” stage the
predicted probability of making the error is higher in comparison
to the predicted probability at the “After” stage, except for error

“A primary key is defined in existence dependency instead of a
partial key” (Keys error), which shows equal marginal
probabilities at the “Before” and “After” stages. In error “There
is a missing class in the class diagram” (Classes error) and error
“A primary key is defined in existence dependency instead of a
partial key” (Keys error), no comparison is done, as no errors of
these types are made among the 23 student pairs in the
experiment. Finally, a GLMM Poisson regression results in a
significant time effect that follows the actual reduction in the
number of errors (b = −0.068, p = 0.003). The model predicts
4.65 errors before learning but only 2.35 after learning; this
reduction is illustrated in Figure 2, which also shows the upper
and lower 95% confidence interval.

Figure 2. Expected Level of Errors Over Time; Means and

Lower and Upper Bounds (95% Confidence)
Note: Horizontal axis shows time of measurement; vertical

axis, number of errors.

In addition, students were asked to fill out a position
questionnaire that contained statements concerning their
assessments throughout the learning-from-errors activity.
Students had to choose a value on a scale of 1 to 4, where 1
represented “strongly disagree,” 2 “disagree,” 3 “agree,” and 4
“strongly agree.” The results can be seen in Figure 3.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

287

Error Before After Time Effect
Coefficient (SE)

Sig. p-
Value

Wald Chi-
Square

The definition of a primary key is not
unique

0.17 (0.08) 0.09 (0.06) -0.79 (0.55) 0.149 2.08

A primary key is defined in existence
dependency instead of a partial key

0.13 (0.07) 0.13 (0.07) 0.00 (0.54) 1.00 0.00

The marking of a primary key is lacking 0.22 (0.09) 0.04 (0.04) -1.81 (0.94) 0.054* 3.71
Attributes described in the text scenario are
declared in wrong class

0.09 (0.06) 0.13 (0.07) 0.45 (0.79) 0.564 0.33

Attributes described in the text scenario are
missing from the class diagram

0.35 (0.10) 0.09 (0.06) -1.72 (0.68) 0.012** 6.38

Unnecessary attributes that appear in the
class diagram were not mentioned in the
text scenario

0.26 (0.09) 0.13 (0.07) -0.86 (0.47) 0.072* 3.25

There is an unnecessary class in the
diagram

0.13 (0.07) 0.09 (0.06) -0.45 (0.45) 0.311 1.03

There is an unnecessary associative class in
the diagram

0.04 (0.04) 0.04 (0.04) 0.00 (0.00) 1.00 0.00

There is a missing class in the class diagram 0.09 (0.06) 0.00 (0.00) — — —
There is a missing associative class in the
class diagram

0.13 (0.07) 0.04 (0.04) -1.19 (0.86) 0.163 1.95

The diagram is lacking an aggregation
relation between classes

0.61 (0.10) 0.26 (0.09) -1.48 (0.46) 0.001*** 10.25

The diagram is lacking an inheritance
relation between classes

0.17 (0.08) 0.04 (0.04) -1.53 (0.91) 0.092* 2.85

There is an unnecessary relation in the class
diagram that was not mentioned in the
scenario

0.22 (0.09) 0.17 (0.08) -0.28 (0.48) 0.562 0.34

Relation described in the scenario is
missing from the class diagram

0.30 (0.10) 0.22 (0.09) -0.45 (0.31) 0.142 2.15

The aggregation or inheritance relation
between two classes is wrong

0.13 (0.07) 0.09 (0.06) -0.45 (0.45) 0.311 1.03

The diagram lacks marking of the role of
the relation type between classes

0.22 (0.09) 0.09 (0.06) -1.07 (0.60) 0.076* 3.14

A relation specified between two classes is
incorrect or unnecessary (and it is not an
aggregation or inheritance relation)

0.74 (0.09) 0.48 (0.10) -1.13 (0.42) 0.007*** 7.31

The diagram is missing relation type
between two classes

0.26 (0.09) 0.13 (0.07) -0.86 (0.47) 0.072* 3.25

The diagram is missing the multiplicity
between two classes

0.26 (0.09) 0.09 (0.06) -1.31 (0.64) 0.040** 4.21

The diagram is lacking marking of X
(eXclusive) and T (Total cover) in an
inheritance relation between classes

0.13 (0.07) 0.00 (0.00) — — —

Overall 4.65 (1.00) 2.35 (0.52) -0.68 (0.22) 0.003*** t = 3.12
Note: *** p < 0.01, ** p < 0.05, * p < 0.1; “Before” and “After” indicate marginal probabilities of making the error of that type;
standard errors in parentheses.

Table 3. Error-Type Comparisons Over Time: Results of Generalized Estimating Equations

Journal of Information Systems Education, Vol. 31(4) Fall 2020

288

Figure 3. Student Responses to the Position Questionnaire in the Analysis and Design Course

Some quotations from the students’ answer sheets
concerning the learning-from-errors approach are given below:

• “Analyzing someone else’s work demands a deeper

understanding and higher level of controlling the
course’s subject.”

• “As I was analyzing their work and found their errors it
became clear to me what was wrong in my own work.”

• “We needed to analyze another group’s work, and their
work wasn’t clear, so it confused us about our work.”

• “It is important to explain the errors to yourself. This
way you get [a] better understanding of your faults.”

• “You remember the errors and their cause, and the
chance of repeating them is lower.”

It appears that while the activity was not favorable to all

students, the majority of them thought that it improved their
understanding and they liked it. We now discuss the learning-
from-errors approach and its implications.

5. DISCUSSION AND SUMMARY

UML diagrams are important in the process of designing a
software system (e.g., Silva et al., 2017; Störrle, 2017). Class
diagrams are one of the most useful types of diagrams in UML,
as they clearly map out the structure of a specific system. They
map the system’s structure by modeling its classes, its attributes,
its functionality, and the relationships between classes. The class
diagrams constitute the basis of requirements specification and
lay the foundation for all later design work. Therefore, their
quality can have a significant impact on the quality of the system
(Genero, Piattini, and Calero, 2000; Siau and Loo, 2006;
Szmurło and Śmiałek, 2006; Lethbridge, 2014). Improving the
quality of the class diagrams will improve the quality of
software development. Correcting errors at the stage of class
diagram design can help reduce development costs later in the
development process (Cabot, Clarisó, and Riera, 2014). Thus,

checking and searching for errors in the design process may be
worthwhile. At the same time, one must consider that the design
process is itself a complex, cognitive process (Villanueva et al.,
2018).

The engineering curriculum makes sure to expose students
to many design problems throughout their studies. This
experience is meant to help students address complex problems
(Marra, Palmer, and Litzinger, 2000; Dym et al., 2005).
However, there are no structured programs in the curriculum for
such exposure (Wankat and Oreovicz, 2015; McNeill et al.,
2016; Silva et al., 2017).

Students have difficulties in designing a class diagram (e.g.,
Kayama et al., 2014; Bogdanova and Snoeck, 2018). They make
a lot of errors and come up with inaccurate or wrong solutions.
This research is based on the assumption that students can learn
a lot from considering errors and that studying from errors can
be useful for learning.

Our activity was conducted with novice designers and was
based on students detecting errors in their colleagues’ solutions
in order for them to learn from those errors. Not all the students’
comments to their colleagues were correct or accurate, but those
comments required the students to re-examine their own
solutions with a more rigorous and thorough look. The activity
is based on the constructivism theory of learning that leans on
the belief that knowledge construction occurs following new
experiences with existing knowledge. A constructivist approach,
which is built upon limited or inaccurate knowledge, may help
close knowledge gaps between vague or erroneous perceptions
and actual correct ones. Differences between erroneous
predictions and actual outcomes raise cognitive conflicts which
yield a process of reflection and critical thinking that may serve
as a powerful means for reconstructing conceptual
understanding. This process may transform novices’ erroneous
mental models into correct ones (Ben-Ari, 1998). This occurs
particularly in situations where the responsibility of learning is
on the learner and when the student plays an active role, as in
the activity in this study.

17

12

2

16

8

19

20

4

21

17

6

8

15

6

16

3

5

24

2

4

051015202530

The activity to find errors in someone else's class
diagram contributed to my knowledge

Learning from errors activity was intellectually
challenging and encouraged original thinking

I felt uncomfortable checking my colleague
classmate's work

Learning from errors helped me to better reflect
my abilities

I would like to learn other topics in my studies
using learning from errors

Students' responses to the position questionnaire
Strongly disagree Disagree Agree Strongly agree

Journal of Information Systems Education, Vol. 31(4) Fall 2020

289

In this activity, the students were asked to think critically
about two things: (a) to decide whether the comments they
received from their colleagues were correct and (b) to examine
their colleagues’ work and give their own comments about it.
Thus, hopefully reflecting on the errors they noticed in their
colleagues’ work, they would apply that knowledge to their own.

Learning from errors while engaging in such learning ac-
tivity may be used to correct students’ erroneous conceptions
regards modeling class diagrams. Previous sections presented
our newly developed approach which involves an activity that
provides constructive error handling, an important factor for
individual learning processes (Tulis, Steuer, and Dresel, 2016).
We view the learning-from-errors approach as a tool to reduce
knowledge gaps.

The activity included various learning methods: working in
pairs, peer assessment based on the learning-from-errors
approach, discussion between the student pairs in order to reach
an agreed solution, and a classroom discussion about common
errors in the students’ solutions. All those methods have the
characteristics of active learning which has been found to be
more effective in improving problem-solving skills or students’
motivation than straight lecturing (Freeman et al., 2014; de
Freitas, Silva, and Marsicano, 2016; Riordan, Hine, and Smith,
2017).

Working in pairs and peer assessment are important learning
methods to help establish successful student outcomes and
profound individual learning (e.g., Loughry, Ohland, and
DeWayne Moore, 2007). In this research, the peer assessment
method affects the learners in two distinguishable ways. Aside
from the obvious benefit of receiving colleagues’ comments, no
matter how accurate they are, there is also a benefit from having
to assess other work as well. Being forced to critically look at
others’ class diagrams helps students to develop critical thinking
toward their own work.

The discussion leads students to a deeper understanding of
the subject, develops their metacognitive skills, improves their
ability to explain, motivates them, and influences their
perceptions of success and failure. Students construct
knowledge through discussions (Metcalfe, 2017). Furthermore,
a discussion of errors may prevent a repetition of similar errors
in the future (Borasi, 1996; Melis, 2005).

The results present the different errors made by students
before and after the activity. Several important observations
were made based on the error categories or the statistical
analysis of the before versus after results. Table 1 shows that the
number of errors in each of the categories decreased after the
activity. In addition, we compared the class diagrams that the
pairs designed before and after the activity. The comparison
showed that the class diagrams submitted in the “After” stage
were altered on the basis of the comments given to students by
their peers. In light of those comments, students were successful
in creating a more correct and accurate class diagram. In
addition, over the two stages, students made slightly more
omission errors than addition errors, but the difference appeared
to be insignificant. This means that teachers should discuss
“missing components,” “lack of marking,” and “failure to
identify” in the students’ class diagram designs as much as
“unnecessary components” and “partial/wrong” declarations.

The statistical analysis of the results shows the relevance
and potential of embedding our approach in teaching. There
were significantly fewer errors in general in different aspects of

the class diagram designs after the activity. After the activity,
some students indicated that they realized their previous errors,
of which they had been unaware. They conjectured about the
origins of their errors. Quite a few students indicated that they
obtained a more profound understanding as a result of the
learning-from-errors activity.

Learning how to correctly design class diagrams using the
learning-from-errors approach was an active and experiential
learning that encouraged students to think and research. This, in
turn, increased students’ enjoyment and motivation. Students
report that they prefer the learning-from-errors activity over the
traditional teaching approach, as can be seen by students’
responses to the position questionnaire. Thus, one of the benefits
of our developed activities was increased student motivation.

Teachers also gain valuable information from errors. They
can develop appropriate teaching methods for novices or
improve their teaching methods and ways to enhance studying
for novices based on these errors (Kayama et al., 2014).
Teachers’ tolerance for their students’ errors encourages
students’ activity, exploration, and generative engagement
(Metcalfe, 2017).

This study was conducted on a group of 45 students in the
Analysis and Design of Information Systems course, a typical
number for such a course. However, it would have been more
beneficial if this research had been conducted with a larger
number of students. While the results were found to be
statistically significant, a larger sample of students should be
addressed and treated with this activity in future research.

According to the typical errors found, it is possible to design
assignments that will have students follow the learning-from-
errors approach in order to learn class diagram design while
focusing on common errors. In the future, we plan to design an
assignment focused on activities to detect errors in a textual
scenario presented to the students along with wrong class
diagram designs. The misleading diagrams will contain
deliberate incorrect solutions that stem from the errors observed
or the additions and omissions detected in the mapping-errors
phase. Another possibility for future work is to give the students
class diagram designs with wrong statements based on observed
errors and ask that they identify the errors in each statement and
convince the writers of the statements that they were wrong.

In conclusion, we suggest that IS educators take a
constructivist approach and develop activities such as those
illustrated here in order to deepen students’ knowledge while
trying to reduce students’ knowledge gaps.

6. REFERENCES

Alhir, S. S. (2006). Guide to Applying the UML. Berlin,

Germany: Springer Science & Business Media.
Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting

Collaborative Learning and Problem-solving in a Constraint-
Based CSCL Environment for UML Class Diagrams.
International Journal of Computer-Supported Collaborative
Learning, 2(2–3), 159–190.

Ben-Ari, M. (1998). Constructivism in Computer Science
Education. ACM SIGCSE Bulletin, 30(1), 257–261.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005).
Reasoning on UML Class Diagrams. Artificial Intelligence,
168(1–2), 70–118.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

290

Bjork, R. A. (2012). Desirable Difficulties Perspective on
Learning. In Encyclopedia of the Mind. Edited by H. Pashler
(pp. 242–244). Thousand Oaks, California: Sage.

Bock, D. B. & Yager, S. E. (2005). Using the Data Modeling
Worksheet to Improve Novice Data Modeler Performance.
Journal of Information Systems Education, 16(3), 341–350.

Bogdanova, D. & Snoeck, M. (2018). Learning from Errors:
Error-based Exercises in Domain Modelling Pedagogy. In
The Practice of Enterprise Modeling: 11th IFIP WG 8.1.
Working Conference, PoEM 2018, Vienna, Austria, (pp.
321–334). New York, New York: Springer.

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J.
(2013). Using Example Problems to Improve Student
Learning in Algebra: Differentiating between Correct and
Incorrect Examples. Learning and Instruction, 25(June), 24–
34.

Booth, J. L., Begolli, K. N., & McCann, N. (2016). The Effect
of Worked Examples on Student Learning and Error
Anticipation in Algebra. Paper presented at the 38th Annual
Meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education,
Tucson, Arizona.

Borasi, R. (1994). Capitalizing on Errors as “Springboards for
Inquiry:” A Teaching Experiment. Journal for Research in
Mathematics Education, 25(2), 166–208.

Borasi, R. (1996). Reconceiving Mathematics Instruction: A
Focus on Errors. Santa Barbara, California: Greenwood
Publishing Group.

Cabot, J., Clarisó, R., & Riera, D. (2014). On the Verification
of UML/OCL Class Diagrams Using Constraint
Programming. Journal of Systems and Software, 93(July), 1–
23.

Carte, T. A., Jasperson, J., & Cornelius, M. E. (2006).
Integrating ERD and UML Concepts When Teaching Data
Modeling. Journal of Information Systems Education, 17(1),
55–64.

Casterella, G. I. & Vijayasarathy, L. (2019). Query Structure
and Data Model Mapping Errors in Information Retrieval
Tasks. Journal of Information Systems Education, 30(3),
178–190.

Cherepinsky, V. (2011). Self-Reflective Grading: Getting
Students to Learn from Their Mistakes. Primus, 21(3), 294–
301.

Confrey, J. (1990). What Constructivism Implies for Teaching.
Journal for Research in Mathematics Education, Monograph
4, Chapter 8, pp. 107–210.

Creswell, J. W. & Creswell, J. D. (2017). Research Design:
Qualitative, Quantitative, and Mixed Methods Approaches.
Thousand Oaks, California: Sage.

Curry, L. A. (2004). The Effects of Self-explanations of Correct
and Incorrect Solutions on Algebra Problem-Solving
Performance. Proceedings of the Annual Meeting of the
Cognitive Science Society, 26, 1548.

de Freitas, S. A. A., Silva, W. C. M. P., & Marsicano, G. (2016).
Using an Active Learning Environment to Increase Students’
Engagement. In 2016 IEEE 29th International Conference
on Software Engineering Education and Training (CSEET),
Dallas, Texas, (pp. 232–236), IEEE.

Dennis, A., Wixom, B. H., & Tegarden, D. (2015). Systems
Analysis & Design: An Object-Oriented Approach with
UML. Hoboken, New Jersey: John Wiley & Sons.

Dranidis, D., Stamatopoulou, I., & Ntika, M. (2015). Learning
and Practicing Systems Analysis and Design with
StudentUML. In BCI ’15: Proceedings of the 7th Balkan
Conference on Informatics, Craiova, Romania, (pp. 1–8),
New York, New York: ACM.

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L.
J. (2005). Engineering Design Thinking, Teaching, and
Learning. Journal of Engineering Education, 94(1), 103–
120.

Erickson, J. & Siau, K. (2004). Theoretical and Practical
Complexity of UML. AMCIS 2004 Proceedings, pp. 1669–
1674.

Flavell, J. H. (1976). Metacognitive Aspects of Problem
Solving. In The Nature of Intelligence. Edited by L. B.
Resnick (pp. 231–235). Hillsdale, New Jersey: Lawrence
Erlbaum.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K.,
Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active
Learning Increases Student Performance in Science,
Engineering, and Mathematics. Proceedings of the National
Academy of Sciences, 111(23), 8410–8415.

Genero, M., Piattini, M., & Calero, C. (2000). Early Measures
for UML Class Diagrams. L’objet, 6(4), 489–505.

Ginat, D. & Shmalo, R. (2013). Constructive Use of Errors in
Teaching CS1. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, (pp. 353–358).
New York, New York: ACM Press.

Große, C. S. & Renkl, A. (2007). Finding and Fixing Errors in
Worked Examples: Can This Foster Learning Outcomes?
Learning and Instruction, 17(6), 612–634.

Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., &
Mutzel, P. (2003). A New Approach for Visualizing UML
Class Diagrams. In Proceedings of the 2003 ACM
Symposium on Software Visualization, (pp. 179–188), New
York, New York: ACM Press.

Hardin, J. W. & Hilbe, J. M. (2012). Generalized Estimating
Equations. Boca Raton, Florida: Chapman and Hall/CRC.

Henderson, C. & Harper, K. A. (2009). Quiz Corrections:
Improving Learning by Encouraging Students to Reflect on
Their Mistakes. Physics Teacher, 47(9), 581–586.

Hilbe, J. M. (2017). The Statistical Analysis of Count Data/El
Análisis Estadístico de los Datos de Recuento. Cultura y
Educación, 29(3), 409–460.

Katz, A. & Shmallo, R. (2015). Improving Relational Data
Modeling through Learning from Errors. In Proceedings of
the IADIS Multi Conference of Computer Science and
Information Systems MCCSIS, Theory and Practice in
Modern Computing TPMC, (pp. 198–202).

Kayama, M., Ogata, S., Masymoto, K., Hashimoto, M., &
Otani, M. (2014). A Practical Conceptual Modeling
Teaching Method Based on Quantitative Error Analyses for
Novices Learning to Create Error-Free Simple Class
Diagrams. In 2014 IIAI 3rd International Conference on
Advanced Applied Informatics, Kitakyushu, Japan, (pp. 616–
622), IEEE.

Lethbridge, T. C. (2014). Teaching Modeling Using Umple:
Principles for the Development of an Effective Tool. In 27th
Conference on Software Engineering Education and
Training (CSEE&T 2014), Klagenfurt, Austria, (pp. 23–28),
IEEE.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

291

Loughry, M. L., Ohland, M. W., & DeWayne Moore, D. (2007).
Development of a Theory-Based Assessment of Team
Member Effectiveness. Educational and Psychological
Measurement, 67(3), 505–524.

Marra, R. M., Palmer, B., & Litzinger, T. A. (2000). The Effects
of a First‐Year Engineering Design Course on Student
Intellectual Development as Measured by the Perry Scheme.
Journal of Engineering Education, 89(1), 39–45.

Mathan, S. A. & Koedinger, K. R. (2005). Fostering the
Intelligent Novice: Learning from Errors with Metacognitive
Tutoring. Educational Psychologist, 40(4), 257–265.

McNeill, N. J., Douglas, E. P., Koro‐Ljungberg, M., Therriault,
D. J., & Krause, I. (2016). Undergraduate Students’ Beliefs
about Engineering Problem Solving. Journal of Engineering
Education, 105(4), 560–584.

Melis, E. (2005). Design of Erroneous Examples for
ActiveMath. In Artificial Intelligence in Education.
Supporting Learning through Intelligent and Socially
Informed Technology. 12th International Conference (AIED
2005). Vol. 125. Edited by B. Bredeweg, Ch.-K. Looi, G.
McCalla, & J. Breuker (pp. 451–458). Amsterdam: IOS
Press.

Melis, E., Sander, A., & Tsovaltzi, D. (2010). How to Support
Meta-Cognitive Skills for Finding and Correcting Errors? In
Cognitive and Metacognitive Educational Systems: Papers
from the 2010 AAAI Fall Symposium Series (FS-10-01), 64–
68.

Metcalfe, J. (2017). Learning from Errors. Annual Review of
Psychology, 68, 465–489.

Ohlsson, S. (1996). Learning from Performance Errors.
Psychological Review, 103(2), 241–262.

Pinkerton, K. D. (2005). Learning from Errors. Physics
Teacher, 43(8), 510–513.

Queralt, A. & Teniente, E. (2012). Verification and Validation
of UML Conceptual Schemas with OCL Constraints. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 21(2), Article 13.

Ramollari, E. & Dranidis, D. (2007). StudentUML: An
Educational Tool Supporting Object-Oriented Analysis and
Design. In Proceedings of the 11th Panhellenic Conference
on Informatics, Patras, Greece, (pp. 363–373).

Riordan, R. J., Hine, M. J., & Smith, T. C. (2017). An Integrated
Learning Approach to Teaching an Undergraduate
Information Systems Course. Journal of Information Systems
Education, 28(1), 59–70.

Sanders, K. & Thomas, L. (2007). Checklists for Grading
Object-Oriented CS1 Programs: Concepts and
Misconceptions. ACM SIGCSE Bulletin, 39(3), 166–170.

Santagata, R. (2004). “Are You Joking or Are You Sleeping?”
Cultural Beliefs and Practices in Italian and US Teachers’
Mistake-Handling Strategies. Linguistics and Education,
15(1–2), 141–164.

Schoenfeld, A. (2009). Learning to Think Mathematically:
Problem Solving, Metacognition, and Sense-Making in
Mathematics. Colección Digital Eudoxus, 7.

Shmallo, R., Ragonis, N., & Ginat, D. (2012). Fuzzy OOP:
Expanded and Reduced Term Interpretations. In Proceedings
of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education, (pp. 309–314).
New York, New York: ACM Press.

Siau, K. & Loo, P-P. (2006). Identifying Difficulties in
Learning UML. Journal of Information Systems
Management, 23(3), pp. 43–51.

Siegler, R. S. (2002). Microgenetic Studies of Self-explanation.
In Microdevelopment: Transition Processes in Development
and Learning. Edited by N. Granott & J. Parziale (pp. 31–
58). Cambridge, UK: Cambridge University Press.

Siegler, R. S. & Chen, Z. (2008). Differentiation and
Integration: Guiding Principles for Analyzing Cognitive
Change. Developmental Science, 11(4), 433–448.

Silva, W. A. F., Steinmacher, I. F., & Conte, T. U. (2017). Is It
Better to Learn from Problems or Erroneous Examples? In
2017 IEEE 30th Conference on Software Engineering
Education and Training (CSEE&T), Savannah, Georgia, (pp.
222–231), IEEE.

Störrle, H. (2017). How Are Conceptual Models Used in
Industrial Software Development? A Descriptive Survey. In
Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering,
Karslkrona, Sweden, (pp. 160–169), New York, New York:
ACM.

Szmurło, R. & Śmiałek, M. (2006). Teaching Software
Modeling in a Simulated Project Environment. In 9th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2006), Genova, Italy, (pp.
301–310), New York, New York: Springer.

Tulis, M., Steuer, G., & Dresel, M. (2016). Learning from
Errors: A Model of Individual Processes. Frontline Learning
Research, 4(2), 12–26.

Villanueva, I., Campbell, B. D., Raikes, A. C., Jones, S. H., &
Putney, L. G. (2018). A Multimodal Exploration of
Engineering Students’ Emotions and Electrodermal Activity
in Design Activities. Journal of Engineering Education,
107(3), 414–441.

Wankat, P. C. & Oreovicz, F. S. (2015). Teaching Engineering.
(2nd ed.). West Lafayette, Indiana: Purdue University Press.

Watson, R. T. (2006). The Essential Skills of Data Modeling.
Journal of Information Systems Education, 17(1), 39–42.

Yerushalmi, E. & Polingher, C. (2006). Guiding Students to
Learn from Mistakes. Physics Education, 41(6), 532–538.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

292

AUTHOR BIOGRAPHIES

Ronit Shmallo is a lecturer and researcher in the department of
industrial engineering and
management at the Shamoon
College of Engineering. She
received her Ph.D. in computer
science education from Tel-Aviv
University in 2013. She teaches
primarily computer science
programming and the analysis and
design of information systems
using an object-oriented approach.
Her research focuses on difficulties
encountered by novices in trying to

understand the cornerstones of object-oriented programming.
Her study involves an examination of a new teaching method
that integrates explicit orientation to errors in a way that enables
students to learn from those errors in different topics.

Tammar Shrot is a lecturer and researcher in the department
of software engineering at the
Shamoon College of Engineering.
She received her Ph.D. in computer
science from Bar-Ilan University in
2013. She teaches primarily
computer science programming
using an advanced object-oriented
approach, the analysis and design of
software systems, and artificial
intelligence. Her research focuses
on computer–human interactions,
intelligent user interfaces, and the

complexity of manipulating tournaments and voting. Her study
involves an examination of learning algorithms in the concepts
of user interfaces and the examination of the complexity of
manipulation protocols.

Journal of Information Systems Education, Vol. 31(4) Fall 2020

293

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2020 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

