

Applying Analogical Reasoning Techniques for Teaching

XML Document Querying Skills in Database Classes

Michel Mitri
Computer Information System & Management Science

James Madison University

Harrisonburg, VA 22807, USA

mitrimx@jmu.edu

ABSTRACT

XML has become the most ubiquitous format for exchange of data between applications running on the Internet. Most Web

Services provide their information to clients in the form of XML. The ability to process complex XML documents in order to

extract relevant information is becoming as important a skill for IS students to master as querying relational databases. But the

language for querying XML documents is very different from SQL, which is the query language that IS students typically

learn in their database courses. Nevertheless, the database course seems to be the most plausible venue for teaching XML

document querying, given the IS 2010 model curriculum. Unfortunately, there are time limitations that may prevent deep

coverage of XML in the typical database class. Analogical pedagogy may provide a means to quickly provide significant

XML query skills to students who are already familiar with SQL query mechanics. This paper describes a simple but effective

way of incorporating XML querying within the broader database course content by making use of analogical reasoning.

Keywords: Extensible markup language (XML), Data structures, Structured Query Language, Instructional pedagogy,

Learning styles, Markup languages, Pedagogy, Query language.

1. XML QUERY SKILLS IN THE IS CURRICULUM

The IS2010 model curriculum (Topi et al 2010) does not

include any mention of XML, although IS2010 does include

extensive coverage of database skills. Students who graduate

from a typical IS program will have sufficient understanding

of relational technologies and SQL for querying databases,

but often lack training in XML structures or the use of

XPath/XQuery for querying XML documents.

XML’s hierarchical data structure is more suitable than

the tabular structure of relational databases for some data

storage and representation purposes. Partly for this reason,

XML has become ubiquitous, especially as a means of

exchanging information between applications over the

internet. In addition, more and more database management

systems incorporate XML data types and querying

functionality into their engines. For example, major database

products like Oracle and Microsoft’s SQL Server have

incorporated data structures and associated functionality for

storing and processing XML-formatted data.

 There also appears to be an increasing coverage of XML

in database textbooks. For example, in Hoffer et al 7th

edition of Modern Database Management, only two full

pages (422-424) are devoted to XML coverage, and there is

no tight integration of this topic with the topic of Web

Services. By contrast, the 11th edition devotes 10 pages

(360-369) and makes a stronger connection to Web Services.

It makes sense that XML coverage should get greater

attention in an IS curriculum, since it has become so

prevalent in the real world. Consequently, there have been

some advances in XML pedagogy as described in the IT

education literature. For example, Olsen et al (2005) discuss

integrating XML into database courses, and present a sample

database for a medical clinic in SQL Server and queries that

make use of SQL Server’s XML processing to perform

queries on the database and produce results in XML format.

Wagner et al. (2008) outline a set of considerations for

incorporating XML into the MIS curriculum, including

contrasting XML with HTML, structuring XML coverage

using a system model framework, covering the plethora of

XML-related technologies, and discussing the meta-language

nature of XML. Specific courses that could benefit from

XML coverage include database, systems analysis and

design, ecommerce, and web development.

A complete coverage of all aspects related to XML

including style sheeting, metadata declarations (DTDs and

XML Schemas), XML extension frameworks (e.g. XBRL,

RSS, SOAP, RDF), and other advanced topics could merit an

entire course in itself. But, for the purposes of providing data

query and analysis skills relevant for a database or BI course,

a much smaller subset of XML-related topics would suffice.

In particular, if a database course can provide a thorough

understanding of the structure of XML

documents(hierarchical, tree-like), along with practical

experience with the associated query languages of XPath

(XML Path Language) and XQuery, then this would go a

long way toward enhancing students’ facility with XML in

general.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

385

The problem is time. With an already full schedule of

topics to cover, database classes are hard-pressed to

incorporate new content.

2. ANALOGICAL REASONING AND PEDAGOGY

The prospect of incorporating significant XML querying

skills into an already busy database course schedule can be

daunting. How can we include these skills without

overloading the curriculum? The challenge is to create an

avenue for providing deep understanding in a minimal

amount of time. In order to do this, we can make use of

analogical pedagogy (James 2003, Harrison 1993, Clement

1993), which capitalizes on the promise that students can

quickly learn basics by making analogies between a new

skill to be learned and an already well-established skill. In

our case, the challenge is to bootstrap on the already existing

skill of database students for using SQL SELECT statements

to query relational databases in order to produce equivalent

skills for querying XML documents in a time-efficient

fashion.

Research in analogical pedagogy is often credited to

seminal work by Dedre Gentner (1983, 1989), whose work

also inspired extensive advances in artificial intelligence

research (Falkenhainer et al 1989, Forbus and Gentner 1991,

Forbus et al 2002). Gentner’s study of analogical reasoning

and learning is based on her theory of structure mapping. In

this theory, there is an attempt to map a base domain (the

already-known) to a target domain (which needs to be

explained). Each domain is composed of a set of objects; and

the objects within these domains contain both attributes

(predicates describing the object in itself) and relations

(predicates describing associations between objects).

Gentner distinguishes a literal similarity between the

base and target domain vs. an analogy between these

domains. Literal similarities involve commonality between

the objects of different domains both in terms of their

attributes and in terms of their relationships. By contrast,

analogies do not include attribute similarities, only relational

similarities (Gentner 1983).

For example, when saying the X12 star system is like our

solar system, this is (according to Gentner) stating a literal

similarity. The individual objects in each system (stars and

planets) have key object-attribute matches. For example,

X12 is a yellow, medium-sized star like our own. In addition,

the two systems share common relational features. The

planets in the X12 system revolve around X12, just like the

planets in our system revolve around our sun.

By contrast, saying that a hydrogen atom is like our solar

system is an analogy. There is far less in the way of object-

attribute correspondence (i.e. the properties of an atom’s

nucleus are very different from the properties of the sun).

However, important relationship predicates are preserved.

Electrons revolving around the nucleus correspond with

planet revolving around the sun. Also, the nucleus is far

more massive than the electron, and thus exerts force to

attract electrons just as the massive sun exerts force to attract

the far less massive planets. Note that the force of the

nucleus attracting electrons (strong force) is not literally the

same as the force of the sun attracting planets (gravity). So,

in this case we see an analogy between the two systems

(similarity of relationships between objects), but not a literal

similarity (very little in the way of object-attribute

similarities between domains).

Gentner gives another illustration distinguishing between

literal similarity and analogy by comparing these two

assertions: “milk is like water” and “heat is like water”

(Gentner 1989). The first case is literal similarity, because,

for example, the property of liquidity is held in common by

both statements and in addition there is a common causal

relation involving the effect of pressure on flow of the

substance. The second case is an analogy as it is much more

difficult to find an inherent commonality in substance

between “water” and “heat”. There is, however, a relational

similarity between the two. Specifically, Gentner associates

the causal relation of pressure on water flow with a similar

causal relation between temperature difference and heat

flow.

Gentner hastens to add that the literal similarity vs.

analogy distinction is not a black-and-white dichotomy, but

rather a continuum. “Analogy and literal similarity lie on a

continuum of degree-of-attribute overlap (Gentner 1989).”

 The more there is a successful mapping among object-

attributes between domains, the closer the mapping becomes

to a literal similarity. To the degree that the similarities are

constrained to object-relationships only, the mapping is an

analogy. In this paper, I argue that a structure mapping

between the base system of querying relational databases and

the target system of querying XML documents is more of an

analogy than a literal similarity, although some direct

mappings of object-attributes between elements of each

system are possible, giving a flavor of some degree of

“literal similarity” as well.

A key feature of Gentner’s theory is what she calls the

systematicity principle. The gist of this principle is that

higher-order predicates (i.e. those that build upon on lower-

order ones and therefore give a more comprehensive

statement about the system as a whole) will have more

influence on the strength of an analogy than lower-order

principles, which tend to operate independently in isolated

subsystems. For example, consider again the analogy

between a solar system and an atom. The distance predicate

between the sun and a planet affects the attraction predicate.

Similarly, the fact that a sun’s mass is greater than the

planet’s mass causes the planet to revolve around the sun

rather than vice versa. The fact that both of these higher-

order predicates also hold for an atom’s nucleus and

electrons adds strength to the analogy, according to Gentner

(1983).

From a pedagogical perspective, then, the key to

producing useful analogies in order to foster quick learning

of one domain (target) based on existing knowledge from

another (base) is the ability to (a) demonstrate a wide variety

of relational commonalities between the two domains and (b)

identify relationships built on higher-order predicates

(systematicity principle).

Another important feature of Gentner’s theory is that it

relies solely on similarity of syntactical structure, and not on

similarity of underlying content meaning between the two

systems. The implication of this is that it can speed up

learning in new domains that bear structural similarities to

old domains. In other words, operational competence in the

Journal of Information Systems Education, Vol. 23(4) Winter 2012

386

target domain does not require “deep knowledge” for the

target domain, but only “surface knowledge”, as long as

students have a reasonably deep knowledge in the base

domain. In this paper, we will leverage this fact to facilitate

learning of XPath for XML queries (target) for students who

have a solid knowledge of SQL for relational database

queries (base).

Gentner applies the analogical reasoning theory to what

she calls spontaneous learning, which is a natural learning

process performed by people faced with an unfamiliar

domain without the assistance of outside guidance. She

describes analogical learning thusly: “Spontaneous

analogical learning can be decomposed into subprocesses of

(a) accessing the base system; (b) performing the mapping

between base and target; (c) evaluating the match; (d) storing

inferences in the target; and sometimes, (e) extracting the

commonalities (Gentner 1989).” In this paper, we apply

Gentner’s ideas on analogical reasoning and learning to the

problem of teaching XML queries to students by leveraging

on their already existing SQL knowledge.

In recent years, analogical pedagogy has been applied to

several educational domains, including geoscience (Gee et al

2010), elementary science education (Guerra-Ramos 2011),

physics education (Harrison 1993, Clement 1993), and

mathematics education (Peled 2007),.

Harrison (1993) described a pedagogical process for

using analogies to facilitate teaching. The process is

composed of five steps, and you can see that many of these

steps overlap with Gentner’s model of spontaneous learning

described above. The steps are as follows (James 2003): (1)

introduce the target concept (same as Gentner’s target

domain); (2) establish learner’s familiarity with the teacher

generated analogy (in other words, verify that students are

familiar with the base domain); (3) identify the relevant

features of the teacher generated analogy (i.e. point out the

relevant concepts of the base domain); (4) map the

similarities from source domain to target domain (this was

step (b) in Gentner’s spontaneous learning process described

above); (5) identify where the analogy breaks down

(corresponds with Gentner’s step (c)); and (6) draw

conclusions about the target domain.

Clement (1993) elaborated on the mapping process,

suggesting that complex mappings in the analogy can be

broken up into a chain of bridging analogies. In a study on

the efficacy of this type of analogy-based teaching in the

physics domain, he found that even novice teachers using

these approaches can outperform experienced teachers using

traditional proof-based and empirical pedagogical methods.

In a way these bridging analogies serve a similar purpose as

Gentner’s systematicity principle, by increasing the quantity

and coherence of the structural edifice making up the

analogy, and it appears that analogy-based learning can have

a dramatic effect.

Analogical reasoning has also been associated with

professional practice in the information technology field. For

example, Dawson (2011) “provided evidence that mental

modeling based on abstraction and analogous reasoning is

used by professional analysts in the development of

requirements specifications for system development”,

particularly in the area of object oriented design.

It is clear from the above discussion that the relevance of

analogical reasoning to both education and information

technology has been supported by the literature. In the

subsequent sections, we will apply analogical learning theory

to the problem of teaching XPath queries to SQL-

knowledgeable students. In our case, the base system is the

world of relational databases, with its structure of two-

dimensional tables related via correspondences between

primary and foreign keys. The target system is the world of

XML documents, composed of tree-structured hierarchies of

elements with associated attributes. We will present several

examples of base-to-target mappings, each pertaining to

queries returning similar results from the two different

structures. We will evaluate each of these mappings, and in

the process identify both the strengths of the analogies and

their limitations.

3. DESCRIBING THE BASE AND TARGET

SYSTEMS: COMPARING DATA STRUCTURES

3.1 The Structure of Relational Databases: the Analogy’s

Base System
The framework that students are exposed to in a typical

database class is the relational database architecture. This is

a model, begun by the work of Codd (1970) which, along

with Chen’s (1976) seminal work in entity-relationship

modeling, defines the current standard by which databases

are designed in most modern-day business environments.

For example, consider a normalized database containing data

about books and authors, as shown in figure 1.

Figure 1: Normalized database structure of books and

authors (M:N relationship)

In this database, there is a many-to-many relationship

between books and authors, implemented by an intersection

table between the two data tables. Database students will

typically have a good understanding of such a structure, and

will easily recognize the primary key and foreign key

associations that make up the relationship between the book

and author entities.

Similarly, students will be very familiar with the tabular

structure of the data within tables, as shown in figures 2, 3,

and 4. Based on this data layout, students are able to generate

many queries to obtain information about books, authors,

and their correspondences, as will be shown in subsequent

sections.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

387

Figure 2: data in the Book table

Figure 3: data in the Author table

Figure 4: data in the intersection table

The base system for our analogies, centered on a

relational database architecture, involves concepts like

tables, rows, columns, primary and foreign keys, etc. (Hoffer

et al 2011 ch4). In addition, there are certain design

principles that students should recognize, such as the major

requirements for well-structured, normalized databases,

including the importance of minimized data duplication and

prevention of update anomalies. (Hoffer et al 2011 ch5), as

well as the syntax and semantics of SQL queries for

extracting useful information from relational databases

(Hoffer et al 2011 ch6 and 7). These comprise the underlying

form and operations of the base system that will be used in

the analogical reasoning we will discuss for teaching the

target system of XML and XPath.

3.2 The Structure of Markup Languages: the Analogy’s

Target System

All markup languages are derived from the Standard

Generalized Markup Language (SGML) protocol (Coombs

et al 1987). This standard defines the structural model and

syntax for markup documents, which are comprised of a

hierarchical arrangement of elements (implemented

syntactically as tags). Elements may or may not contain

attributes, which are name-value pairs. The hierarchical

arrangement of elements in the SGML standard implies a

tree structure in the underlying data model. In general, the

tree data structure is composed of nodes, each of which can

have a maximum of one parent node, and could contain any

number of child nodes. Thus, elements in an SGML

document are implemented as nodes in a tree data structure.

As an example, consider HTML’s Document Object Model

(DOM), as shown in figure 5.

Figure 5: HTML document object model (DOM) (from
http://www.w3schools.com/HTMLDOM/default

.asp)

Anyone familiar with HTML will recognize its

hierarchical nature. The root tag in the HTML tree is <html>,

which is a parent node for <head> and <body>, each of

which can further be parents for a variety of other element

types, and so on. In general, markup languages have this

hierarchical structure, and XML is no exception. For

example, consider the XML document shown in Figure 6,

which contains the same data content found in the database

described earlier.

The root element for this is denoted by the <bookstore>

tag, which is closed at the bottom with </bookstore>. In this

document, the <bookstore> element encloses four <book>

elements, each of which contains <title>, <author> , <year>

and <price> elements, each of which in turn contains text

values (atomic values) such as the name of the book, the

names of the authors, the year, or the price. In addition, some

elements include attributes (e.g. a book’s category).

This structure is obviously very different from the

relational database structure (involving tables with links via

primary and foreign keys) that database students will be

familiar with. Although there are some properties shared by

both XML structures and relational structures (e.g. both are

means of representing information), there are also many

differences (e.g. tree vs. tabular structures; recursive

vs..iterative search processes; elements, sub-elements, and

element-attributes vs. rows, columns, and keys). Perhaps a

more “literal similarity” to relational databases could be

ascribed to spreadsheets, as both include tabular structures

involving rows and columns.

Thus, comparisons between querying an XML document

and querying a relational database cannot be done as a literal

similarity, which assumes both that structural and attributive

features of the compared objects match, and that

relationships regarding these objects match as well. Rather,

Journal of Information Systems Education, Vol. 23(4) Winter 2012

388

this kind of comparison depends on something more like

Gentner’s idea of analogy, in which there is little match in

the structural features of the objects, but instead the

comparison relies mostly or exclusively on conceptual

relationships involved in the process of performing the

queries.

Figure 6: XML bookstore example (amended from
http://www.w3schools.com/xpath/xpath_exa

mples.asp)

In highlighting the differences between XML and

relational databases, an instructor may want to note that the

very same term in one context has a different meaning in

another. Consider the word attribute. In the relational

database context, an attribute (i.e. the concept derived from

the ER model) is a column or field of a table. This is the

lowest level of granularity in a database and refers to one

specific datum. By contrast, the term attribute in the XML

model refers to a specific (optional) component of an

element. While it is true that attributes in the XML model

can be thought of as a lowest-level datum, this is not the only

possibility. The literal text values of lowest-level elements

also contain atomic values (e.g. the values of the title

elements in Figure 6). Also, note that the attributes

(columns) in a relational database may in fact be

implemented as sub-elements in an XML document. We see

this with both author and title, comparing figures 1 and 6.

But, it is also possible for a relational database attribute to be

implemented as an attribute in XML (e.g. book’s category).

More generally, when discussing analogies between

relational databases and XML documents, caution must be

made to prevent students from drawing too absolute of a link

between “entity” and “attribute” of the ER model and

“element” and “attribute” of the XML structure. Entities in

ER models (and rows in relational databases) do not

necessarily serve the same purpose as elements in XML

structures, although oftentimes they do.

Nevertheless, despite the relative lack of clear-cut

structural commonalities, there is a key similarity between

XML documents and SQL databases that can be used to

foster analogical pedagogy. This is the fact of queries, which

are actions that users and other information systems agents

can employ to glean relevant information from these quite

dissimilar data structures. In particular, the process of

deciding which subsets of data to show, the conditions under

which to show them, the level of aggregation or specificity to

return, and the order and format of the desired results, are

common requirements that apply to the task of retrieving the

most useful information from both types of data structures.

This leads to the possibility of using analogical reasoning

to foster quick learning of XML query mechanics by making

use of students’ already existing knowledge of SQL query

mechanics.

4. SQL–TO–XPATH ANALOGIES

Because of XML’s hierarchical nature, navigation through

an XML document requires the use of tree-processing

algorithms, and there are class libraries in Java, PHP, and

.NET that could be used to facilitate teaching of XML

navigation in programming classes. This is to be contrasted

with the iterative (nested looping) nature of searching

through the two-dimensional results of a database query

result. Although nested looping is a basic programming skill,

likely to be learned by most IS students, tree processing

(which requires recursion) is often not covered in IS

curricula, especially those with a minimum of programming

requirements (Topi et al 2010, Saulnier and White 2012).

It is unfortunate that IS students don’t receive more

detailed instruction of complex data structures like trees,

especially in light of the increasing ubiquity of XML.

However, a database class can make up for this gap by

giving some coverage of tree structures if we contrast trees

to table structures, as discussed earlier. Furthermore, the

utilization of XPath, a nonprocedural query language for

retrieving XML information, can help solidify understanding

of tree structures in much the same way that coverage of

SQL queries foster students’ knowledge of relational

database structures.

A good way to convey to students the similarities of task

and function between relational database queries and XML

document queries is to make this analogy: An XPath query is

to XML documents as an SQL query is to relational

databases. Both XPath and SQL are non-procedural

languages whose syntactic and semantic structures reflect the

underlying structures of their respective data architectures.

And the results of each type of query is of the form

consistent with the overall data architecture to which it

applies, as we will explore in more detail.

However, keep in mind that the following analogy is far

less accurate: XPath is to XML documents as SQL is to

relational databases. This is because SQL includes data

definition language as well as update/insert/delete

Journal of Information Systems Education, Vol. 23(4) Winter 2012

389

http://www.w3schools.com/xpath/xpath_examples.asp
http://www.w3schools.com/xpath/xpath_examples.asp

functionality. None of this is present in XPath. Taking the

analogy between XPath and SQL too far may give students

the wrong impression about just what can be done with

XPath.

We should also consider that, as we’ll see later, there are

some operations that can be done in SQL which have no

corollary capabilities in XPath. For this reason, there may be

people who would argue that a better analogy for SQL is

XQuery, which includes functionality not available in XPath.

But I disagree with this, for two reasons. First, XQuery

includes procedural constructs (loops, if-statements, etc.),

and is thus a procedural language. In this respect, it is more

appropriately associated with procedural SQL extensions (T-

SQL or PL-SQL). XPath and SQL share the common

distinction of being nonprocedural languages. Secondly, the

returned values of both core (non-procedural) SQL queries

and XPath queries exclusively reflect the structure of their

respective data sources. SQL query result sets are always

tabular. XPath query results are always node sets (trees).

This is not true for their procedural extensions.

Having said this, there are clearly associations that could

be made between XQuery (which builds upon XPath) and

the procedural SQL extensions. This is beyond the scope of

the current paper, but could be fruitful avenue of future

research in applying analogical pedagogy to the problem of

XML document processing.

4.1 Analogies of Query Output: Result Sets vs. Node Sets

Given the analogies of data structure described in Section 3,

a natural follow-up is to relate the structures of query results

in the respective data architectures. The first step in this

regard it to compare the types of outputs that come from

queries of the base and target systems. Whereas a SQL query

(SELECT statement) produces a result set (i.e. a two-

dimensional tabular structure of rows and columns), an

XPath query (path expression) produces a node set (i.e. a list

of nodes, each of which could be the root of a tree), as shown

in figure 7.

Figure 7: General structure of a node set returned from an

XPath query

This figure depicts a tree, with a single root. Below the

root is the node set, i.e. all of the nodes (elements in this

case) that match the criteria of the XPath query. In other

words, the level directly underneath the root comprises the

set of nodes that satisfied the query, each node of which can

be an element (in which case it will be the root of a subtree)

or an element’s content (an atomic value), or an element’s

attribute. This is the general structure of a node set returned

from an XPath query.

Obviously, the structure of a node set is very different

from the structure of a SQL result set. So, in Gentner’s terms

this is not a literal similarity. The question is, can useful

analogies be brought to bear that highlight both the

similarities and the differences of the data structures, and

thereby foster student learning of XML processing in a time-

efficient manner? In order to answer this question, we need

to know the purpose of each of the items from the base and

target data structures in the context of the overall problem of

querying the data structures. In other words, we need to

answer these two questions: (a) how are columns and rows

and tables used in the syntactical structure of SQL queries,

and (b) how are nodes, attributes, and paths used in the

syntactical structure of XPath queries?

4.2 Analogies of Syntactical Structure: Select Statement

vs. Path Expression

As stated earlier, a SELECT statement in SQL is analogous

to an XPath path expression. When teaching about SQL

SELECT statements, it is typical to identify and describe the

major clauses of the query, often expressed as

SELECT…FROM…WHERE (Hoffer et al 2010, pp261-

263). The SELECT clause determines the order and content

of the columns in the result set that returns from the query.

The FROM clause specifies the tables and/or views that are

used by the query. The WHERE clause specifies conditions

under which rows from the tables in the FROM clause will

be included in the final result, as well as join conditions if

there are multiple tables involved. After students master

these primary clauses, they go on to learn about GROUP BY

and HAVING, both used in conjunction with aggregation, as

well as ORDER BY for sorting results.

Similarly, when teaching about XPath path expressions,

it is useful to break out and describe their main components.

For a database class, making analogies between path

expression clauses and SELECT statement clauses is helpful

for fostering students’ understanding.

Like SQL SELECT statements, XPath path expressions

provide the criteria for which to select data from the overall

XML document; in the case of XPath the result is formatted

as subtrees. A path expression is composed of a series of

location steps, each of which defines selection criteria for the

corresponding level of the XML tree (the data source being

queried). A location step consists of an axis, a node-test, and

an optional set of predicates that refine the node test. The

node test and predicates serve a similar function for path

expressions as the column specifications and WHERE clause

in a SELECT statement. The axis gives the option to

reference a node-set relative to the current node (parent,

sibling, child, etc.); in this way path expressions can specify

criteria for node relations as well as specifying criteria for

the nodes themselves.

When teaching about path expressions, it is useful to

start with simple examples, describe their structure, and

show their results. For the books document of Figure 6, a

good starting example path expression is:

 /bookstore/book/title

Journal of Information Systems Education, Vol. 23(4) Winter 2012

390

This query specifies, in absolute terms, the paths to nodes

that will be returned from the XML document. In this

expression there are three steps, each with a node test. At the

highest level, we focus only on elements named bookstore.

At the second level, only those named book. And at the third

level, only those named title. What you obtain from this

query is a set of elements (nodes) from the XML document

that are named title and that are sub-elements of a book

element where the book elements must be sub-elements of a

root bookstore element. The returned node set is shown

below.

<root>

 <title lang="en">Everyday Italian</title>

 <title lang="en">Harry Potter</title>

 <title lang="en">XQuery Kick Start</title>

 <title lang="en">Learning XML</title>

</root>

What is the analogy between this and a SQL statement on a

similar relational table of books (like shown in Figure 2)? A

query for this table may look something like this:

 select title from book

So, here an analogy is made between node tests in XPath and

column specifications in SQL. In both cases from above, all

titles from all books are returned. In particular, note that it is

the node test at the end of the path expression that

corresponds with the column specification of the SQL query.

(Note: although the XPath query is displaying entire

elements instead of just the atomic values, this can be done

by applying the XPath value() function. For purposes of

discussion in this paper, we will not utilize the value function

in our queries).

If we want to show both the title and price of each book

in the XML document, we can use the following path

expression:

/bookstore/book/title | /bookstore/book/price

which produces the following results:

<root>

 <title lang="en">Everyday Italian</title>

 <price>30.00</price>

 <title lang="en">Harry Potter</title>

 <price>29.99</price>

 <title lang="en">XQuery Kick Start</title>

 <price>49.99</price>

 <title lang="en">Learning XML</title>

 <price>39.95</price>

</root>

The analogy with SQL would be the following:

 select title, price from book

So, an analogy can be made between the comma in the SQL

statement (which delimits the columns of the SELECT

clause) and the pipe (vertical bar) symbol in XPath, which

similarly delimits paths that will be returned. However, when

making this analogy, it is important to also point out the

differences. Note that the pipe symbol is allowing retrieval

of multiple paths in the tree, whereas the comma is retrieving

multiple attributes of the table or join. Recall our earlier

discussion of Gentner’s spontaneous analogical learning

process: (a) accessing the base system; (b) performing the

mapping between base and target; (c) evaluating the match;

(d) storing inferences in the target target; and sometimes, (e)

extracting the commonalities (Gentner 1989). Step (c) is an

important component of the process, and instructors should

be sure to critically evaluate analogies as they are presented

to the students. Some analogies are stronger than others.

The previous two examples utilized analogies to familiar

SELECT clause constructs. For an analogy to WHERE

clause constructs (i.e. conditions for returning rows from the

table), consider the following path expression, which

includes a predicate:

/bookstore/book[price>35]/title

The predicate [price>35] restricts the second level of the

paths such that only the titles of those book elements whose

price sub-elements have values greater than 35 will be

returned, as shown below:

<root>

 <title lang="en">XQuery Kick Start</title>

 <title lang="en">Learning XML</title>

</root>

The simplistic SQL analogy would be the following:

select title from book where price > 35

So, an analogy can be made between the conditions in a

WHERE clause and the conditions in a predicate.

In the above examples, a column in a SQL table was

mapped onto a sub-element in an XML document. Recall

that the purpose served by columns in a SQL table could also

be accomplished using an attribute in an XML document. So,

an alternative set of analogies can be made for this mapping.

For example, the following two mappings are possible.

1) /bookstore/book[@category="COOKING"]/title

maps to

select title from book where category = ‘cooking’

2) /bookstore/book[title="Everyday Italian"]/@category

maps to

select category from book where title = ‘Everyday

Italian’

Here, you can point out the lack of clear-cut one-to-one

correspondences between concepts in the base domain and

concepts in the target domain. Column specifications in

Journal of Information Systems Education, Vol. 23(4) Winter 2012

391

SQL queries can form analogies to either node tests or to

element attributes in XPath queries.

4.3 Analogies with Joins

Within the XML tree structure shown in figure 6, there is

also the possibility of many authors for a book, and many

books for an author as well. Note, however, that unlike with

normalized databases, XML hierarchies will often include

duplicate data. For example, J. K. Rowling appears twice in

the XML document of figure 6..

Nevertheless, there are operations in XML queries that

are similar in some ways to join operations in relational

databases. For example, in a relational database, you may

want to show all the authors for a particular book, using a

join query like this:

select a.name from author a, book_author ba,

book b where a.id = ba.authorID and b.title =

ba.book and b.title = ‘XQuery Kick Start'.

An analogous XPath query for returning all the authors for a

given book would be:

 //bookstore/book[title='XQuery Kick Start']/author

Here we see that a combination of node tests and predicates

can be used to gain similar results as a multitable join query

Specifically, the predicate is associated with a node test from

the step preceding the step that contains the node test

analogous to the column specification from a SQL query.

Note that in a tree structure, there is a one-to-many

relationship between the parent node and the child nodes (a

parent can have multiple children). This relationship,

combines with the allowance of duplicate data (i.e. author

names duplicated throughout the document as subelements

of books), allows us to make analogies between many-to-

many relationships in relational databases and many-to-many

relationships in XML documents.

What if we wanted to see all books by a particular

author? In this case, the SQL query would look like this:

select b.title from author a, book_author ba, book

b where a.id = ba.authorID and b.title = ba.book

and a.name = ‘J. K. Rowling'.

To perform an analogous operation in the XML document,

you can do the following:

//bookstore/book[author='J. K. Rowling']/title

Consider the analogies between the XPath path expressions

and the SQL joins. To change from the first SQL query

(authors of a book) to the second (books written by an

author) involves swapping the column specification in the

SELECT clause with the testing field of the WHERE clause.

Similarly, performing that same modification in the path

expressions involves swapping the lowest-level node test

with the predicate test element. In this analogy, SELECT

clause items are like node tests, and WHERE clause

elements are like predicates.

Here, we have applied Gentner’s systematicity principle.

We build on two individual lower-order analogies: (1) a

WHERE clause condition is like an XPath predicate and (2)

a SELECT clause column specification is like an XPath node

test. We combined the two in order to produce this higher-

order analogy: swapping the column specification with the

WHERE clause condition is like swapping the predicate with

the node test. Another way to look at this case is in terms of

Clement’s bridging analogy concept. The previous (lower

order) analogies of node test-for-column specification and

predicate-for-WHERE condition served as bridges for the

overall analogy of how to modify a query to produce

reciprocal results.

4.4 Analogies with Aggregation and Grouping

In both databases and XML documents, there will be the

need to get aggregate information such as sum, counts,

averages, etc. XPath analogies to SQL aggregate queries are

not as direct as the analogies already stated, and aggregation

in XML queries often require the use of XQuery or XSL

(eXtensible Stylesheet Language), which is beyond the scope

of this paper. Nevertheless, some limited aggregation can be

done using XPath alone, and learning these can be done

through analogy.

For example, suppose you want to know the total number

of books in the database. Such a query would look something

like this:

select count(*) from book

Here, count is an aggregate function, and the query returns a

result set of one row consisting of one column, that column

containing the number 5, which is the total number of

records in the book table (see figure 2).

Similarly, there is a count function in XPath, which

returns the same sort of information as the count function in

SQL. The following XPath expression would also return a 5,

the total number of book elements in the XML document of

figure 6.

count(/bookstore/book)

However, when evaluating this analogy we see that it is not

quite as strong as the previous analogies. Whereas the

SELECT statement returns a result set, the XPath expression

does not return a node set, but an individual value. This is a

weaker analogy than the previous ones because it does not

build upon the result-set to node-set mapping. Nevertheless,

the two analogous queries both fulfill the same purpose,

which is to get the total number of books from the data

source.

More problems occur when attempting analogies for

aggregation with grouping. This facility is not provided by

XPath alone, but requires either XQuery or XSL to complete

the operation. For example, the following query has no direct

analogy in XPath:

select title, count(*) from book

where category = ‘children’ group by title

Journal of Information Systems Education, Vol. 23(4) Winter 2012

392

During Gentner’s spontaneous learning process, an

individual would get stuck at step (b)) performing the

mapping between base and target. This is a breakdown in the

analogy. However, we learned from Harrison (1993) that

from a pedagogical perspective, pointing out the failures of

attempted analogies can be as useful as identifying

successful ones. We want to impress upon the student than

there are many differences between the two data structures as

well as their query mechanics and capabilities.

Detailed discussion of the extensions of the base and

target query languages is beyond the scope of this paper. But

broadening the scope of this study will likely uncover many

useful analogies, including the ability to map aggregation

with grouping from the SQL to XPath.

5. CONCLUSIONS

Analogy is much less precise and rigorous than teaching

from first principles, and is not sufficient by itself for

providing deep understanding of a topic or skill. But it can

serve a useful role by leveraging students’ previous

knowledge in one domain in order to speed up learning in

another. Considering the time constraints in a typical IS

curriculum, and the need to cover a broad scope of distinct

standards, protocols, languages, and data formats, it makes

sense to use intuitive heuristics such as analogical reasoning

where the opportunities arise. In this paper, we looked at one

such opportunity, for facilitating XML querying skills by

making use of students’ existing knowledge in relational

database queries. Specifically, we applied Gentner’s

structure mapping theory and the pedagogical methods that

have arisen from it into one particular area in IS education

focused on database and XML queries.

There is much promise for future research in this area.

Within the context of database concerns, many more

analogies can be identified by expanding from the core

languages of SQL and XPath to their extensions of PL-SQL,

T-SQL, XQuery, and XSL. The use of analogy also brings

promise to other areas of information systems education,

including programming, design principles, modeling

methodologies, case studies, and host of other areas.

A final promising continuation of this research, and one

which will be needed in order to validate the theoretical

principles outlined in this paper, is to run empirical studies

on the practical use of analogical reasoning in information

systems courses. Clement’s (1993) dramatic results show

exciting promise, but these should be replicated in the IS

domain.

6. REFERENCES

Chen, Peter Pin-Shan. (1976) “The Entity-Relationship

Model-Toward a Unified View of Data” ACM

Transactions on Database Systems Vol. 1 No. 1, pp. 9-36

Clement, John (1993) “Using Bridging Analogies and

Anchoring Intuitions to Deal with Students’

Preconceptions in Physics” Journal of Research in Science

Teaching Vol. 30 No. 10, December 1993, pp. 1241-1257

Codd, E.F. (1970) “A Relational Model of Data for Large

Shared Data Banks” Communications of the ACM Vol. 13

No. 6, pp. 377-387

Coombs, J.H., Renear, A.H., DeRose, S.J.. (1987) “Markup

Systems and the Future of Text Processing”

Communications of the ACM, Vol. 30, No. 11, pp. 933-

947

Dawson, Linda. (2011) "Cognitive Processes in Object-

Oriented Requirements Engineering Practice: Analogical

Reasoning and Mental Modelling" 20th International

Conference on Information Systems Development (ISD).

Edinburgh, UK. Aug. 2011.

Falkenhainer, B., Forbus, K.D., Gentner, D. (1989) “The

Structure-Mapping Engine: Algorithm and Examples”

Artificial Intelligence Vol. 41, pp. 1-63

Forbus, Kenneth D. and Gentner, Dedre (1991) “Similarity-

Based Cognitive Architecture” ACM SigArt Bulletin Vol.

2 No. 4, pp. 66-69

Forbus, K.D., Mostek, T., Ferguson, R., Swart, R. (2002)

“An Analogy Ontology for Integrating Analogical

Processing and First-Principles Reasoning” Proceedings

of the Eighteenth National Conference on Artificial

Intelligence pp. 875-885

Gee, B.D., Uttal, D.H., Gentner, D., Manduca C., Shipley

T.F., Tikoff B., Ormand, C.J., Sageman, B.. (2010)

“Analogical Thinking in Geoscience Education” Journal

of Geoscience Education, Vol. 58, No. 1, pp. 2-13

Gentner, Dedre (1983), “Structure Mapping: A Theoretical

Framework for Analogy.” Cognitive Science Vol. 7,

pp155-170.

Gentner, Dedre (1989), The mechanisms of analogical

learning, in Similarity and Analogical Reasoning.

Cambridge University Press, Cambridge, England.

Harrison, Allan G. and Treagust, David F. (1993) “Teaching

with Analogies: A Case Study in Grade-10 Optics”

Journal of Research in Science Teaching Vol. 30 No. 10,

December 1993, pp. 1291-1307

Hoffer, J.A., Ramesh, V., Topi, H. (2011), Modern Database

Management 10th Edition. Pearson – Prentice Hall, Upper

Saddle river, NJ

James, Mark Charles (2003), “The Influence of Analogical

Reasoning Instruction on the Pedagogical Reasoning

Ability of Preservice Elementary Teachers”, PhD

Dissertation, Kansas State University, ProQuest

Information And Learning Company, Ann Arbor, MI.

Olsen, D., Cooney, V., Marshall, B., Swart, R. (2005)

“Toward Full Integration of XML and Advanced Database

Concepts” The Review of Business Information Systems

Vol. 9, N. 4, pp. 13-22

Peled, Irir (2007) “The Role of Analogical Thinking in

Designing Tasks for Mathematics Teacher Education: An

Example of a Pedagogical Ad Hoc Task” Journal of

Mathematics Teacher Education Vol. 10 No. 4, pp. 369-

379

Saulnier, Bruce and White, Bruce (2012) “IS 2010 and

ABET Accreditation: An Analysis of ABET-Accredited

Information Systems Programs” Journal of Information

Systems Education Vol. 22 No. 4, pp. 349-355

Topi, H,, Valacich, J.S., Wright, R.T., Kaiser, K.M,

Nunamaker, J.F., Sipior, J.C., de Vreede, G.C. (2010) “IS

2010 Curriculum Guidelines for Undergraduate Degree

Programs in Information Systems” Communications of the

Association for Information Systems Vol. 26, No. 18

Journal of Information Systems Education, Vol. 23(4) Winter 2012

393

Wagner, W.P., Pant, V., Hilken, R. (2008) “Adding XML to

the MIS Curriculum: Lessons from the Classroom”

Journal of Information Technology Education Vol. 7, pp.

35-45

AUTHOR BIOGRAPHY

Michel Mitri is a Professor of Computer Information

Systems at James Madison

University, where he teaches

software development, database,

and business intelligence

courses. His research interests

include applications of AI to

business and educational

domains. Dr. Mitri currently

serves as the interim department

head of the CIS and Business

Analytics department.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

394

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2012 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

