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ABSTRACT 

A class diagram is one of the most important diagrams of Unified Modeling Language (UML) and can be used for modeling the 
static structure of a software system. Learning from errors is a teaching approach based on the assumption that errors can promote 
learning. We applied a constructive approach of using errors in designing a UML class diagram in order to (a) categorize the students’ 
errors when they design a class diagram from a text scenario that describes a specific organization and (b) determine whether the 
learning-from-errors approach enables students to produce more accurate and correct diagrams. The research was conducted with 
college students (N = 45) studying for their bachelor’s degree in engineering. The approach is presented, and the learning-from-
errors activity is illustrated. We present the students’ errors in designing the class diagram before and after the activity, together with 
the students’ opinions about applying the new approach in their course. Twenty errors in fundamental components of the class 
diagram design were observed. The students erred less after the activity of learning from errors. The displayed results show the 
relevance and potential of embedding our approach in teaching. Furthermore, the students viewed the learning-from-errors activity 
favorably. Thus, one of the benefits of our developed activity is increased student motivation. In light of the improved performance 
of the task, and the students’ responses to the learning-from-errors approach, we recommend that information systems teachers use 
similar activities in different fields and on various topics. 

Keywords: IS education, Object-oriented modeling, Unified modeling language (UML), Active learning, Peer evaluation 

1. INTRODUCTION

Unified Modeling Language (UML) is the standard formalism 
for the object-oriented analysis and design of software systems 
(Berardi, Calvanese, and De Giacomo, 2005), and it provides a 
graphical representation of the analysis and design of the system 
models (Dranidis, Stamatopoulou, and Ntika, 2015; Störrle, 
2017). Class diagrams are perceived as one of the most 
important components of UML, mapping out the static structure 
of a system by modeling its classes, attributes, methods, and the 
relationships between classes. It is critical that the class 
diagrams present information clearly, but the reasoning of UML 
class diagrams can be a complex task for novice designers 
(Berardi, Calvanese, and De Giacomo, 2005). 

Learning how to model and create class diagrams has 
become a necessity for information systems (IS) students and a 
substantial challenge arising before IS educators. Novice 

designers tend to make errors when learning to design models, 
and it is important to address the errors at a very early stage of a 
modeler’s education (Bogdanova and Snoeck, 2018). When one 
is designing a system in the real world, it is crucial to detect 
errors as early as possible in the development process to reduce 
later development costs (Cabot, Clarisó, and Riera, 2014).  

Everyone errs; however, learning from errors has been 
proven to be as profitable as, if not more than, learning the 
correct form to begin with (Ginat and Shmallo, 2013). The 
learning-from-errors approach involves an aspect of 
constructivism since the utilization of errors is based on 
students’ prior knowledge which may be inaccurate or faulty. 
Therefore, learning from errors can be useful if there is a 
constructivist construction. The review of one’s knowledge and 
procedures involves a metacognitive aspect that refers to one’s 
knowledge concerning one’s own cognitive processes or the 
learning of relevant properties of information or data (Flavell, 
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1976). The improvement of one’s metacognitive skill is an 
additional constructive means for learning (Schoenfeld, 2009). 
It appears that using errors in a structured learning process, 
followed by feedback, discussion, and correction, leads to a 
better understanding (Tulis, Steuer, and Dresel, 2016; Metcalfe, 
2017). Engaging with errors is difficult, but the difficulty can be 
a powerful means for learning (Borasi, 1996; Bjork, 2012) if the 
errors are used to scaffold the construction of learner 
knowledge. Engagement with errors also has the benefits of 
deep discussion of thought processes and a learning 
environment that challenges students to be actively involved in 
the learning process (de Freitas, Silva, and Marsicano, 2016).  

This paper presents a study of constructive learning from 
errors in a theoretical IS course in engineering studies. The 
novelty of this paper is the implementation of the learning-from-
errors approach in an IS engineering teaching process. The 
approach was applied in the analysis and design of an IS course 
of 45 undergraduate students. The main goal was to improve the 
learning process by integrating the learning-from-errors 
approach into the process of studying class diagrams. We 
examined whether this integration enabled students to better 
understand UML class diagrams and improve their designs to 
make them correct and more accurate. 

2. BACKGROUND

2.1 UML Class Diagrams 
UML is a standard language for modeling object-oriented 
systems that is commonly used in the software industry (Silva, 
Steinmacher, and Conte, 2017). Object-oriented models are 
based on objects, and objects are instances of classes. Classes 
have properties, behavior (functionality), and relationships of 
several kinds with other classes. The object-oriented model can 
be presented as a UML class diagram, which displays in one 
picture the set of classes and a set of relationships between them, 
such as inheritance (generalization), association, aggregation, 
and composition. 

Although class diagrams are only one of the diagram types 
included in UML, research has shown that they are perceived as 
the most important (e.g., Erickson and Siau, 2004). Changing 
system requirements causes changes in the structure of the 
system, and they need to be reflected in modifications of the 
class diagrams. Hence, it is important to develop diagrams that 
can easily incorporate changes (Genero, Piattini, and Calero, 
2000). 

UML class diagrams for modeling software systems can be 
large and complex in the design, analysis, and maintenance 
stages. Students face difficulties while learning how to model 
complete and correct class diagrams and that can affect the final 
software quality, since these diagrams would represent the 
software incompletely and incorrectly (Siau and Loo, 2006; 
Szmurło and Śmiałek, 2006; Lethbridge, 2014). 

One of the support options in the design of the class 
diagrams phase is to use an intelligent tutoring system or 
computer-aided software engineering (CASE) tools. Educators 
use a variety of educational tools in order to help their students 
with conceptual modeling software systems, but most of those 
tools are rather small and limited, with a small subset of UML 
features (Dranidis, Stamatopoulou, and Ntika, 2015). For 
example, Baghaei, Mitrovic, and Irwin (2007) presented a tutor 
that teaches how to design UML class diagrams and how to 

provide feedback on collaboration using the same formalism. 
Gutwenger et al. (2003) suggested a new approach for 
visualizing UML class diagrams leading to a balanced mixture 
of some aesthetic criteria. Ramollari and Dranidis (2007) 
developed StudentUML as a modeling tool that supports 
consistency checking of all the UML taught diagrams, including 
class diagrams. Cabot, Clarisó, and Riera (2014) presented 
methods for the verification of UML class diagrams extended 
with Object Constraint Language (OCL) constraints. In addition, 
CASE tools are commonly adopted for student use: power 
designer (https://sybase-powerdesigner.apponic.com), visible 
analyst (https://dbmstools.com/tools/visible-analyst), or visual 
paradigm (https://www.visual-paradigm.com). However, none 
of those tutoring systems or support tools can prevent novice 
designers from making various forms of inaccuracies, 
omissions, or redundancies in their class diagram designs. 

2.2 Learning-from-Errors Approach 
The literature describes a variety of errors that beginners tend to 
run into, but it rarely offers solutions that deal with these errors. 
In many cases, the suggested methods for overcoming errors are 
specific to a single scope, addressing one instance of an error 
(e.g., Watson, 2006; Sanders and Thomas, 2007; Booth et al., 
2013; Casterella and Vijayasarathy, 2019). The cause of an error 
is an erroneous perception, which frequently derives from overly 
general knowledge structures or from vague, faulty, or missing 
knowledge components (Ohlsson, 1996). Errors are experienced 
as conflicts between the knowledge that the learner believes to 
be correct and what the learner perceives as the present situation. 
This knowledge gap should be closed by error-detection and 
error-correction (Mathan and Koedinger, 2005). Error-detection 
will reveal gaps by comparing actual with expected outcomes. 
Error-correction will close the gaps by specializing faulty 
knowledge structures so that they become active only in 
situations in which they are appropriate. The cognitive conflict 
will stimulate the learner’s process of reflection and critical 
thinking (Borasi, 1996), which will lead the student to 
understand the source of the error. This in turn will lead to a 
revision of the learner’s knowledge (Ohlsson, 1996).  

The constructivist view of how knowledge is attained has 
important implications for an educational approach to errors 
(Borasi, 1996). Constructive use of errors as a teaching approach 
is based on students’ prior knowledge, which is inaccurate or 
somewhat vague. Learners cannot progress in learning if they do 
not have the relevant mental-model modification at which the 
instruction was aimed (Ben-Ari, 1998). The goal is to improve 
students’ knowledge and skills by creating cognitive conflict 
through errors. Constructivist studies support the notion of 
conflict as a catalyst for learning (e.g., Borasi, 1996; Ginat and 
Shmallo, 2013). Conflict causes examination of learner 
knowledge and procedures (Confrey, 1990) and leads to a 
deeper conceptual understanding and greater awareness of the 
errors to be avoided.  

In the past two decades, researchers have presented 
convincing evidence of the benefits of the learning-from-errors 
approach in different domains, such as mathematics, physics, 
and computer science (e.g., Borasi, 1996; Pinkerton, 2005; 
Yerushalmi and Polingher, 2006; Ginat and Shmallo, 2013). 
Learning from errors can promote learning, and errors can be 
used as a motivator for learning (e.g., Borasi, 1994; Siegler, 
2002; Curry, 2004; Große and Renkl, 2007; Siegler and Chen, 
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2008; Ginat and Shmallo, 2013; Bogdanova and Snoeck, 2018). 
There is a growing consensus that students can learn 

effectively from their errors. However, textbooks do not usually 
include incorrect examples, and creating materials that include 
incorrect examples can be time consuming for teachers (Booth, 
Begolli, and McCann, 2016). Furthermore, teachers prefer to 
avoid talking about errors in class because they are afraid their 
students will adopt the errors in their own problem-solving 
(Santagata, 2004). 

Researchers have shown the benefits of using the learning-
from-errors approach in various activities. For example, some 
offer supportive visual environments (Melis, Sander, and 
Tsovaltzi, 2010). Others have students think about and correct 
their own errors (Henderson and Harper, 2009; Cherepinsky, 
2011); some use erroneous statements that the students are asked 
to analyze and diagnose (Yerushalmi and Polingher, 2006); 
some integrate incorrect examples into class assignments (Booth 
et al., 2013); and some use self-explanations of both correct and 
incorrect solutions (Siegler, 2002; Curry, 2004; Große and 
Renkl, 2007). 

To the best of our knowledge, no researchers have con-
ducted studies on the learning-from-errors approach in IS except 
Bogdanova and Snoeck (2018). They examined a primarily 
learning-from-errors activity, with master’s students, to build a 
simple UML model based on textual case description. Their aim 
was to teach conceptual modeling by identifying the most 
common errors in students’ models and then introducing error-
based step-by-step exercises. Error detection related only to 
class-level errors and association-level errors. Their primary 
conclusion was that the step-by-step exercises were effective, at 
least when it concerns the immediately following exercise. 

3. RESEARCH DESCRIPTION

3.1 Research Rationale and Questions 
Numerous studies have been conducted over the years on 
techniques for modeling class diagrams and ways to improve the 
students’ designs (e.g., Berardi, Calvanese, and De Giacomo, 
2005; Bock and Yager, 2005; Carte, Jasperson, and Cornelius, 
2006; Watson, 2006; Queralt and Teniente, 2012; Cabot, 
Clarisó, and Reira, 2014). The rationale for our research was to 
suggest a new approach for teaching novice designers how to 
design a correct and accurate UML class diagram. The research 
had two intentions. The first was to map and catalog errors that 
students make in modeling the class diagrams of their chosen 
organization. The second was to examine a new teaching 
method that integrates explicit orientation toward errors and 
striving to learn from them. We wished to examine whether 
using the learning-from-errors approach improved students’ 
class diagram designs. The research questions were the 
following: 

• What errors do students make when they are designing
class diagrams?

• Do students improve their class diagrams as a result of
using the learning-from-errors approach?

• Do students like the learning-from-errors approach?
• Do students believe it advanced their knowledge and

understanding of class diagrams?

3.2 Research Participants 
The research was conducted with 45 students studying for an 
undergraduate degree in engineering in the Department of 
Industrial Engineering and Management (IEM). The course was 
the Analysis and Design of Information Systems. 

3.3 Research Tool and Methods 
The research applied a mixed-method approach combining 
qualitative and quantitative methods (Creswell and Creswell, 
2017). The study used quantitative analysis and qualitative 
research methods to expand and complement the quantitative 
findings. The research tools were the learning-from-errors 
activity and an attitudes questionnaire about the learning-from-
errors approach. 

3.3.1 Learning-from-errors activity. The goal was to design a 
class diagram for an organization that the students had chosen 
for the final project in their degree. Each student pair and one 
student without a partner selected a specific organization, such 
as an information system for students interested in higher 
education, a system for assigning replacement teachers in 
schools, an information system for the management of online 
purchasing groups, or a system for a charity organization. The 
activity had two steps: (1) designing a class diagram of the 
chosen organization according to a text scenario that described 
the organization and its main process and (2) refining the 
diagrams from the first step by using the approach of learning 
from errors (a detailed description about the activity appears in 
section 3.5). 

3.3.2 Attitudes questionnaire. A questionnaire was distributed 
in the classroom. It asked students their opinion on aspects of 
the learning-from-errors approach that they encountered during 
their class diagram activity. 

3.4 Analysis and Design of Information Systems Course 
The course Analysis and Design of Information Systems is 
taught in the IEM department and is part of the IS track. This is 
a required course in the 6th semester. The prerequisite for this 
course is the Object-Oriented Programming (OOP) course. 

The Analysis and Design of Information Systems course 
familiarizes students with the methodologies, tools, and methods 
for developing a software or information system. The course 
focuses on systems developed on the basis of OOP paradigms 
and is based on the book Systems Analysis & Design: An Object-
Oriented Approach with UML (Dennis, Wixom, and Tegarden, 
2015). 

System development is introduced using the UML tools in 
general, while focusing on the main diagrams: use case, class, 
activity, state machine, and sequence. Information about those 
UML tools and how to build them is based on Guide to Applying 
the UML (Alhir, 2006). 

The learning outcomes of the course are that upon successful 
completion, the students will be able to do the following: 

1. Use an object-oriented approach to describe and
implement the stages in developing software or
information systems.

2. Define user functional and non-functional requirements.
3. Create use case and activity diagrams to define user

functional requirements.
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4. Use class diagrams to design the system components. 
5. Use sequence diagrams to model the functionality of a 

system. 
6. Use activity and state machine (state-chart) diagrams to 

describe the dynamic aspects of, and flows in, the 
system. 

7. Integrate various diagrams in order to analyze and 
design a full system. 

 
This paper focuses on the fourth target of the course: 

students using class diagrams to design the components of their 
chosen organization. 
 
3.5 Process 
The learning-from-errors activity was divided into five stages: 
 

1. During 2 weeks of the 14-week course, the students 
attended a weekly 3-hour lecture on how to design 
system components using class diagrams. The students 
were given a task of describing their chosen 
organization (a text scenario) and designing a class 
diagram accordingly. They were divided into pairs and 
given 2 weeks to submit their solutions. 

2. The teacher sent a personal e-mail to each pair with 
another pair’s task solution and the description of their 
organization. Each pair was asked to examine the 
solution they received and to mark any errors they found 
in their colleagues’ solution regarding the presented 
organization. Students were expected to submit this 
second assignment two weeks later (the “Before” stage). 

3. Course staff sent each pair a file containing their 
colleagues’ comments. Students were told to carefully 
examine the comments they received from their 
colleagues since there was no guarantee that the 
comments were correct. 

4. The students were asked to submit a revised class 
diagram design in two weeks, and the course staff 
graded this final assignment (only). The course staff 
analyzed students’ solutions after stages 2 and 4. The 
solutions were compared to identify the errors that the 
students found in their colleagues’ solutions and to 
discover whether the refined class diagram, which was 
submitted after the learning-from-errors activity, had 
gained accuracy. Emphasis was placed on errors in the 
following fundamental components of the class diagram 
design: identifying the keys, attributes, classes; the class 
relationships type (aggregation, inheritance, 
associations); the names of relationships (written in the 
middle of the association line); and multiplicity (how 
many objects of each class take part in the 
relationships). The points that the course staff did not 
check for errors were visibility of class attributes and 
methods, the class notation, and abstract classes (the 
“After” stage). 

5. Finally, the teacher initiated a classroom discussion of 
typical errors that frequently appeared in students’ 
solutions. The discussion was general, since each pair 
had based their diagram on a different organization. 
However, the teacher emphasized the common errors, 
such as how to recognize an aggregation relation, an 
inheritance relation, a primary key, and an attribute of a 

class. At the end of the course, the students submitted a 
final version of all the UML diagrams of their system, 
including the class diagram. 
 

4. RESULTS 
 
4.1 Study 
Twenty-three solutions were analyzed from 45 students divided 
into 22 pairs and 1 sole student. The solutions included students’ 
written answers about the errors they found in their colleagues’ 
class diagram designs after stage 2. The analysis determined 
which components the students emphasized when they were 
searching for errors in their colleagues’ solutions, as can be seen 
in Table 1. We classified the error types according to those 
components while counting the number of students that erred in 
each type, as presented in Table 1 (“Before the Activity” 
column). We also analyzed the students’ errors in the class 
diagram design after stage 4 in order to compare the two stages 
and to see if there was improvement after the applied approach. 
We did not search for new errors after stage 4. The students’ 
errors that were found after stage 4 can be seen in Table 1 
(“After the Activity” column). 

Shmallo, Ragonis, and Ginat (2012) used a dichotomous 
categorization of expansion–reduction to classify the error types 
made by novice programmers learning OOP concepts. Katz and 
Shmallo (2015) used the terms addition/omission and classified 
novice designers’ errors in understanding the conceptual 
modeling of relational databases. They found that the most 
common errors made by students are the addition type, but errors 
of omission are also quite prevalent. 

On the basis of those classifications, we also classified the 
errors that we found in the basic components of the class 
diagram designs according to a dichotomous categorization of 
addition/omission, as presented in Table 1. The purpose was to 
check if educators can get an additional perspective on common 
errors that novice designers make when they design class 
diagrams.  

All errors made by all pairs were counted. When a pair was 
wrong in several component types, their errors were counted 
separately for each type. However, if a pair erred several times 
in the same error type, their errors were counted only once. After 
analyzing the students’ errors, we divided the errors into four 
basic components of the class diagram: keys (3 errors), attributes 
(3 errors), classes (4 errors), and relations (10 errors). Most of 
the errors deal with the relations components. Students mostly 
err in identifying relations between classes. The most common 
error, before and after the activity, was that “the relation 
specified between classes was incorrect or unnecessary (and it is 
not an aggregation or inheritance relation).” A high percentage 
of students also erred in “identifying the relation of aggregation 
between classes.” 

From the frequency of errors appearing in Table 1, we 
noticed a total of 60 of the omission type (58%) versus 44 errors 
of the addition type (42%) from the first stage, and those 
proportions switched in the second stage to 23 (43%) versus 31 
(57%), respectively. Over the two stages, students made slightly 
more omission errors (53%) than addition errors (47%), but the 
difference appeared insignificant (p > 0.05), consistent with the 
non-significant differences between the two types in each stage. 
This means that we cannot argue for more errors of one type 
over the other. 
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Addition/ 
Omission 

After the  
Activity (%) 

Before the 
Activity (%) Error Component 

Addition 8.696 17.391 The definition of a primary key is not unique. Keys 
Addition 13.043 13.043 

 
21.739 

A primary key is defined in existence dependency 
instead of a partial key. 

Omission 4.348 The marking of a primary key is lacking. 
Addition 13.043 8.696 Attributes described in the text scenario are 

declared in wrong class. 
Attributes 

Omission 8.696 34.784 Attributes described in the text scenario are 
missing from the class diagram. 

Addition 13.043 26.087 Unnecessary attributes that appear in the class 
diagram were not mentioned in the text scenario. 

Addition 8.696 13.043 There is an unnecessary class in the diagram. Classes 
Addition 4.348 4.348 There is an unnecessary associative class in the 

diagram. 
Omission 0 8.696 There is a missing class in the class diagram. 
Omission 4.348 13.043 There is a missing associative class in the class 

diagram. 
Omission 26.087 60.870 The diagram is lacking an aggregation relation 

between classes. 
Relations 

Omission 4.348 17.391 The diagram is lacking an inheritance relation 
between classes. 

Addition 17.391 21.739 There is an unnecessary relation in the class 
diagram that was not mentioned in the scenario. 

Omission 21.739 30.435 Relation described in the scenario is missing from 
the class diagram. 

Addition 8.696 13.043 The aggregation or inheritance relation between 
two classes is wrong. 

Omission 8.696 21.739 The diagram lacks marking of the role of the 
relation type between classes. 

 

Addition 47.826 73.913 A relation specified between two classes is 
incorrect or unnecessary (and it is not an 
aggregation or inheritance relation). 

Omission 13.043 26.087 The diagram is missing relation type between two 
classes. 

Omission 8.696 26.087 The diagram is missing the multiplicity between 
two classes. 

Omission 0 13.043 The diagram is lacking marking of X (eXclusive) 
and T (Total cover) in an inheritance relation 
between classes. 

Table 1. Errors Made by Students and Their Frequency (N = 23 Solutions) 

4.2 Modeling Strategy and Methods 
This study aims at assessing the potential of the learning-from-
errors approach by comparing individuals’ errors over time 
(before vs. after the learning-from-errors activity). The study is 
subject to our hypothesis that teaching students how to design 
class diagrams using learning from errors is expected to reduce 
the individual’s subsequent level of errors. To test this 
hypothesis, we use a series of two-level logistic regression 
models that look at the probability of making each type of error 
before versus after the learning activity. In these logistic models 
we use the generalized estimating equations (GEE) approach, 
which allows for repeatedly measured individuals; that is, each 
individual student is measured twice, and correlations within 
individuals are assumed. The GEE approach takes on various 
distribution types, among which is logistic distribution (logit 
model). This model generates marginal probabilities for making 
the error before and after the constructive learning and compares 

across them (Hardin and Hilbe, 2012). For the overall level of 
error, we use the generalized linear mixed model (GLMM) with 
log link and Poisson distribution, where the Poisson distribution 
is a unique, discrete distribution with the mean equal to the 
variance (Hilbe, 2017). Put differently, the total number of 
errors is a count variable that receives integer, non-negative 
values and has a right-hand tail of small frequencies. 

In Table 2, we show the frequency of making an error across 
the 20 types of possible errors examined. Clearly, there is a 
reduction in the total number of errors from the preliminary test 
to the subsequent test (F(1,22) = 65.75, p < 0.001). Overall, from 
almost 5 out of 20 possible errors before the learning, the mean 
number is reduced to only 2.35 out of 20 after the learning. This 
change in the total distribution of errors is illustrated in Figure 
1.  
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No. of Errors 
Before  After F Test 

F(1,22), p, ηp
2 Freq. %  Freq. % 

0 0 0  1 4.3 65.74, < 0.001, 0.749 
1 0 0  1 4.3 
2 0 0  11 47.8 
3 3 13.0  9 39.1 
4 8 34.8  1 4.3 
5 7 30.4  0 0 
6 4 17.4  0 0 
7 1 4.3  0 0 

Total N 23 100.0  23 100.0  
No. of errors 107   54   
Mean 4.65   2.35   
SE 0.22   0.17   

Table 2. Frequency of Errors by Time 

Figure 1. Number of Errors Made Before and After the 
Learning Activity 

Note: Horizontal axis shows frequencies across the 23 
solutions; vertical axis, number of error. 

We can also see from Figure 1 that at least the after-learning 
distribution follows the Poisson distribution, with one student 
making no errors at all and half of them making one or two 
errors, whereas before the learning each student made at least 
three errors. 

A finer analysis that looked at each type of error is presented 
in Table 3. The table shows the time effect as estimated by the 
GEE procedure with correlated response. 

The reduction in the probability of making a certain error 
over time appears to be significant for error “Attributes 
described in the text scenario are declared in wrong class” 
(Attributes error) (b = −1.72, p = 0.012); error “The diagram is 
lacking an aggregation relation between classes” (Relations 
error) (b = −1.48, p = 0.001); error “A relation specified between 
two classes is incorrect or unnecessary (and it is not an 
aggregation or inheritance relation)” (Relations error) (b = 
−1.13, p = 0.007); and error “The diagram is missing the 
multiplicity between two classes” (Relations error) (b = −1.31, 
p = 0.040). Although this trend is limited to those errors, the 
marginal probabilities show that at the “Before” stage the 
predicted probability of making the error is higher in comparison 
to the predicted probability at the “After” stage, except for error 

“A primary key is defined in existence dependency instead of a 
partial key” (Keys error), which shows equal marginal 
probabilities at the “Before” and “After” stages. In error “There 
is a missing class in the class diagram” (Classes error) and error 
“A primary key is defined in existence dependency instead of a 
partial key” (Keys error), no comparison is done, as no errors of 
these types are made among the 23 student pairs in the 
experiment. Finally, a GLMM Poisson regression results in a 
significant time effect that follows the actual reduction in the 
number of errors (b = −0.068, p = 0.003). The model predicts 
4.65 errors before learning but only 2.35 after learning; this 
reduction is illustrated in Figure 2, which also shows the upper 
and lower 95% confidence interval. 

 
Figure 2. Expected Level of Errors Over Time; Means and 

Lower and Upper Bounds (95% Confidence) 
Note: Horizontal axis shows time of measurement; vertical 

axis, number of errors. 

In addition, students were asked to fill out a position 
questionnaire that contained statements concerning their 
assessments throughout the learning-from-errors activity. 
Students had to choose a value on a scale of 1 to 4, where 1 
represented “strongly disagree,” 2 “disagree,” 3 “agree,” and 4 
“strongly agree.” The results can be seen in Figure 3. 
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Error Before After Time Effect 
Coefficient (SE) 

Sig. p-
Value 

Wald Chi-
Square 

The definition of a primary key is not 
unique 

0.17 (0.08) 0.09 (0.06) -0.79 (0.55) 0.149 2.08 

A primary key is defined in existence 
dependency instead of a partial key 

0.13 (0.07) 0.13 (0.07) 0.00 (0.54) 1.00 0.00 

The marking of a primary key is lacking 0.22 (0.09) 0.04 (0.04) -1.81 (0.94) 0.054* 3.71 
Attributes described in the text scenario are 
declared in wrong class 

0.09 (0.06) 0.13 (0.07) 0.45 (0.79) 0.564 0.33 

Attributes described in the text scenario are 
missing from the class diagram 

0.35 (0.10) 0.09 (0.06) -1.72 (0.68) 0.012** 6.38 

Unnecessary attributes that appear in the 
class diagram were not mentioned in the 
text scenario 

0.26 (0.09) 0.13 (0.07) -0.86 (0.47) 0.072* 3.25 

There is an unnecessary class in the 
diagram 

0.13 (0.07) 0.09 (0.06) -0.45 (0.45) 0.311 1.03 

There is an unnecessary associative class in 
the diagram 

0.04 (0.04) 0.04 (0.04) 0.00 (0.00) 1.00 0.00 

There is a missing class in the class diagram 0.09 (0.06) 0.00 (0.00) — — — 
There is a missing associative class in the 
class diagram 

0.13 (0.07) 0.04 (0.04) -1.19 (0.86) 0.163 1.95 

The diagram is lacking an aggregation 
relation between classes 

0.61 (0.10) 0.26 (0.09) -1.48 (0.46) 0.001*** 10.25 

The diagram is lacking an inheritance 
relation between classes 

0.17 (0.08) 0.04 (0.04) -1.53 (0.91) 0.092* 2.85 

There is an unnecessary relation in the class 
diagram that was not mentioned in the 
scenario 

0.22 (0.09) 0.17 (0.08) -0.28 (0.48) 0.562 0.34 

Relation described in the scenario is 
missing from the class diagram 

0.30 (0.10) 0.22 (0.09) -0.45 (0.31) 0.142 2.15 

The aggregation or inheritance relation 
between two classes is wrong 

0.13 (0.07) 0.09 (0.06) -0.45 (0.45) 0.311 1.03 

The diagram lacks marking of the role of 
the relation type between classes 

0.22 (0.09) 0.09 (0.06) -1.07 (0.60) 0.076* 3.14 

A relation specified between two classes is 
incorrect or unnecessary (and it is not an 
aggregation or inheritance relation) 

0.74 (0.09) 0.48 (0.10) -1.13 (0.42) 0.007*** 7.31 

The diagram is missing relation type 
between two classes 

0.26 (0.09) 0.13 (0.07) -0.86 (0.47) 0.072* 3.25 

The diagram is missing the multiplicity 
between two classes 

0.26 (0.09) 0.09 (0.06) -1.31 (0.64) 0.040** 4.21 

The diagram is lacking marking of X 
(eXclusive) and T (Total cover) in an 
inheritance relation between classes 

0.13 (0.07) 0.00 (0.00) — — — 

Overall 4.65 (1.00) 2.35 (0.52) -0.68 (0.22) 0.003*** t = 3.12 
Note: *** p < 0.01, ** p < 0.05, * p < 0.1; “Before” and “After” indicate marginal probabilities of making the error of that type; 
standard errors in parentheses. 

Table 3. Error-Type Comparisons Over Time: Results of Generalized Estimating Equations 
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Figure 3. Student Responses to the Position Questionnaire in the Analysis and Design Course 

Some quotations from the students’ answer sheets 
concerning the learning-from-errors approach are given below: 

 
• “Analyzing someone else’s work demands a deeper 

understanding and higher level of controlling the 
course’s subject.”  

• “As I was analyzing their work and found their errors it 
became clear to me what was wrong in my own work.”  

• “We needed to analyze another group’s work, and their 
work wasn’t clear, so it confused us about our work.”  

• “It is important to explain the errors to yourself. This 
way you get [a] better understanding of your faults.”  

• “You remember the errors and their cause, and the 
chance of repeating them is lower.”  

 
It appears that while the activity was not favorable to all 

students, the majority of them thought that it improved their 
understanding and they liked it. We now discuss the learning-
from-errors approach and its implications. 

 
5. DISCUSSION AND SUMMARY 

 
UML diagrams are important in the process of designing a 
software system (e.g., Silva et al., 2017; Störrle, 2017). Class 
diagrams are one of the most useful types of diagrams in UML, 
as they clearly map out the structure of a specific system. They 
map the system’s structure by modeling its classes, its attributes, 
its functionality, and the relationships between classes. The class 
diagrams constitute the basis of requirements specification and 
lay the foundation for all later design work. Therefore, their 
quality can have a significant impact on the quality of the system 
(Genero, Piattini, and Calero, 2000; Siau and Loo, 2006; 
Szmurło and Śmiałek, 2006; Lethbridge, 2014). Improving the 
quality of the class diagrams will improve the quality of 
software development. Correcting errors at the stage of class 
diagram design can help reduce development costs later in the 
development process (Cabot, Clarisó, and Riera, 2014). Thus, 

checking and searching for errors in the design process may be 
worthwhile. At the same time, one must consider that the design 
process is itself a complex, cognitive process (Villanueva et al., 
2018). 

The engineering curriculum makes sure to expose students 
to many design problems throughout their studies. This 
experience is meant to help students address complex problems 
(Marra, Palmer, and Litzinger, 2000; Dym et al., 2005). 
However, there are no structured programs in the curriculum for 
such exposure (Wankat and Oreovicz, 2015; McNeill et al., 
2016; Silva et al., 2017). 

Students have difficulties in designing a class diagram (e.g., 
Kayama et al., 2014; Bogdanova and Snoeck, 2018). They make 
a lot of errors and come up with inaccurate or wrong solutions. 
This research is based on the assumption that students can learn 
a lot from considering errors and that studying from errors can 
be useful for learning. 

Our activity was conducted with novice designers and was 
based on students detecting errors in their colleagues’ solutions 
in order for them to learn from those errors. Not all the students’ 
comments to their colleagues were correct or accurate, but those 
comments required the students to re-examine their own 
solutions with a more rigorous and thorough look. The activity 
is based on the constructivism theory of learning that leans on 
the belief that knowledge construction occurs following new 
experiences with existing knowledge. A constructivist approach, 
which is built upon limited or inaccurate knowledge, may help 
close knowledge gaps between vague or erroneous perceptions 
and actual correct ones. Differences between erroneous 
predictions and actual outcomes raise cognitive conflicts which 
yield a process of reflection and critical thinking that may serve 
as a powerful means for reconstructing conceptual 
understanding. This process may transform novices’ erroneous 
mental models into correct ones (Ben-Ari, 1998). This occurs 
particularly in situations where the responsibility of learning is 
on the learner and when the student plays an active role, as in 
the activity in this study. 
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In this activity, the students were asked to think critically 
about two things: (a) to decide whether the comments they 
received from their colleagues were correct and (b) to examine 
their colleagues’ work and give their own comments about it. 
Thus, hopefully reflecting on the errors they noticed in their 
colleagues’ work, they would apply that knowledge to their own. 

Learning from errors while engaging in such learning ac-
tivity may be used to correct students’ erroneous conceptions 
regards modeling class diagrams. Previous sections presented 
our newly developed approach which involves an activity that 
provides constructive error handling, an important factor for 
individual learning processes (Tulis, Steuer, and Dresel, 2016). 
We view the learning-from-errors approach as a tool to reduce 
knowledge gaps. 

The activity included various learning methods: working in 
pairs, peer assessment based on the learning-from-errors 
approach, discussion between the student pairs in order to reach 
an agreed solution, and a classroom discussion about common 
errors in the students’ solutions. All those methods have the 
characteristics of active learning which has been found to be 
more effective in improving problem-solving skills or students’ 
motivation than straight lecturing (Freeman et al., 2014; de 
Freitas, Silva, and Marsicano, 2016; Riordan, Hine, and Smith, 
2017).  

Working in pairs and peer assessment are important learning 
methods to help establish successful student outcomes and 
profound individual learning (e.g., Loughry, Ohland, and 
DeWayne Moore, 2007). In this research, the peer assessment 
method affects the learners in two distinguishable ways. Aside 
from the obvious benefit of receiving colleagues’ comments, no 
matter how accurate they are, there is also a benefit from having 
to assess other work as well. Being forced to critically look at 
others’ class diagrams helps students to develop critical thinking 
toward their own work. 

The discussion leads students to a deeper understanding of 
the subject, develops their metacognitive skills, improves their 
ability to explain, motivates them, and influences their 
perceptions of success and failure. Students construct 
knowledge through discussions (Metcalfe, 2017). Furthermore, 
a discussion of errors may prevent a repetition of similar errors 
in the future (Borasi, 1996; Melis, 2005). 

The results present the different errors made by students 
before and after the activity. Several important observations 
were made based on the error categories or the statistical 
analysis of the before versus after results. Table 1 shows that the 
number of errors in each of the categories decreased after the 
activity. In addition, we compared the class diagrams that the 
pairs designed before and after the activity. The comparison 
showed that the class diagrams submitted in the “After” stage 
were altered on the basis of the comments given to students by 
their peers. In light of those comments, students were successful 
in creating a more correct and accurate class diagram. In 
addition, over the two stages, students made slightly more 
omission errors than addition errors, but the difference appeared 
to be insignificant. This means that teachers should discuss 
“missing components,” “lack of marking,” and “failure to 
identify” in the students’ class diagram designs as much as 
“unnecessary components” and “partial/wrong” declarations. 

The statistical analysis of the results shows the relevance 
and potential of embedding our approach in teaching. There 
were significantly fewer errors in general in different aspects of 

the class diagram designs after the activity. After the activity, 
some students indicated that they realized their previous errors, 
of which they had been unaware. They conjectured about the 
origins of their errors. Quite a few students indicated that they 
obtained a more profound understanding as a result of the 
learning-from-errors activity. 

Learning how to correctly design class diagrams using the 
learning-from-errors approach was an active and experiential 
learning that encouraged students to think and research. This, in 
turn, increased students’ enjoyment and motivation. Students 
report that they prefer the learning-from-errors activity over the 
traditional teaching approach, as can be seen by students’ 
responses to the position questionnaire. Thus, one of the benefits 
of our developed activities was increased student motivation. 

Teachers also gain valuable information from errors. They 
can develop appropriate teaching methods for novices or 
improve their teaching methods and ways to enhance studying 
for novices based on these errors (Kayama et al., 2014). 
Teachers’ tolerance for their students’ errors encourages 
students’ activity, exploration, and generative engagement 
(Metcalfe, 2017). 

This study was conducted on a group of 45 students in the 
Analysis and Design of Information Systems course, a typical 
number for such a course. However, it would have been more 
beneficial if this research had been conducted with a larger 
number of students. While the results were found to be 
statistically significant, a larger sample of students should be 
addressed and treated with this activity in future research. 

According to the typical errors found, it is possible to design 
assignments that will have students follow the learning-from-
errors approach in order to learn class diagram design while 
focusing on common errors. In the future, we plan to design an 
assignment focused on activities to detect errors in a textual 
scenario presented to the students along with wrong class 
diagram designs. The misleading diagrams will contain 
deliberate incorrect solutions that stem from the errors observed 
or the additions and omissions detected in the mapping-errors 
phase. Another possibility for future work is to give the students 
class diagram designs with wrong statements based on observed 
errors and ask that they identify the errors in each statement and 
convince the writers of the statements that they were wrong. 

In conclusion, we suggest that IS educators take a 
constructivist approach and develop activities such as those 
illustrated here in order to deepen students’ knowledge while 
trying to reduce students’ knowledge gaps. 
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