

Journal of
Information
Systems
Education

Volume 30

Issue 3
Summer 2019

Teaching Tip
A Notation for Planning SQL Queries

Toni Taipalus

Recommended Citation: Taipalus, T. (2019). Teaching Tip: A Notation for Planning SQL
Queries. Journal of Information Systems Education, 30(3), 160-166.

Article Link: http://jise.org/Volume30/n3/JISEv30n3p160.html

Initial Submission: April 4 2018
Accepted: 13 February 2019
Abstract Posted Online: 5 June 2019
Published: 12 September 2019

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume30/n3/JISEv30n3p160.html
http://jise.org/

Teaching Tip
A Notation for Planning SQL Queries

Toni Taipalus
University of Jyvaskyla

Faculty of Information Technology
Jyvaskyla, Finland, 40014

toni.taipalus@jyu.fi

ABSTRACT

Structured Query Language (SQL) is still the de facto database query language widely used in industry and taught in almost all
university level database courses. The role of SQL is further strengthened by the emergence of NewSQL systems which use SQL
as their query language as well as some NoSQL systems, e.g., Cassandra and DynamoDB, which base their query languages on
SQL. Even though the syntax of SQL is relatively simple when compared to programming languages, studies suggest that students
struggle with simple concepts due to working memory constraints when learning SQL. This teaching tip presents a novel, simple,
and intuitive notation for planning more complex SQL queries, which 1) facilitates the learning of SQL by providing students with
a big picture of a particular data demand in regard to the database structure and 2) separates the logic of a data demand from the
syntax and semantics of SQL, thus alleviating the strain on the student’s short-term memory. The notation can also be applied when
discussing SQL semantics during the teaching process without focusing on the syntactical nuances of the language.

Keywords: Structured query language (SQL), Query language, Data management, Data visualization, Teaching tip

1. INTRODUCTION

When teaching programming, teachers often emphasize
planning before writing, and encourage the use of various
techniques, e.g., flowcharts, to plan how the software works. As
the software becomes increasingly complex, planning can be
supported by design, e.g., by using class diagrams. Various
planning techniques that support learning have been proposed
for programming (e.g., Hu, Winikoff, and Cranefield, 2012),
but SQL has received less attention despite its popularity in
both education and industry. The techniques intended for
supporting the learning of programming cannot be utilized as is
with SQL because of the declarative (i.e., a query is a
description of what) and set focused (i.e., a query is difficult or
impossible to divide into working subsets) nature of SQL as
opposed to the imperative (i.e., a function is a description of
how) and step focused (i.e., software operates line-by-line and
function-by-function) nature of programming languages such
as Java, C#, or Python. These differences make the use of
flowcharts unsuitable for planning SQL queries.

The more complex the query is, the more strain it puts on
the query writer’s short-term memory (e.g., de Jong, 2010, for
working memory in general; Smelcel, 1995, for working
memory in SQL in particular). Additionally, Ahadi et al. (2016)
found that omission errors are among the most common errors
when students are learning SQL and proposed that following a
systematic procedure and segmenting the question could be the
solution for avoiding omission errors. Additionally, even
though the syntax of SQL is relatively simple, during the query

writing process, the writer must recall SQL keywords with their
syntax and semantics, in addition to the database object names,
namespaces, and required expressions which, according to
Smelcer (1995), often causes strain on the student’s short-term
memory. Furthermore, Buitendijk (1988) discussed that one of
the four major reasons for writing incorrect SQL queries was
the complexity of the task. Our work introduces a simple and
intuitive notation for planning SQL queries (NPSQ) which is
not based on any existing notation. The purpose of the notation
is two-fold. First, to assist the student in acquiring the big
picture of more complex queries, and second, to separate logic
and semantics from syntax, thus alleviating the strain on the
student’s short-term memory.

The notation can be utilized in any database course that
involves SQL. We have used the notation in an introductory
database course with approximately 250 to 350 students
(depending on the year), mandatory for undergraduate students
who major in information systems or computer science, who
typically have no previous experience in SQL. We have taught
SQL from the SQL standard’s perspective as proposed by
Randolph (2003). In addition to positive student feedback,
several industry professionals have indicated that the notation
has proven increasingly useful when planning more and more
complex queries.

2. BACKGROUND

In this section, we first define key terms for this work. We then
describe our perceptions on how a query writing process takes

Journal of Information Systems Education, Vol. 30(3) Summer 2019

160

mailto:toni.taipalus@jyu.fi

place in order to give background on what conceptions have
driven the evolution of the notation.

2.1 Terminology
A data demand is a natural language representation of what data
is needed to which a query writer, e.g., a student, is required to
write an equivalent query in SQL. When a query is run, the
database management system outputs an error message, or a
result table which contains the rows that satisfy the query. A
query plan is a picture drawn by a query writer using NPSQ. A
query plan is drawn after reading the data demand but before
writing the query.

Rows that satisfy a query can be limited in two ways: joins
and expressions. To the extent of our teaching, a student can
write a join in one of four methods: using the JOIN predicate,
an uncorrelated subquery with IN, a correlated subquery with
EXISTS, or with an explicit join condition without a subquery.
Not all the methods can be applied for all data demands, and
some methods fit more naturally to some data demands.
Expressions concern either a column, or groups, which means
that the expression is placed either in a WHERE clause, or a
HAVING clause, respectively. Concrete examples of some of
these methods can be found in Appendix 1, and examples of all
methods in Taipalus, Siponen, and Vartiainen (2018).

2.2 The Query Writing Process
Over the last eight years of teaching SQL, we have identified
six steps in the query writing process which, in turn, have
guided the formulation and usage of this notation. Similar steps
or aspects have also been recognized by others (e.g., Casterella
and Vijayasarathy, 2013). These steps are, in order: i) which
tables are needed to answer the data demand; ii) which columns

are needed in the result table; iii) which tables need to be joined;
iv) which columns are the joining columns, and is there a need
for an outer join; v) which columns are subject to expressions;
and vi) is there a need for ordering, grouping, or expressions on
groups. These steps can be interpreted as one of the lower level
presentations of the model of the query formulation process
suggested by Borthick et al. (2001).

3. THE NOTATION

In this section we first discuss the elements of NPSQ from a
more theoretical viewpoint and then present practical step-by-
step instructions on how to utilize the notation. More examples
can be found in Appendix 1. The notation can also be utilized
for complex UPDATE and DELETE statements with little or
no modifications. Furthermore, the notation may be used with
other relationally complete query languages which, however,
appear to be scarce.

3.1 The Elements of the Notation
NPSQ does not decree the syntactical elements of the query,
e.g., which method should be used when writing joins or how
expressions should be written, but only the logic of the query.
We have designed the notation for SELECT, FROM, WHERE,
ORDER BY, GROUP BY, and HAVING clauses, because
these are the most commonly taught data retrieval elements of
SQL. Although we present the elements of NPSQ drawn with a
computer program, we emphasize that the planning should take
place with pen and paper for quickness and convenience. Figure
1 summarizes the notation, and Table 1 presents examples of
the SQL equivalents. The elements on the left side correspond
to relational algebraic operations (Codd, 1970, 1972):

Table 1. The Corresponding SQL Concepts for Each Element of the Notation

a) SELECT c1
FROM <some table> T

e) ORDER BY c1 ASC, c2 DESC

b) FROM <some table> T
WHERE c1 = <some value>

f) SELECT c1, c2, SUM(c3)
[…]
GROUP BY c1, c2

c) FROM <some table> T
INNER JOIN <some table> S ON (T.c1 = S.c1)

g) SELECT c1, COUNT(c2)
[…]
GROUP BY c1
HAVING COUNT(c2) > 2

d) FROM <table> T
LEFT OUTER JOIN <some table> S ON (T.c1 = S.c1)

Figure 1. The Elements of the Notation

Journal of Information Systems Education, Vol. 30(3) Summer 2019

161

projection (SELECT), restriction (WHERE), join (INNER
JOIN), and intersection (OUTER JOIN). The elements on the
right side correspond to SQL clauses: sorting (ORDER BY),
grouping (GROUP BY), and expressions on groups
 (HAVING).

While we designed the elements of the notation around the
six steps of the query writing process discussed in Section 2.2,
the structure of a query plan is inspired by the query trees used
as input and output by the query processing components of
different database management systems. A query plan can also
be understood as a graph with nodes (tables), edges (joins), and
properties (joining columns and expressions) of both.
Furthermore, a query plan is a kind of tree in which the root
node is the table from which columns are projected into the
result table. However, a tree can have multiple root nodes, if the
result table contains columns from more than one table.

Tables should be represented not by table names but by
short aliases for brevity and convenience. In a case such as a
self-join when the same table must be presented more than
once, different aliases should be considered, e.g., T1 and T2 for
table T. If an expression is complex, or the expression repeated
with different values for different tables, more precise notation
can be used, e.g., c1 = ‘New York’ instead of c1. If a join is
complex, e.g., based on an aggregate function, or if a quantified
comparison operator such as ALL is used, it can be presented
as a property of the corresponding edge.

If the query is written with subqueries, the distance from
the root node(s) represents the depth of a query; the root nodes
represent the main SELECT clause, the nodes on the next level
of the tree represent first level subqueries, the nodes on the level
below that represent second level subqueries etc. A case of
negated existential quantifier (¬∃) can be formulated with either
left or right outer join, with a subquery using NOT IN or NOT

EXISTS, or with ALL. In the former case, letters L or R can be
used to illustrate the type of the outer join, as demonstrated

in Figure 1 (d). If NATURAL JOIN or CROSS JOIN is used,
the property of the edge can be omitted.

In the scope of our course, we teach only strict grouping. In
practice, this means that if an aggregate function is used in the
main SELECT clause with a grouping column, the result table
must be grouped by all grouping columns, and only the
grouping columns for the query to be syntactically correct, as
opposed to the optional feature T301 (ISO/IEC, 2016). This
grouping convention can be observed in Figure 1 and Table 1
(f, g).

3.2 Practical Examples
In order to demonstrate the usage of the notation in practice,
and to demonstrate corresponding SQL clauses with complete
examples, we utilize two data demands presented by Taipalus,
Siponen, and Vartiainen (2018). We present the query plan
formulation in six steps, which correspond to the steps
presented in Section 2.2. Additionally, we present the
corresponding SQL queries formulated in six steps. It is worth
noting that we do not necessarily write the queries in the order
presented in Tables 2 and 3, and the tables are presented merely
for illustrative purposes. Refer to Appendix 2 for the database
schema and business domain.

For Figure 2 and Table 2, consider the data demand “List
the names of actors who have acted a role as himself or herself.
Sort the results according to surname and then according to first
name, both in ascending order.”

Figure 2. The Iterative Process of a Basic Query Plan Formulation - Table Abbreviations A, AC, and R Stand for
Actor, Acts, and Role, Respectively

Journal of Information Systems Education, Vol. 30(3) Summer 2019

162

i) ii) iii)
SELECT
FROM actor a, acts ac, role r

SELECT a.fname, a.sname
FROM actor a, acts ac, role r

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a. = ac.
AND ac. = r.

iv) v) vi)
SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno
AND r.alias IN (’Himself’, ’Herself’)

SELECT a.fname, a.sname
FROM actor a, acts ac, role r
WHERE a.actno = ac.actno
AND ac.rolno = r.rolno
AND r.alias IN (’Himself’, ’Herself’)
ORDER BY a.sname ASC, a.fname ASC;

Table 2. The Corresponding SQL Statements for Each Step Presented in Figure 2

i) ii) iii)
SELECT
FROM actor a, role r,
 movie m, acts ac

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a. = ac.
AND r. = ac.
AND ac. = m.

iv) v) vi)
SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a.actno = ac.actno
AND r.rolno = ac.rolno
AND ac.movno = m.movno

SELECT a.fname, a.sname,
 r.fname, r.sname, r.alias
FROM actor a, role r,
 movie m, acts ac
WHERE a.actno = ac.actno
AND r.rolno = ac.rolno
AND ac.movno = m.movno
AND m.mname = ‘Physics 101’;

(nothing to add)

Table 3. The Corresponding SQL Statements for Each Step Presented in Figure 3

Figure 3. The Iterative Process of a More Complex Query Plan Formulation – Table Abbreviations A, R, AC,
and M Stand for Actor, Role, Acts, and Movie, Respectively

Journal of Information Systems Education, Vol. 30(3) Summer 2019

163

For Figure 3 and Table 3, consider the data demand “List
the names of actors who have acted in the movie Physics 101,
and list the names of the roles they have played in that movie.”
For the query plans in Figures 2 and 3, notice how the distances
of the nodes from the root node would represent the level of the
subqueries.

4. IMPLICATIONS FOR TEACHING

We have identified fours ways of using the notation in teaching.
First, when SQL is first taught in the course lectures, query
plans can be utilized to explain the logic behind each data
demand before writing the query. In our experience, the
notation is so simple and intuitive that it can be explained
simultaneously to drawing the first query plan. During the
drawing process, the teacher can ask students the questions
listed in Section 2.2 and draw the plan gradually. The students
can be encouraged to plan all queries before writing them for
lab assignments or in the final examination.

Second, as the notation separates logic and semantics from
syntax, the students can ask the teachers whether their query is
planned correctly without focusing on the syntactical aspects of
the query. Subsequently, the teachers can point out possible
logical errors in the plan, asking questions such as “this plan
answers to a different data demand, can you tell me what it is?”
This in turn informs the students whether they have understood
the data demand and can then focus on the syntax. For example,
if we join STORE with EMPLOYEE (see Appendix 2) using
stono, the result table contains stores with at least one employee
working in them. However, the teacher can draw a query plan
in which the tables are joined using empno and ask the students
to explain what the data demand is.

Third, in addition to writing queries in the final
examination, query plans may be required. Although this
requirement means that the students need to learn an additional
notation for the final examination, it might eliminate some
errors caused by carelessness, such as missing expressions or
ordering from the queries, in addition to forcing the student to
reflect on the logic behind the data demand before starting the
query writing process.

Fourth, the logic behind joining different tables by different
columns in a specific database domain can be practiced in pairs:
one student draws the query plan and another student writes the
query based on that plan. The exercise can be made more
difficult if only the student drawing the query plan is aware of
the data demand. We are eager to construct a research setting to
see if scientific evidence supports our positive experiences with
the notation.

5. CONCLUSION

In this paper, we presented a simple notation for planning
complex SQL queries to separate the logic of a data retrieval
task from the syntax of SQL and to alleviate the strain a task
puts on the query writer’s short-term memory. We hope that the
paper will encourage other educators to use the notation in their
database courses to facilitate the teaching of SQL and to help
formulate, understand, and teach more complex queries to
mimic the students’ future work environments, whether those
environments are in the domain of business analytics or
software engineering.

6. REFERENCES

Ahadi, A., Prior, J., Behbood, V., & Lister, R. (2016). Students’

Semantic Mistakes in Writing Seven Different Types of SQL
Queries. Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education
(ITiCSE ’16), 272–277.

Borthick, A. F., Bowen, P. L., Jones, D. R., & Tse, M. H. K.
(2001). The Effects of Information Request Ambiguity and
Construct Incongruence on Query Development. Decision
Support Systems, 32, 3-25.

Buitendijk, R. B. (1988). Logical Errors in Database SQL
Retrieval Queries. Computer Science in Economics and
Management, 1(2), 79-96.

Casterella, G. I. & Vijayasarathy, L. (2013). An Experimental
Investigation of Complexity in Database Query Formulation
Tasks. Journal of Information Systems Education, 24(3),
211-222.

Codd, E. F. (1970). A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM, 13(6),
377–87.

Codd, E. F. (1972). Relational Completeness of Data Base
Sublanguages. Data Base Systems (Courant Computer
Science Symposium 6), Prentice-Hall.

de Jong, T. (2010). Cognitive Load Theory, Educational
Research, and Instructional Design: Some Food for Thought.
Instructional Science, 38, 105–134.

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching
Novice Programming using Goals and Plans in a Visual
Notation. Proceedings of the Fourteenth Australasian
Computing Education Conference - Volume 123 (ACE '12),
Darlinghurst, Australia, 43-52.

ISO/IEC. (2016). ISO/IEC 9075-2:2016, SQL - Part 2:
Foundation.

Randolph, G. B. (2003). The Forest and the Trees: Using Oracle
and SQL Server Together to Teach ANSI-Standard SQL.
Proceedings of the 4th Conference on Information
Technology Curriculum (CITC4), 234–236.

Smelcer, J. B. (1995). User Errors in Database Query
Composition. International Journal of Human-Computer
Studies, 42(4), 353–381.

Taipalus, T., Siponen, M., & Vartiainen, T. (2018). Errors and
Complications in SQL Query Formulation. ACM
Transactions on Computing Education, 18(3), Article 15.

AUTHOR BIOGRAPHY

 Toni Taipalus is a teacher at the University of Jyvaskyla. He

teaches databases, data management,
application programming, and
system development. His research
interests are in the pedagogical
aspects of query languages, data
models, and agile software
development.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

164

APPENDIX 1: EXAMPLE QUERY PLANS

Query (Taipalus, Siponen, and Vartiainen, 2018) Query plan
SELECT c.fname, c.sname, c.dob
FROM customer c
WHERE NOT EXISTS
 (SELECT *
 FROM rental rt
 WHERE c.cust_id = rt.cust_id)
AND EXISTS
 (SELECT *
 FROM review rv
 WHERE c.cust_id = rv.cust_id);

SELECT mname, year, genre
FROM movie
WHERE publisher =‘Goldeneye BC’
AND year =
 (SELECT MIN(year)
 FROM movie
 WHERE publisher =‘Goldeneye BC’);

SELECT c.fname,
 c.sname
FROM customer c,
 rental r1,
 rental_copy rc1,
 rental_copy rc2,
 rental r2
WHERE c.cust_id = r1.cust_id
AND r1.renno = rc1.renno
AND rc1.copyno = rc2.copyno
AND rc2.renno = r2.renno
AND r2.cust_id = ‘rbutler1’
AND c.cust_id <> ‘rbutler1’;

SELECT m.movno,
 m.mname,
 COUNT(c.movno) AS total
FROM movie m, copy c
WHERE m.movno = c.movno
GROUP BY m.movno, m.mname
HAVING COUNT (c.movno) > 5
ORDER BY total DESC;

Journal of Information Systems Education, Vol. 30(3) Summer 2019

165

APPENDIX 2: THE DATABASE SCHEMA

This appendix contains a database schema (Taipalus, Siponen, and Vartiainen, 2018) to be used in conjunction with the examples
in Sections 3.2 and 4 and Appendix 1.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

166

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2019 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

