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ABSTRACT 

 

An introduction to programming course can be a challenge for both students and instructors. This paper describes a study that 

introduced Web services (WS) and Service-Oriented Architecture in Information Systems 1 (IS 1) and Computer Science 1 

(CS 1) programming courses over a two-year period. WS were used as an instruction tool based on their increased use in 

industry as well as their ability to provide a real world feel to student programming activities. The paper includes an example 

WS teaching module and a proposed implementation model for future studies based on lessons learned from the current 

experiment. The study was successful in showing a significant increase in student test performance for WS-taught courses 

over standard-taught courses. 
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1. INTRODUCTION AND MOTIVATION 

 

Historically, teaching introduction to programming can be 

challenging for both students and instructors for a variety of 

reasons from psychological to pedagogical (Sheil, 1981; 

Kolling et al., 1995; Huet et al., 2004; Pendergast, 2006; 

Avouris et al., 2010). This is also evident in the plethora of 

approaches from robots to games or different models of 

delivery (Lawhead et al., 2003; Rajaravivarma, 2005; 

Pedroni and Meyer, 2006). This paper describes a study that 

introduced Web services (WS) and Service-Oriented 

Architecture (SOA) in Information Systems 1 (IS 1) / 

Computer Science 1 (CS 1) programming courses over a 

two-year period. The benefit of using the WS over a 

standard, typical IS1/CS1 teaching approach was evident in  

this study as seen in the increase in a common (no WS 

content) final exam performance at a large Midwestern 

University. While there are many factors that affect student 

performance in any course, there was a positive gain in WS 

sections over a typical section offering. This coupled with 

exposing students with a burgeoning technology used in the 

IT industry and, by their admission, tools that were 

interesting, we feel the study was successful and merits 

further study in the area. 

WS provide a standard means of interoperating between 

different software applications, running on a variety of 

platforms and/or frameworks (Booth et al. 2004).WS were 

chosen as a mechanism to increase student interest because 

of the ability to access familiar real world contents, such as a 

Google map or a Twitter feed, and bring this data into their 

assignments and projects. Furthermore, WS are becoming a 

strategic platform that supports how companies use IT to 

conduct business. Industry use of WS continues to grow as 

the benefit WS for standardizing the integration of 

applications to delivering more complex services (Gates, 

2008; Laufmann, 2010; Phifer, 2012). According to a recent 

survey of industry professionals from both public and private 

sectors conducted in the fall of 2010 by the authors in 

support of this study, forty-one IT professionals from a broad 

range of organizations indicated that their companies were 

using WS (9 always use WS, 30 sometimes, 2 do not use 

WS) and that WS should be integrated into a university or 

college IT curriculum. As a follow-up to the survey, ten of 

the survey participants were interviewed during the spring of 

2012. Over this two year period, the interviewees indicate 

that WS use in companies has 1) grown in the past two years, 

2) become a strategic IT focus of the companies, and 3) 

shifted from not only working with custom WS but also 

using more third party and/or public facing WS across the 

entire organizations. To address the growing need for IT 

professionals to work in this space, the same interviewees 

supported 1) including WS as part of an IT curriculum, 2) 
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having a class or classes focused on WS, and 3) ideally 

targeting upper level students with WS but possibly 

spreading throughout the curriculum when relevant. The 

findings lend support to the use of WS in the teaching 

approach outlined here. 

The WS approach to teaching IS1/CS1 integrates the use 

of WS technology throughout the course assignments and 

lectures. Students in the WS sections were shown to perform 

better on a common final exam then students in standard 

sections. The common final exam tested programming 

concepts and was given to all introductory sections. WS 

were not covered as part of the final exam. The approach 

provides students with an interesting collection of services 

that allows for more sophisticated apps to be built. Students 

using WS early in the course can see the benefits of reuse 

and, by the end of the course, build mashups that involve 

Google Maps, YouTube, Twitter, etc. as opposed to 

producing programs that may teach the same concepts but 

fail to allow students to connect their work to the real world. 

The results indicate that the approach presented here was 

successful and based on the outcome of this study, a 

framework that includes a comprehensive pre-test and post-

test for students in the control and treatment sections to 

complete, a common content knowledge survey module for 

all students to take, and a faculty survey for the instructors to 

complete is proposed. This will enable educators to answer 

many questions regarding the effectiveness of the WS 

approach, including “Do students using the Web service 

approach perform better in the common assessment exam 

module?” and “Do students and faculty members find the 

Web service approach more engaging?” 

The remainder of the paper is organized as follows. A 

review of the relevant literature is presented in the Related 

Work section below. This is followed by a sample module of 

the WS approach. The research design of the study is 

discussed next, followed by the results of the study. A 

discussion of the results is presented in the section that 

ensues. Finally, the conclusions, limitations, and future work 

of this study are given in the last section. 

 

2. RELATED WORK 

 

This section is divided into two subsections to highlight 

efforts to improve introductory programming or 

programming courses that have incorporated WS. But under 

our extensive literature review, we found no indication of a 

course that did both. 

 

2.1 Introductory Programming Approaches 

In terms of approaches used for teaching introductory 

computing, there have been numerous proposals reported in 

the literature over the years for new and appealing 

methodologies to attract and retain students. They include 

using personal robots in a CS1 course, through the Institute 

for Personal Robots in Education program (Markham and 

King, 2010) or LEGO Mindstorms (Lawhead et al., 2003; 

McWhorter and O’Connor, 2009). Another notable effort is 

one that uniquely makes use of the context of art and creative 

coding (Greenberg et al., 2012). Here, the students create a 

portfolio of aesthetic visual designs that employ basic 

computing structures. Other approaches have used a Web 

centric approach to teaching IS1/CS1, but do not incorporate 

WS (Stepp et al., 2009; Yue, 2010). 

There is also an approach that leverages active learning 

techniques in the form of team-based learning (TBL). The 

effects of TBL have been shown to have major 

improvements both in terms of the drop rate and students’ 

success, as measured by final exam grades (Lasserre and 

Szostak, 2011). Yet another approach takes the gaming route 

and introduces games as a “flavor” of CS1 (Bayliss and 

Strout, 2006) and a simple framework for interactive games 

(Luxton-Reilly and Denny, 2009). Lastly, similar to the WS 

approach proposed in this research, where problem solving 

involving real world activities are emphasized, real world 

programming assignments such as spam evaluator and web 

crawling are integrated in a CS1 course (Stevenson and 

Wagner, 2006). 

 

2.2 WS in IT Courses 

In terms of the use of WS in IT curricula, there have been a 

number of efforts that involve the use of SOA/WS in 

education in some fashion. First, the work by the authors and 

colleagues on the initial concept (Lim et al. 2005) and later 

on the interim report (Hosack et al. 2011), are the only ones 

that aim at the introductory level. All the others are primarily 

in upper division, emerging technology, capstone, and/or 

graduate IT curricula. For example, Humphrey uses WS as 

the foundation for learning complex software system 

development in a first-year graduate course to allow for more 

concrete discussion of software design, implementation, and 

evaluation (Humphrey, 2004). A similar effort, but for an 

undergraduate project-based course and using open source 

software, is reported by Reed and colleagues (Reed et al., 

2007). 

Another work in the area involves a graduate-level XML 

programming course where a WS-based solution is used to 

address the problems of insufficient complexity in a typical 

course project and the need to prepare students to work on 

real-world project teams (Zilora, 2004). Yet another effort is 

given by Assunção and Osório (2006), where the teaching of 

WS concepts, standards and technologies using the .NET 

platform (Visual Studio .NET with Web Services 

Enhancements tools) is described. 

More recently, Holliday et al. describe the historical 

development of network programming techniques (from low 

level sockets programming to Remote Method Invocation) 

and extends the techniques to WS (Holliday et al., 2008). 

Also, the general concern about how SOA can be used in a 

learning environment and how the environment must be 

articulated in the context of business needs and other 

software architecture methodologies are described by Lopez 

et al. (Lopez et al., 2007). Finally, Tsai (Tsai et al., 2008) 

introduces WS at the introductory level (high school grades 9 

through 12 in this case). 

In each of the above publications, the work described has 

been aiming at the non-introductory levels. The only 

exception is the work by Tsai. However, in that work, the 

use of WS occurs at a very specialized level—in robotics 

programming, unlike the generalized approach used in this 

research.  
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3. SAMPLE TEACHING MODULE OF THE WS 

APPROACH 

 

This teaching study targets sections of Information Systems 

1 (IS 1)/Computer Science 1 (CS 1), the early programming 

courses in the computer science and information systems 

programs in many curricula. Both courses are designed to 

introduce the basic problem solving and program design 

skills that are used to create computer programs. To give a 

sense of how the WS approach is used, a sample module 

comparing the WS and traditional approaches for a typical 

topic covered in IS1 or CS1 is presented. This topic, along 

with various other topics, can be easily enhanced so that 

students are exposed to the state-of-the-art technology. The 

topic is presented with a typical delivery mechanism using 

the traditional approach, then augmented with the WS 

approach, and finally followed by an example depicting the 

WS approach to the topic.  

In the following selected module, the topic presented is 

“Sequence, Iterative, and Decision Structures.” The learning 

objectives aim to reinforce the concepts behind the 

fundamental control structures of sequencing, looping, and 

decision making (via if/else and/or case statements). Upon 

completion of this module, students should be able to 

ascertain the order in which the various tasks need to be 

carried out, to apply the appropriate looping structure to 

iterate over a collection of data, and to impose the necessary 

conditions to filter the data for display purposes. 

In the table below, three sections (Typical Delivery, WS 

Delivery, and Example) are presented.

 

Module Name: Sequence, Iterative, and Decision Structures 

Typical Delivery: These topics are typically covered by traditional discussion of scenarios that (1) necessitate a certain 

ordering be imposed in order to solve a problem (e.g., read the input values before processing them), (2) 

require a loop be used (e.g., processing a collection of numbers to find the average), and (3) need an if-

else structure be employed (e.g., find the largest and smallest numbers from a collection of numbers). 

 

Web Service  

Delivery: 

Instead of merely processing a collection of meaningless numbers or strings that may not resonate with 

students, one could present a scenario where the goal is to solve a problem by using the three 

fundamental structures and existing WS to form a solution. 

 

Example:   A plausible scenario would be to solve the problem of finding the nearest city from, say, Chicago, given 

a collection of cities to process. Further, the nearest city needs to be plotted on a map. Lastly, get a route 

from Chicago to the nearest city. 

 

This scenario may seem intractable in the traditional introductory programming environment. But there 

exist various publicly available WS that can be composed together to form a mashup application that 

solves this problem rather effortlessly. For example, there exist WS that convert a given city into its 

latitude/longitude coordinate, find the distance between two coordinates, plot a particular coordinate on a 

map, and plot the route given two coordinate endpoints. Thus, one can cover the Sequence, Iterative, and 

Decision topics using a more interesting approach. There are a variety of web sites that offer freely 

available WS. Sites such as xmethods.net, webservicex.net, and wiki.cdyne.com would be three good 

places to start looking. 

 

Here, the students need to determine the sequence in which the tasks ought to be carried out. They also 

need to setup a loop that iterates over all the cities. Then, as each city is processed, its latitude/longitude 

coordinate needs to be determined and compared with the current nearest city (involving if/else 

statement). Finally, once the nearest city is ascertained, a map and a route can then be plotted, as given 

below in Figure 1. 

 

  
        [directions truncated] 

Figure 1. A plot of directions to a location 
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In the “Typical Delivery” section, a typical approach 

used for discussing the topics of “Sequence, Iterative, and 

Decision Structures” is discussed. One example that 

encompasses all three aspects of the above structures is: 

“Process a collection of numbers (from the user), determine 

which one is the largest, and finally display it.” Clearly, the 

sequential aspect of this is that one needs to read the input 

first before one can decide and then display the largest. The 

iterative aspect is that one needs to establish a loop to go 

through the list. The decision aspect is that as each number is 

processed, an if/else statement is needed to keep track of the 

largest (so far). 

In the “WS Delivery” section, a comparable scenario to 

the above is described. The idea here is to cover the same 

topics, but using WS as the delivery mechanism. With WS, 

the possibilities are endless and one can be creative in 

incorporating the topics at hand in a way that engages the 

students more. For example, instead of processing a random 

list of numbers, the students can be processing a set of cities 

and determining which one is closest to a given city. Further, 

an added task might be to plot on a map the route to go from 

the given city to the closest one found. Now, the input data 

have meanings and the processing seems more interesting as 

it ties in with their general knowledge about the US 

geography and their experience with mapping. 

Finally, in the “Example” section, a specific scenario 

that details how the “WS Delivery” section can be 

implemented is given. In the table, the example is about 

finding closest city to the city of Chicago, plotting the cities 

on a map, getting a route to go from one location to another, 

and displaying turn-by-turn instructions for the route.  

With many modern Integrated Development 

Environments (IDE) such as NetBeans 7.x (NetBeans, 2012) 

and Eclipse 3.7.x (Eclipse, 2012), one can easily plug in a 

given WSDL (Web Service Description Language) URL, 

which describes what the WS is and where and how it can be 

accessed, and get the relevant code auto-generated. For 

example, in NetBeans 7.0.1, the user interface for the 

process is given below in Figure 2. Here, the WSDL for a 

Microsoft’s WS called TerraService, which allows one to 

convert a city/state/country to its latitude/longitude 

coordinate, among other things, is used to generate the 

necessary code to communicate with the underlying WS. 

 

 
Figure 2: NetBeans WS Wizard 

 

The generated code, which consists of a collection of 

Java classes that permit the client to communicate with the 

remote WS, is readily available for a client program to create 

a local object that communicates with its remote WS 

counterpart, see Figure 3. A similar approach can be used 

other programming interfaces such as Microsoft’s Visual 

Studio IDE, using Visual Basic and/or C#. 

 

 
Figure 3. Code generated when importing a WS  

 

Figure 4 below shows how one can use the generated 

code to communicate with the WS to convert a city to its 

latitude/longitude coordinate. First, note that the IDE 

generates the convertPlaceToLonLatPt method where the 

WS and its port (endpoint) are created upon request (a 

simple drag and drop). With the generated method, one 

simply needs to call it with a Place object and expect to get a 

LonLatPt object back. In the main method, a place object is 

created and its city, state, and country set. The method is 

called and with the returned result, the latitude and longitude 

of the city are displayed.  

 
Sample Code: 
public static void main(String[] args) { 

   // This code finds and displays the lat/long coordinate of  

   // Chicago, IL 

   com.msrmaps.Place place = new com.msrmaps.Place(); 

   place.setCity("Chicago"); 

   place.setState("IL"); 

   place.setCountry("United States"); 

   LonLatPt result = convertPlaceToLonLatPt(place); 

   System.out.println("The lat/long coordinate is:  

                                   "+result.getLat()+"/"+result.getLon()); 

} 

 

// This method is generated by the NetBeans IDE when the WS  

// method is dragged and dropped private static LonLatPt  

 

convertPlaceToLonLatPt(com.msrmaps.Place place) { 

   com.msrmaps.TerraService service = new 

                                   com.msrmaps.TerraService(); 

   com.msrmaps.TerraServiceSoap port =  

                                    service.getTerraServiceSoap(); 

   return port.convertPlaceToLonLatPt(place); 

} 

 

Output: 

          The lat/long coordinate is: 41.900001/-87.629997 

Figure 4. Sample code and the resulting output utilizing 

the city to latitude/longitude conversion WS 

 

Journal of Information Systems Education, Vol. 23(4) Winter 2012

376



 
 

This section illustrates how the topic of simple control 

structures, typically covered using the traditional approach, 

may be covered using an approach that is enhanced with 

WS. It shows that students can begin to experiment with a 

state-of-the-art technology that permits them to explore 

various, more meaningful data when learning essential topics 

in an introductory course. 

 

4. RESEARCH DESIGN 

 

The course offerings at a large mid-western Midwestern 

state university located in the USA were used to conduct a 

series of quasi-experiments. Included were the introductory 

programming courses in:  Information Systems 1 (IS 1) and 

Computer Science 1 (CS 1).  Because the courses were 

offered in the same school in the same university, students 

were from a similar population. Sections of traditionally-

taught introductory Java programming courses were 

compared with sections of the WS-based introductory Java 

programming. The IS1/CS1 courses were combined in an 

effort to ensure that a large enough sample of students was 

available for analysis and because the content covered in 

each course was similar.  Each course is required for the 

respective majors in the two fields. It should be noted that 

the same topics and concepts were covered in all of the 

IS1/CS1 sections whether they were using WS or not. Table 

1 provides the number of sections and students taught over 

four semesters. 

 

 Computer 

Science 1 (CS1) 

Information 

Systems 1 (IS1) 

Traditional 4 (150) 5 (214) 

Experimental (Web 

service) 
4 (94) 4 (128) 

Table 1. Number of Sections (Number of Students) 

 

At least two sections of each course were offered in each 

semester in both IS1/CS1, one experimental section and one 

or more traditional sections. Each semester, two CS 

instructors and two IS instructors taught the courses; a total 

of six instructors taught over the four semesters.  

Students registered for the classes in the typical way, 

which means they were not randomly assigned to the control 

and experimental groups. While random assignment would 

have enhanced the internal validity of the study, the fact that 

the experiment was conducted in actual programming 

courses offered in a university setting, with students who 

selected courses using their usual criteria (e.g., to fit their 

schedules), did much to insure the generalizability of the 

study’s results to a real world context.  

  To check for possible selection bias that might have 

arisen from student choices of class sections, we compared 

students who enrolled in the WS sections with those in the 

traditional sections in terms of student gender, academic 

majors, and mean cumulative grade point averages (GPA). A 

total of 586 student participants were involved in the study 

over four semesters. As can be seen in Table 2, the students 

in the WS-taught classes were 38% of the sample, those in 

the traditionally-taught classes were 62%; 20% of the 

students were female, 80% male. After the University 

official withdrawal date a total of 514 students continued in 

the treatment and comparison group classes. Table 2 

provides further descriptive statistics on the 586 students 

who enrolled in the four semesters from the Fall of 2009 

through the Spring of 2011.  

When gauging the effects of the experimental teaching 

method on the outcome measures (criteria), all of the 

variables described above (gender, major, class rank, 

cumulative GPA, etc.) were controlled in the analyses. The 

main analysis method was multiple regression, which 

enabled the researchers to measure the size of the effects of 

the independent variable (WS instruction) on the dependent 

variable (student learning as indicated by final exam scores) 

while controlling for covariates that have been shown in past 

studies to influence the outcome or dependent variable 

(academic major, class rank, GPA, and gender). 

 

Variable Number of Students Percent 

Semester   

   Fall 2009 183 31.2 

   Spring 2010 119 20.3 

   Fall 2010 167 28.5 

   Spring 2011 117 20.0 

Totals 586 100.0 

   

Gender   

   Female 117 20.0 

   Male 469 80.0 

Totals 586 100.0 

   

Class Rank   

   Freshmen  133 22.7 

   Sophomores 161 27.5 

   Junior 176 30.0 

   Senior    90 15.4 

   Other  26 4.4 

Totals 586 100.0 

   

Major   

   CS & IS 278 47.4 

   Others 308 52.6 

Totals 586 100.0 

   

Instructors   

   Instructor 1    105 17.9 

   Instructor 2*  94 16.0 

   Instructor 3*  128 21.8 

   Instructor 4    202 34.5 

   Instructor 5    27 4.6 

   Instructor 6    30 5.1 

Totals 586 100.0 

   

Group   

   Control 364 62.1 

   Experimental 222 37.9 

Totals 586 100.0 
*Note:  Instructors 2 and 3 taught the experimental WS sections. 

Table 2.  Students by Semester, Gender, Class Rank, 

Major, Instructor, and Group 
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Group, WS v Tradl N Mean Std. Deviation Std. Error Mean 

GPA, Cumulative WS 222 2.71 .76606 .05141 

Traditional 

Total 

364 

586 

2.58 

2.62 

.91999 

.86641 

.4822 

.03579 
Note: t = 1.716; df 584, [F = 2.946, df 1] p = .087. 

Table 3. Cumulative GPAs of Students in WS and Traditional Classes 

 

Cumulative GPA was of particular concern as it is 

frequently the most important predictor in studies such as 

this one. As can be seen in Table 3 above, there was little 

difference in the cumulative GPAs between students 

registering for the WS and the traditionally taught classes 

(2.71 and 2.58 respectively). Not surprisingly, a difference 

of 0.13 was not statistically significant at the .05 level (t = 

1.716; df 584, [F = 2.946, df 1], p = .087). 

Similarly, there were no significant differences in 

enrollment patterns (i.e., student self-selection into the 

control and experimental groups) between males and 

females (Table 4, Chi Squared = 0.325, p = .569) nor among 

academic majors (Table 5, Chi squared = 1.299, p = .254). 

 

Note: Chi Squared = .325; p = .569. 

Table 4. Gender Distribution of Enrolled Students 

 

Note:  Chi Squared = .1.299; p = .254. 

Table 5. Majors of Enrolled Students 

 

The main criterion (outcome) variable was: Final Exam 

Scores.  The scores were obtained using two common 

cumulative final exams—one for IS sections and one for the 

CS sections—with each major exam (IS or CS) containing 

the same problems. WS were not included as part of the 

exam material since WS were used in the experimental 

sections as a tool to illustrate and to teach the concepts of 

programming, but not used in the traditional sections. 

Therefore, the cumulative final focused on the conceptual 

material covered by both the control and experimental 

sections. 

 

5. RESULTS 

 

The design was quasi-experimental. The 586 student 

participants were not randomly assigned to treatment and 

comparisons groups.  Rather they enrolled in class sections 

using whatever criteria they happened to use.  Treatments 

were assigned to some of those sections; the students in the 

other sections served as a comparison group.  The 

disadvantage of a quasi-experimental design is that the  

 

researchers had no control over the assignment of students to 

experimental conditions. Because the learning experiment 

was not a laboratory simulation but occurred in ordinary 

classes, the investigators also had less control over the 

delivery of the instruction than they probably would have 

had under more controlled laboratory conditions. The 

advantage of the study design was ecological validity (the 

study closely approximated the situations to which it was 

intended to generalize). The participants were real students 

in real courses earning grades for credit. It could be argued 

that investigating the real world, rather than the laboratory 

world, makes it more likely that what was learned in the 

research could be generalized to other real students in real 

courses.  

Even had the assignment to sections/groups been 

random, it would still have been important to check for the 

equal distribution of non-treatment variables that researchers 

knew from literature reviews could influence the outcome 

variable (final exam score). In a quasi-experiment without 

random assignment, this step is crucial. Three of such 

covariates examined in this study were students’ cumulative 

GPAs, their genders, and their academic majors (see tables 

3, 4, and 5 above). These three in addition to class rank were 

included in the regression models along with the 

independent variable: WS versus standard instruction. 

Regression analysis assumes the normal distribution of 

variables and the samples from which they were drawn. Both 

the independent variable (treatment versus control) and the 

dependent variable (exam scores) were left-skewed (more 

scores at the lower end of the range), but not seriously 

enough to merit transforming the data before analysis 

(details are available from the authors). 

It makes most sense to initially evaluate the project as 

four separate quasi-experiments conducted over two years in 

four consecutive semesters. While the treatment was 

repeated each semester, semester-long teaching activities 

naturally varied from semester to semester and over the two 

years. The samples were distinct each semester. The 

comparison group instructors also differed from one 

semester to the next, and their teaching also undoubtedly 

varied.   

Table 6 summarizes the results summary for each 

semester. The main dependent variable is score on the 

common final exam. This is measured two ways for each 

semester: with zeros included and excluded. In each 

semester some students simply did not show up for the final 

examination and were assigned a score of zero. One could 

make a case for including the scores of these students, who 

had, in essence, unofficially withdrawn from the course, or 

for excluding them as missing data. We think the argument 

for the latter is stronger, but in the name of completeness we 

present the results both ways. 

 
Group, WS v Tradl 

Total Traditional WS 

Gender Female 70 47 117 

Male 294 175 469 

Total 364 222 586 

 
Group, WS v Tradl 

Total Traditional WS 

Major Others 198 110 308 

IS & CS 166 112 278 

Total 364 222 586 
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Column 1 gives the number of students still enrolled in 

the course at the end of the semester who received a score on 

the final exam. Looking at the first two rows, for Fall of 

2009, we can see the effects of the different ways of 

computing the outcome variable. For example, in row 1a, 

with zeros included, 164 scores were used to calculate the 

results; in row 1b, 145 were. The difference between the N 

values 164 and 145 indicates that 19 students unofficially 

dropped the course by not taking the final exam. Excluding 

those scores of zero raises the exams’ means (Column 2) and 

reduces their standard deviations (Column 3). The overall 

effect of the missing data is to reduce the variance and 

thereby the percentage of the variance explained by the 

predictor variables (shown by the adjusted R2 in Column 7). 

The main findings are in Column 4, which presents the 

regression coefficients b. The figures in the column indicate 

the difference in the scores of students who were in the 

experimental groups.  For example, the first number in 

Column 4—6.38—means that on average students in the 

experimental group classes scored 6.38 points higher on the 

final exam than students in the comparison group classes. 

This figure controls for other variables available to the 

researchers that could have explained the outcome: students’ 

cumulative GPAs, genders, class ranks (freshman, 

sophomore, etc.) and their academic majors (Computer 

Science or Information Science, versus all others).   

We also present the p values and the 95% confidence 

intervals for those regression coefficients (in Columns 5 & 6 

respectively). We do this more out of tradition than from a 

belief that these statistics are appropriate for these data from 

quasi-experiments. The p-value indicates the probability of 

the outcomes in the population being as large, or larger than 

those in the random sample, if the null hypothesis were true. 

The null hypothesis here is:  no difference between the 

scores of the experimental and comparison groups. 

However, it should be stressed that the calculation of p-

values and confidence intervals is firmly based on an 

inferential statistical theory that assumes that the students 

were randomly sampled from a known population and/or 

that they were randomly assigned to experimental and 

comparison groups. Neither of these necessary assumptions 

is true in our research. When these statistics are provided in 

research and for samples such as this one, what they 

represent is what the statistics would have been if the 

students had been randomly sampled from a population and 

randomly assigned to control and experimental groups.   

The results in Table 6 (apart from Columns 5 and 6) are 

descriptive, not inferential.  They pertain to the samples 

actually studied in the quasi-experiments. We can make no 

claim that they are representative of the results that would be 

achieved at other universities with other professors.   Such 

claims can only be based on broader studies, which is why 

we have expanded our study to include several other 

institutions and instructors (see discussion below). 

In any case, the results from the individual semesters in 

Column 4 are mixed. For 3 of the semesters the increase 

associated with being in the experimental group classes 

ranged from about 2 to about 7 points on a 100-point test 

with mean scores ranging between about 60 and 70.  

However, in one semester (Fall ‘10, lines 3a & 3b), the 

results were strongly in the opposite direction: students in 

the experimental sections got markedly lower scores, 

between 9 and 16 points lower depending on the method of 

calculation (including or excluding zeros). When 

discovering such an anomalous result, you have to ask 

yourself, in the words of an old statistics professor: “Is this a 

clue to pursue or a case to erase?”  Often, it is some of each, 

as it may be here. Examining the detailed data, it appears 

that students taking the programming from one of the 

experimental group’s instructors were less inclined to drop 

out either officially or unofficially. Rather, this instructor’s 

students tended to persist in the course and earn low grades 

on the final exam, an effect that seemed to have been 

especially marked in the 3rd iteration of the experiment. One 

could make a case that such student persistence is itself a 

positive outcome even if it tends to spoil the experimental 

results by altering the measurement criteria. This kind of 

complication is another consequence of studying the real 

world rather than the laboratory world. 

With comparatively small numbers of cases—ranging 

from 82 to 166 in our four quasi-experiments—regression 

estimates can be quite unstable, especially as the number of 

predictors grows. We have 5 predictors in our study:  

membership in the experimental group, GPA, gender, class 

rank, and academic major. One solution to the problem of 

unstable estimates due to small sample sizes is to pool data 

into a sort of meta-analysis of the 4 sets of outcomes. When  

 

 1 2 3 4 5 6 7 

 N Mean SD b p val 95% CI Adj R2 

SEMESTERS        

1a. Fall 09, zeros included 164 65.47 28.37 6.38 .084 -.857, 13.62 .441 

1b. Fall 09, zeros excluded 145 74.05 16.48 7.02 .007 1.93, 12.10 .268 

        

2a. Sprg 10, zeros included 92 63.28 27.04 4.77 .242 -3.29, 12.83 .499 

2b. Sprg 10, zeros excluded 82 71.00 16.33 1.92 .519 -3.98,  7.82 .357 

        

3a. Fall 10, zeros included 166 51.74 32.35 -9.16 .064 -18.85, 0.54 .233 

3b. Fall 10, zeros excluded 129 66.57 18.81 -15.79  <.01 -22.01, -9.57 .226 

        

4a. Sprg 11, zeros included 92 58.37 26.76 5.09 .275 -4.12, 14.30 .346 

4b. Sprg 11, zeros excluded 89 60.33 24.91 5.34 .246 -3.75, 14.43 .289 

Table 6.  Scores on the common final exams, by semester 
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Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. (p) b Std. Error Beta 

1 (Constant) 17.176 5.682  3.023 .003 

Expm Group = 1 4.168 2.022 .102 2.061 .040 

Major, IS & CS = 1 2.751 2.113 .069 1.302 .194 

class rank (1 – 4) .361 .981 .019 .368 .713 

Cum GPA (0 – 4) 15.089 1.495 .504 10.094 .000 

Gender, male = 1 6.794 2.442 .139 2.783 .006 

Table 7. Regression results for Semesters 1, 2, & 4 pooled, N = 316 

 

pooling data from all 4 semesters (full results not shown but 

available from authors), the modest positive results from 

semesters 1, 2, and 4 are canceled out by the negative results 

from semester 3. The b coefficients for all semesters pooled 

are, depending on the methods of calculation, + 0.878 and 

−1.34, which essentially indicate no effect one way or the 

other.   

If the explanation for the anomalous 3rd semester is 

convincing, we can set it aside and pool the results from the 

other three semesters. The results are presented in Table 7. 

Also presented are the full results of the regression 

analysis including the coefficients for all 5 predictors: the 

independent variable and the 4 control variables. This 

enables us to examine the comparative importance of these 

predictors. The unstandardized coefficients, b, present the 

results in the original metric: points on the final exam. In 

Table 7 we see that students in the experimental group 

scored 4.168 points higher on average (after controlling for 

other variables). This is a gain of about 6% (4.168 ÷ 69.39 = 

6.0%) for students in the experimental group. Students who 

were Computer Science or Information Science majors got 

2.75 points higher. Each increase in class rank, from 

freshman to senior (coded 1 – 4) was associated with about 

1/3 of a point on the final.  The effect of cumulative GPA 

(on a 4-point scale, 0 – 4) was associated with a whopping 

15 points on the final exam. It is hardly surprising that 

students who generally do well in their courses tended to do 

better in this course too—and vice versa.  Finally, gender 

also mattered; after controlling for the other variables, males 

scored an average of 6.8 points higher. These results are 

substantively interesting and also show why it was important 

to include the control variables in the model and why we 

have continued to do so in the expansion study described 

below. When controls are not included, it is difficult at best 

to estimate treatment effects accurately. 

For comparing the relative sizes of the 5 predictor 

variables, one should use the standardized regression 

coefficient, beta. By expressing outcomes in standard 

deviation units, the beta adjusts for differences in 

measurement scales (e.g., Experimental Group, 1 – 0; Class 

Rank, 1 – 4; GPA, 0 – 4). The beta coefficients can be used 

as effect size measures in this mini-meta-analysis because 

the number and definition of the predictor variables is the 

same for each quasi-experiment. In Table 7, the pooled data 

for the three semesters are presented (using the somewhat 

more conservative estimate treating zeros as missing cases). 

The beta for experimental group membership is .102. This 

means that the gain attributable to participation in the  

 

experimental group is about one-tenth of a standard 

deviation, a number which by many rules of thumb is 

considered the meaningful minimum for policy and decision 

making. The effect size for gender is similar to that for the 

experimental group membership, while the influence of 

cumulative GPA is about 5 times as large (.504 or ½ a 

standard deviation). That indicates why it will be important 

to control for these variables, especially GPA, in subsequent 

studies. Without controlling these covariates, the effects of 

the treatment variable could easily be concealed. 

In sum, we would characterize the overall results of the 

4 quasi-experiments as encouraging, but by no means 

definitive. Even had the outcomes been stronger and clearer, 

no one university and no group of 6 instructors can be 

considered representative. That is why we have endeavored 

in our expansion study to include a much broader group of 

institutions and instructors and to improve the reliability and 

validity of our measures of predictors, mediators, and 

outcomes.  These improvements are sketched in the 

following paragraphs. 

 

6. LIMITATIONS, CONCLUSIONS, AND FUTURE 

RESEARCH 

 

There are several limitations to the conclusions of this study. 

Most obviously, the data analyzed is from courses offered 

over four semesters by six instructors in one university. 

More data will need to be collected to determine whether the 

initial successes in the pilot years can be replicated and 

improved upon in the expansion study.  

It should also be noted that there were a number of WS 

failures in this pilot study. Because this was a pilot and our 

experiences with the WS were limited in terms of their 

reliability, several publicly available WS were either not 

available when needed (perhaps due to heavy student usage) 

or simply disabled prior to student use. This complicates the 

assessment of the effectiveness of the WS approach. To 

overcome this shortcoming, homegrown WS have been 

developed to serve as backup services in case of failure.  

Based on the pilot study, several improvements are 

being implemented in the expansion study. The assessment 

model from the pilot study was revised into a new 

framework that is more standardized and comprehensive. 

Four new variables have been added to the experimental 

model: two pertain to student characteristics — their self-

efficacy and their engagement in instruction; also added are 

two new measures of students’ learning.   

Journal of Information Systems Education, Vol. 23(4) Winter 2012

380



 
 

In the pilot study, the instruments for assessing student 

learning (final exams) were developed in-house and not 

based on a standardized, widely used instrument that has 

been tested extensively. To address this shortcoming, a 

revised instrument that is based on SALG (Student 

Assessment of Learning Gains) (Seymour et al., 2000, 

www.salgsite.org; Douglas et al., 2012) has been developed. 

SALG is a nationally validated pre- and post-survey of 

students’ self-assessment of their knowledge before and after 

a course. Because it has been used in numerous courses over 

many years, it can provide the basis for measured 

comparisons of student learning. In addition to the students’ 

assessment of their learning, an objective test of knowledge 

of programming concepts has been developed in 

consultation with a team of faculty members teaching 

programming courses.  This constitutes a researcher 

assessment of learning to supplement the student 

assessment; it will be tested for reliability and validity in the 

early iterations of the expansion study. 

While measuring student learning was a key objective of 

the pilot project, measuring student engagement was not 

studied as systematically. Given the nature of WS, which 

allows for the wealth of information on the Web to be 

harvested easily through API (application programming 

interface) calls from one’s computer program, it would be 

remiss for the new framework to not capture student 

engagement. Students are expected to be more engaged with 

the WS approach as they are interacting with activities that 

they often personalize to make them more interesting and 

relevant (e.g., find all 3D movies that are playing in my 

hometown (zipcode xxxxx), display all comments from my 

favorite YouTube video, etc.). To measure student 

engagement, we have also included in the SALG post-survey 

an instrument designed to capture student engagement. The 

instrument is modeled after several others in the field and 

will serve as a mediating variable in the analysis (Ahlfeldt et 

al., 2005; Carini et al., 2006).   

There have been many different efforts in the literature 

on engaging student learning using a variety of approaches. 

They include the application of “gamification” to eLearning 

to engage learners where the theory behind gaming design is 

applied to build engagement interactive materials such as 

eLearning (Raymer, 2011), the study of how learning 

community participation affects student engagement (Pike et 

al., 2011), the research on curiosity, or interest and 

engagement in technology-pervasive learning environments 

(Arnone, 2011). The proposed framework in the expansion 

study allows the researchers to assess if the WS approach 

represents another means to actively engage students in 

learning the fundamentals of computer programming. 

In addition to using the SALG assessments the 

researchers have designed an assessment test module of 

objective questions to be taken by students in both the 

control and experimental classes at the end of each semester. 

The questions measure student knowledge of programming 

concepts and skills. This common module of objective 

questions will allow comparisons across universities. The 

questions have been reviewed at a workshop with the first 

cohort of faculty participants; in the judgment of that group 

as well as of the principle investigators the questions have 

extensive face validity. Finally, the use of objective 

questions with a large N of student participants will enable 

the researchers to use more advanced analytic techniques to 

measure student outcomes in the study, specifically: (1) 

propensity score matching to simulate experimental 

attribution of cause and (2) item response theory 

(specifically differential item functioning or DIF) to conduct 

subgroup analyses of responses to particular questions in the 

module. The combination of these factors yields the causal 

model shown in Figure 5. 

The model postulates that WS instruction will promote 

student engagement, which, in turn, will foster their learning 

of programming concepts.  Students’ background variables 

and their self-efficacy (Bandura, 2006; Zajacova et al., 2005) 

enter the model from the outside; they are determined before 

students begin the course. Still, because of their potential 

influence on the outcome, it is important to control for these 

external/exogenous variables. This more complete model 

enables the researchers to gauge the effects of WS 

instruction with greater accuracy. 

In conclusion, a quasi-experimental study was presented 

that indicates using WS in an introductory programming 

course significantly improved test scores by almost a half a 

letter grade (4.2 on a 100 point grading scale) for sections 

taught with this approach as opposed to a standard offering. 

Suggestions for future research include using the SALG 

instrument for a pre- and post-test to test the proposed 

research model in Figure 5 at other colleges and universities, 

teaching introductory programming courses incorporating 

various programming languages.  

     

  

                                                                                           Background variables                                                 SALG                                                                                                      

                                                                                                                                                                                                                                                               

 

 

 

 Learning                                          WS vs Traditional                                      Student engagement                       

(Includes intensity                       

of implementation) 

 

 

                                                                                              Student self-efficacy                                                  TEST                                                                                                                                

                                                                                                                                                                                                                                                      

Figure 5.  Causal Model 
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