Journal of Information Systems Education
Volume 3, Number 1

OBJECT-ORIENTED PROGRAMMING AND
THE CIS CURRICULUM

William P. Cain
CIS Department - School Of Business
Manhattan College
Bronx, NY 10471

ABSTRACT: Object-Oriented Programming (hereinafter referred to as OOP) is
becoming very important in the data processing field. Computer science publications
are beginning to contain many references to this topic. However, CIS journals
contain very few OOP articles. This situation exists, in large measure, because
COBOL, the primary language taught to CIS students, does not now support OOP.
Even though CIS students can not write OOP programs as part of their courses, it is
necessary that CIS students be exposed to OOP concepts. OOP techniques are being
used in industry in graphics programming and in computer-aided software engineering,
OOPtechnology also is used in the storage and retrieval of engineering drawings and
in object-oriented databases. Besides being of importance in many application
areas, OOP techniques are of value in that they demonstrate software engineering
principles (e.g., information hiding and modularity) which CIS students will be
expected to learn as part of their college curriculum.

This paper explains OOP concepts using terms and examples familiar 1o CIS
students. A sample application is discussed without showing the actual programs to
maintainlanguage independence. This paperconcludes with suggestions as towhere
OOP concepis can be introduced into the current CIS curriculum. Although OOP
implementation details cannot be taught now because of the present level of the
COBOL language, OOP can be presented using general terms and examples as is
done in this paper. What is important is that CIS graduates, as computer professionals,
need to know the underlying concepts and benefits of OOP technology.

KEYWORDS: Object-Oriented Programming, CIS Curriculum, Software Engineering

INTRODUCTION

Object-Oriented Programming
(hereinafter referred to as OOP) is rapidly
becoming one of the most frequently
discussed topics in computer technology.
The most popular languages supporting
OOP today are Pascal and C++. Since
these languages are not generally used in
CIS courses, OOP does not find a natural

niche in the CIS curriculum. The purpose
of this paper is to explain OOP concepts
using examples familiar to CIS students
and to discuss how these concepts relate
to the CIS curriculum.

As part of our research into OOP,
we wrote several programs on the IBM
PC using Borland’s Turbo Pascal, Version
5.5 (1). This language product supports
OOP techniques and is accompanied by

manuals explaining Pascal and OOP
concepts. The programs we wrote were
all concerned with a school library
application involving books and lending
members. We will refer to these programs
throughout this paper. However, because
weare onlyinterested in explaining OOP
concepts and not in describinga specific
Pascal implementation, we willnot show
the actual Pascal programs which we wrote.

Page 2

Journal of Information Systems Education

Volume 3, Number 1

WHAT IS OOP?

OOP is a style of programming in
whichasystemis brokenintoacollection
of “objects” - an “object” is the
representation of a person, place, or thing
in the user’s system 10 be designed. Faculty,
buildings, telephones, and cities are all
objects. Inasystem to handle orders for
clothing items, the objects might be: items,
customers, salespeople, orders. Objects
have properties and objects can undergo
certain operations. The telephone object
has the properties of weight, color, and
location - the telephone has the operators
of making a call and receiving a call. A

clothing item has the properties of item
number, item name, selling price, and
number on hand - an item has the operators
of adding to inventory (for a shipment),
withdrawing from inventory (for an order),
and undergoing a price change. The
collection of all telephones is called the
telephone “object class” or “object type”
- the individual telephone in my kitchen
is a specific “instance” in the telephone
class. An object is defined by the
characteristics of the individual properties
of the object as well as by the operators
(called “methods”) which are allowed to
act upon the object.

The schematic representations of
BOOK and LENDER, two objects in
our sample library system, are shown in
Figures 1 and 2.

In our library example we use Pascal
statements to define the BOOK and
LENDER object classes. Object
properties are defined by declaring field
names and characteristics. Procedural
methods are coded using Pascal statements
to list the parameters and write the
program for each method. As an example,
the LOAN_BOOK method is applied to
an individual book and requires as a
parameter the identification number of

FIGURE 1: Schematic Representation of BOOK Object.

Fields defined for each specific instance in the BOOK class:

Name Description

BOOKID Book Identification Number

TITLE Title of Book

AUTHOR Author of Book

ONLOAN "Y" If Book Is Currently On Loan - "N" If Book Is Not Currently On Loan
LENDERID Identification Number of Lender Currently Having this Book

Name

DISPLAY_BOOK
ADD_NEW
LOAN_BOOK
RETURN_BOOK
DISP_CURR_LENDER

Methods which can be used on a specific instance in the BOOK class:
Description

Display Title, Author, and Loan Data

Add a New Book to the Library

Put a Book On Loan

Allow a Book to be Returned from On Loan
Display Name of Person to whom Book is On Loan

FIGURE 2: Schematic Representation of LENDER Object.

Fields defined for each specific instance in the LENDER class:

Name Description

LENDERID Lender Identification Number
LNAME Lender Name

LADDRESS Lender Address

Name

DISPLAY_LENDER
ADD_LENDER

Methods which can be used on a specific instance in the LENDER class:
Description

Display Lender Name and Address
Add a New Lender to the Library

Page 3

Journal of Information Systems Education
Volume 3, Number 1

the lender of the book. The program for
the LOAN_BOOK method consists of
the following steps:

Search the file of book records
until the correct book is found.

" Read the book data fields into
primary storage.

Set the book ONLOAN field to
((Y’!.

" Set the book LENDERID field to
the id of the person borrowing the
book.

” Rewrite the record for the book.

HOW ARE OBJECTS USED IN A
PROGRAM?

In order to use variables in the
BOOKand LENDER classes, a program
which makes use of methods is written.
Instances of BOOK are defined by
declaring one or more variables to be in
the BOOK class. Instances of LENDER
are defined by declaring one or more
variables to be in the LENDER class. By
declaring a variable to be in a certain
object class, all properties (data fields)
and methods declared for that object class
can be used with that variable. It is
important to note that only the methods
declared for an object class can be used
with a variable in that class - no OTHER
methods are allowed. When we have a
variable in an object class and we wish to
apply a specific method to that variable,
the OOP terminology says that we “send
a message” to that method. In more
traditional programming terminology, we
simply “call” that method for the variable
inthatobject class. Asanexample ofhow
a program uses methods, one of the
programs for our library application allows
anindividual lender to borrow a specific
book. The program which invokes that
method has the following steps:

“ Ask the user at the terminal to
enter the id of a lender.

" Send a message to
DISPLAY_LENDER 1o list that
lender’s name and address.

Page 4

" Ask the user at the terminal to
enter the id of the book to be
borrowed.

"~ Send a message 10
DISPLAY BOOK to list that
book’s title and author.

“ Send a message to LOAN_BOOK
to put that book on loan to the
indicated lender.

Note that the program as outlined
above never explicitly accesses the specific
data fields of a variable in an object class.
The object’s data fields are accessed ONLY
through the methods invoked by the
program.

WHAT ARE APPLICATIONS FOR
OO0P?

A major reason for OOP’s
importance is that it finds extensive use
ingraphics applications. Asan example,
the software for the icon screen interfaces
used by Apple’s Macintosh computers,
Microsoft’s Windows, and IBM’s
Presentation Manager all use OOP
techniques. Each kind of icon is declared
to be in an object class. By defining
specific methods for each object class,
the systems software which deals with
these icons manipulates them by sending
appropriate messages to the correct
methods.

As a simple example showing how
OOQP is used for graphics applications,
the OOP manual written by Borland (1)
uses objects of class LOCATION, POINT,
CIRCLE, and ARC. Methods are defined
allowing object variables to be initialized,
to be made visible at a specific screen
position, to be moved to a new position,
and to be made invisible. Thus a relatively
complex graphics application can be
written by declaring variables to be in an
object class (POINT, CIRCLE, etc.)and
then causing shapes to be drawn, moved,
and erased by sending messages to the
methods which are defined for the object
classes to which the variables belong.

OOP technology has grown well
beyond being used only for graphics. Many
articles in today’s literature show

—_—
widespread usage of OOP, Examples ap.

" Martin (2) describes OOP ag used
in computer-aided engineering 1o
manipulate objects which are
complex shapes that interact wity
each other. He also discusses the
use of OOP in computer-aided
software engineering to handle
objects which are graphical
symbols representing software
design components.

" Bochenski (3) describes a banking
example using checking accounts
and savings accounts as object
classes. Similar methods such as
“DEPOSIT” and “WITHDRAW”
are defined for both object classes
but unique methods such as
“CALCULATE_INTEREST” are
defined for the savings account
object class only.

Ten Dyke and Kunz (4) describe
the use of OOP with IntelliCorp’s
Knowledge Engineering
Environment, a system used to
develop complex knowledge
systems. The system can be used,
for example, with objects that are
financial instruments, such as
shares of common stock and
bonds. Some methods (e.g., buying
and selling), are common to all
objects while others (e.g., posting
of dividends), are applicable to the
stock object class, but not to the
bond class.

" CJ. Date’s database text (5)
discusses recent research in which
object-oriented database systems
are used to solve problems which
are inherent to relational
databases. As an example, Date
cites the use of object-oriented
databases for large document
storage and retrieval systems.

WHY IS OOP IMPORTANT?
WHAT ARE ITS ADVANTAGES?

OOP has its historical beginning,s
with computer graphics because of OOP's
easy-to-use and natural techniques for
manipulating shapes. However, the real

Journal of Information Systems Education

Volume 3, Number 1

importance of OOP lies in its ability to
help in the writing of more reliable and
more easily understandable programs.

Software engineering is the study
ofways 10 produce programs thatare free
from error, easily maintained, and
understandable. Texts on this subject
(for example, Software Engineering With
Ada, by Booch (6)) discuss how principles
such as information hiding and modularity
help the goals of software engineering to
be met. Two of OOP’s properties are
encapsulation and inheritance. These
help achieve information hiding and
modularity - because of this, OOP is an
important technology in aiding
programmers to write code that is correct
and understandable.

Encapsulation

By encapsulation we mean that the
data fields and the methods for
manipulating the fields are defined
together. Data fields for a variable in the
BOOK object class can be accessed only
by sending a message to a method defined
for the BOOK object. A BOOK's data
ficlds cannot be changed without using
BOOK methods. The BOOK methods
are used by a calling program without
that calling program needing to know
either how the individual object fields
are declared or what specific coding details
are used in the methods.

This property of encapsulation
allows data and method details to be
changed without the necessity of changing
the using program. Using our school
library example, if new data fields (e.g.,
book category), are added to an object’s
structure, the calling program often is
unaffected. If the details in the method to
put a book on loan are changed (e.g.,
details in the algorithm to calculate the
expected date of return), the using program
operates exactly the same as it did before
thechanges - namely, a message is sent Lo
the LOAN_BOOK method to put a
specific book on loan. Encapsulation
results in “information hiding” - the details
ofone part of a system are inaccessible 10
another part of the system when these
details need not be known.

Encapsulation, besides eliminating
many program changes, allows errors to
be detected at the time of compilation
rather than at execution time. Compared
to run-time errors, compile-time errors
are much easier 1o diagnose and correct.
Using the school library example, we can
have, in addition to the BOOK object, a
REFERENCE object for those library
materials which can not be removed from
thelibrary. Many of the data fields in the
REFERENCE object (BOOKID, TITLE,

...O0OP is an important
technology in aiding
programmers to write
code that is correct and
understandable.

AUTHOR) would be the same as data
fields in the BOOK object. However,
there is no method defined which allows
us to put REFERENCE objects onloan.
If a program mistakenly calls the
LOAN_BOOK method for a variable in
the REFERENCE object class, that
incorrect call will be trapped and diagnosed
at the time of compilation. In traditional
programming methodology, this type of
errorwould notbe noted by the compiler
and unpredictable run-time data errors
would probably result.

Inheritance

By inheritance we mean that an
object dass may be defined as a descendant
of another object class. A descendant
will have the same data fields and methods
as the original object plus the descendant
can have additional data fields and
methods. A method that exists for the
original object can be used without
alteration by the descendant object or
the same method ni . be programmed
differently for the vriginal and the
descendanl objects.

Again using our library example,
LIBRARY_OBJECT may be the root
object and that object can contain data
ficlds for ID, TITLE, and AUTHOR.

REFERENCE can be a direct descendant
of LIBRARY_OBJECT and can have
the same data fields as the root
LIBRARY_OBIJECT class.
CIRCULATION BOOK can be a
descendant of REFERENCE and have
thedata fields of REFERENCE plus the
ONLOAN and LENDERID fields.
LIBRARY_OBJECT, REFERENCE,
and CIRCULATION_BOOK can all
share the same LIST_TITLE method to
display the title of an object - LIST_TITLE
in this case is defined at the
LIBRARY_OBIJECT level. ADD_NEW
can be a method used by both
REFERENCE and
CIRCULATION_BOOK, but the
programming of this method can differ
for the two object classes. The
CIRCULATION_BOOK object can have
a LOAN_BOOK method which is not
defined for the REFERENCE ancestor
object.

Inheritance allows us to define
hierarchies of objects without having to
repeat declarations for data fields and
methods at each level of the hierarchy.
Inheritance also allows us to extend our
system without major reprogramming,. 1f
our library starts to loan videos,a VIDEO
object can be declared as a descendant of
CIRCULATION_BOOK. VIDEO can
have the data fields of
CIRCULATION_BOOK plus additional
fields (e.g, RUNNING_TIME). VIDEO
can use the methods defined for
CIRCULATION_BOOK (e.g.,
LOAN _BOOK) with no changes. In
fact, a programmer can add the VIDEO
object and use the
CIRCULATION_BOOK methods for
VIDEO variables without even knowing
the details of the
CIRCULATION_BOOK data fields and
method definitions.

WHAT ARE DIFFICULTIES WITH
USING OOP?

OOP technology helps produce
reliable programs and is naturally suited
1o certain classes of applications. Yet,
there are several difficulties with OOP
concepts. Some of these are:

Page §

Journal of Information Systems Education
Volume 3, Number 1

~ OOP is not easily learned by
programmers trained in the “old
style”. OOP requires that the
problem be modeled in terms of
objects or entities while traditional
programming places more
emphasis on the actions to be
performed.

COBOL does not now support
OOP. Standard COBOL has
several features that make OOP
implementation very difficult, if
not impossible. Perhaps the most
important restriction is that
COBOL, unlike Pascal, does not
allow users to define their own
variable types. However, major
vendors are working on OOP
extensions to COBOL (like C++
for C) that should be available
sometime in 1992 or 1993.

" In the school library programs
written as part of this research, we
found it difficult to keep track of
all of our methods and programs.
By its nature, OOP results in many
methods being defined for each
object class. Even with our small
sample application, we became
aware that proper use of OOP
techniques requires that the
benefits from writing small,
reusable modules be balanced
against the burdens of managing
and documenting a large collection
of such modules.

" In our sample application, we
wanted the actual data for
instances of our objects to be kept
on external files. Our total design
called for two root object classes,
LIBRARY_OBJECT and
LENDER. We wantcu
REFERENCE as a descendant of
LIBRARY_OBIJECT;
CIRCULATION_BOOK and
PERIODICAL as descendants of
REFERENCE; and VIDEO as
descendant of
CIRCULATION_BOOK. We
wanted one external file to contain
the data values for all instances of
class LIBRARY_OBJECT and of

all its descendants (REFERENCE,
CIRCULATION_BOOK,
PERIODICAL, VIDEO). In
similar manner, we wanted a
second external file to contain data
about the LENDER object and its
descendants STUDENT,
FACULTY, STAFF, and
OUTSIDER. As we attempted to
implement our design, we found

COBOL does not now
support OOP...However,
major vendors are working
on OOP extensions to
COBOL (like C++ for C)
that should be available
sometime in 1992 or 1993.

that our version of Pascal did not
allow us to set up and use our files
in the straightforward manner we
had envisioned - it was necessary to
use software techniques that were
not intuitive.

Files are a very important construct
in business programming. In order for a
programming concept to gain widespread
acceptance by the CIS community, that
concept must be shown to be able to
operate with data files in an understandable
and easy-t0-use manner.

CONCLUSION. EFFECT OF OOP
ON THE CIS CURRICULUM.

Why Should OOP Be Taught To CIS
Students?

OOP is a widely discussed
programming topic. Because of the
importance of software engineering and
graphics, OOP concepts will continue to
grow in relevance. CIS students, as data
processing professionals, should know
what OOP is and should know the
underlying benefits of OOP technology.

CIS students need to understand
the principles of software engineering
and software development. Industry is
turning more and more to CASE

T —

(Computer-Aided Software En gineering)
tools and successful use of these Products
requires an understanding of concepts
such as modularization and encapsulatjop
In explaining software engineering
techniques and CASE tools to CJg
students, OOP is a very important topic
because:

~ OOP is a current programming
technology that can be used to
illustrate the meaning of various
software engineering principles.

“ The CASE tools now marketed
present a graphical interface to
users. This interface relies on
OQP techniques both in terms of
its use and in terms of how it is
implemented by the vendor.

" Design tools now ask users to
think of their systems in terms of
objects as well as the more
traditional entity-relationship
model. (See, for example, Sagawa’s
description of the Repository
Manager for the new IBM AD/
Cycle products (7)).

In What Courses Should OOP Be
Taught To CIS Students?

OOP concepts can be introduced
into the CIS curriculum without using
explicit Pascal programs. A less detailed
treatment, as isdone in this paper, canbe
used to show OOP terminology and
benefits. Several CIS courses offer
opportunities to teach OOP:

" The software engineering course, if
one is offered, provides a natural
setting for the presentation of
OOP concepts.

" The systems design and analysis
course can introduce OOP, CASE
tools, and related software
engineering issues.

* The COBOL course can introduce
OOP terminology while teaching
related COBOL topics (.8
variable types and subprograms).

" The database course can intropuoe
OOP concepts. The research ideas
discussed earlier can be presented

Page 6

Journal of Information Systems Education

Volume 3, Number 1

P

when considering the strengths and
weaknesses of the relational model
and when discussing database
directions.

SUMMARY

OOP technology has arrived. CIS
students should be familiar with OOP
because of its growing importance in a
variety of data processing areas. This paper
has explained the underlying principles
using terms and examples familiar to CIS
students. Although OOP cannot be neatly
packaged into one CIS course, OOP
examples and concepts can be naturally
introduced throughout the CIS
curriculum.

REFERENCES/FURTHER
READINGS

Turbo Pascal, Version 5.5. Scotts

Valley, CA: Borland International,
1988.

James Martin. Series of four
weekly articles on object-oriented
programming, PC Week. Volume 6,
Number 35, September 4, 1989,
thru Volume 6, Number 38,
September 25, 1989.

Barbara Bochenski. “Object-
Oriented Cells Bring New Life To
DBMS”, Software Magazine.
Volume 9, Number 8, June 1989,
pp- 60-71.

4. R.P.Ten Dyke and J.C. Kunz.
“Object-Oriented Programming”,
IBM Systems Journal. Volume 28,
Number 3, 1989, pp. 465-478.

5. C.J. Date. An Introduction To
Database Systems, Volume I, 5th
ed., Chapter 25. Reading, MA:
Addison-Wesley, 1990.

6. Grady Booch. Sofrware Engineering

With Ada, 2nd ed. Menlo Park, CA:
Benjamin/Cummings, 1987.

7. J.M. Sagawa. “Repository Manager

Technology”, IBM Systems Journal.
Volume 29, Number 2, 1990, pp.
209-227.

AUTHOR'S BIOGRAPHY

William P. Cain has taught at Manhattan College in New York City in the Computer
Information Systems department since September, 1987. His primary area of research
interest is the use and programming of database applications in a business environment.
Before joining Manhattan, he worked in industry for twenty-seven years as a market

forecaster, a manager, a computer programmer, and an educator.

Page 7

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1991 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

