

Increasing Student Performance Through the Use of Web

Services in Introductory Programming Classrooms:

Results from a Series of Quasi-Experiments

Bryan Hosack

Billy Lim

W. Paul Vogt

Illinois State University

Campus Box 5150

Normal, IL 61790

bhosack@ilstu.edu, bllim@ilstu.edu, wpvogt@ilstu.edu

ABSTRACT

An introduction to programming course can be a challenge for both students and instructors. This paper describes a study that

introduced Web services (WS) and Service-Oriented Architecture in Information Systems 1 (IS 1) and Computer Science 1

(CS 1) programming courses over a two-year period. WS were used as an instruction tool based on their increased use in

industry as well as their ability to provide a real world feel to student programming activities. The paper includes an example

WS teaching module and a proposed implementation model for future studies based on lessons learned from the current

experiment. The study was successful in showing a significant increase in student test performance for WS-taught courses

over standard-taught courses.

Keywords: Programming, Student performance, Web literacy

1. INTRODUCTION AND MOTIVATION

Historically, teaching introduction to programming can be

challenging for both students and instructors for a variety of

reasons from psychological to pedagogical (Sheil, 1981;

Kolling et al., 1995; Huet et al., 2004; Pendergast, 2006;

Avouris et al., 2010). This is also evident in the plethora of

approaches from robots to games or different models of

delivery (Lawhead et al., 2003; Rajaravivarma, 2005;

Pedroni and Meyer, 2006). This paper describes a study that

introduced Web services (WS) and Service-Oriented

Architecture (SOA) in Information Systems 1 (IS 1) /

Computer Science 1 (CS 1) programming courses over a

two-year period. The benefit of using the WS over a

standard, typical IS1/CS1 teaching approach was evident in

this study as seen in the increase in a common (no WS

content) final exam performance at a large Midwestern

University. While there are many factors that affect student

performance in any course, there was a positive gain in WS

sections over a typical section offering. This coupled with

exposing students with a burgeoning technology used in the

IT industry and, by their admission, tools that were

interesting, we feel the study was successful and merits

further study in the area.

WS provide a standard means of interoperating between

different software applications, running on a variety of

platforms and/or frameworks (Booth et al. 2004).WS were

chosen as a mechanism to increase student interest because

of the ability to access familiar real world contents, such as a

Google map or a Twitter feed, and bring this data into their

assignments and projects. Furthermore, WS are becoming a

strategic platform that supports how companies use IT to

conduct business. Industry use of WS continues to grow as

the benefit WS for standardizing the integration of

applications to delivering more complex services (Gates,

2008; Laufmann, 2010; Phifer, 2012). According to a recent

survey of industry professionals from both public and private

sectors conducted in the fall of 2010 by the authors in

support of this study, forty-one IT professionals from a broad

range of organizations indicated that their companies were

using WS (9 always use WS, 30 sometimes, 2 do not use

WS) and that WS should be integrated into a university or

college IT curriculum. As a follow-up to the survey, ten of

the survey participants were interviewed during the spring of

2012. Over this two year period, the interviewees indicate

that WS use in companies has 1) grown in the past two years,

2) become a strategic IT focus of the companies, and 3)

shifted from not only working with custom WS but also

using more third party and/or public facing WS across the

entire organizations. To address the growing need for IT

professionals to work in this space, the same interviewees

supported 1) including WS as part of an IT curriculum, 2)

Journal of Information Systems Education, Vol. 23(4) Winter 2012

373

having a class or classes focused on WS, and 3) ideally

targeting upper level students with WS but possibly

spreading throughout the curriculum when relevant. The

findings lend support to the use of WS in the teaching

approach outlined here.

The WS approach to teaching IS1/CS1 integrates the use

of WS technology throughout the course assignments and

lectures. Students in the WS sections were shown to perform

better on a common final exam then students in standard

sections. The common final exam tested programming

concepts and was given to all introductory sections. WS

were not covered as part of the final exam. The approach

provides students with an interesting collection of services

that allows for more sophisticated apps to be built. Students

using WS early in the course can see the benefits of reuse

and, by the end of the course, build mashups that involve

Google Maps, YouTube, Twitter, etc. as opposed to

producing programs that may teach the same concepts but

fail to allow students to connect their work to the real world.

The results indicate that the approach presented here was

successful and based on the outcome of this study, a

framework that includes a comprehensive pre-test and post-

test for students in the control and treatment sections to

complete, a common content knowledge survey module for

all students to take, and a faculty survey for the instructors to

complete is proposed. This will enable educators to answer

many questions regarding the effectiveness of the WS

approach, including “Do students using the Web service

approach perform better in the common assessment exam

module?” and “Do students and faculty members find the

Web service approach more engaging?”

The remainder of the paper is organized as follows. A

review of the relevant literature is presented in the Related

Work section below. This is followed by a sample module of

the WS approach. The research design of the study is

discussed next, followed by the results of the study. A

discussion of the results is presented in the section that

ensues. Finally, the conclusions, limitations, and future work

of this study are given in the last section.

2. RELATED WORK

This section is divided into two subsections to highlight

efforts to improve introductory programming or

programming courses that have incorporated WS. But under

our extensive literature review, we found no indication of a

course that did both.

2.1 Introductory Programming Approaches

In terms of approaches used for teaching introductory

computing, there have been numerous proposals reported in

the literature over the years for new and appealing

methodologies to attract and retain students. They include

using personal robots in a CS1 course, through the Institute

for Personal Robots in Education program (Markham and

King, 2010) or LEGO Mindstorms (Lawhead et al., 2003;

McWhorter and O’Connor, 2009). Another notable effort is

one that uniquely makes use of the context of art and creative

coding (Greenberg et al., 2012). Here, the students create a

portfolio of aesthetic visual designs that employ basic

computing structures. Other approaches have used a Web

centric approach to teaching IS1/CS1, but do not incorporate

WS (Stepp et al., 2009; Yue, 2010).

There is also an approach that leverages active learning

techniques in the form of team-based learning (TBL). The

effects of TBL have been shown to have major

improvements both in terms of the drop rate and students’

success, as measured by final exam grades (Lasserre and

Szostak, 2011). Yet another approach takes the gaming route

and introduces games as a “flavor” of CS1 (Bayliss and

Strout, 2006) and a simple framework for interactive games

(Luxton-Reilly and Denny, 2009). Lastly, similar to the WS

approach proposed in this research, where problem solving

involving real world activities are emphasized, real world

programming assignments such as spam evaluator and web

crawling are integrated in a CS1 course (Stevenson and

Wagner, 2006).

2.2 WS in IT Courses

In terms of the use of WS in IT curricula, there have been a

number of efforts that involve the use of SOA/WS in

education in some fashion. First, the work by the authors and

colleagues on the initial concept (Lim et al. 2005) and later

on the interim report (Hosack et al. 2011), are the only ones

that aim at the introductory level. All the others are primarily

in upper division, emerging technology, capstone, and/or

graduate IT curricula. For example, Humphrey uses WS as

the foundation for learning complex software system

development in a first-year graduate course to allow for more

concrete discussion of software design, implementation, and

evaluation (Humphrey, 2004). A similar effort, but for an

undergraduate project-based course and using open source

software, is reported by Reed and colleagues (Reed et al.,

2007).

Another work in the area involves a graduate-level XML

programming course where a WS-based solution is used to

address the problems of insufficient complexity in a typical

course project and the need to prepare students to work on

real-world project teams (Zilora, 2004). Yet another effort is

given by Assunção and Osório (2006), where the teaching of

WS concepts, standards and technologies using the .NET

platform (Visual Studio .NET with Web Services

Enhancements tools) is described.

More recently, Holliday et al. describe the historical

development of network programming techniques (from low

level sockets programming to Remote Method Invocation)

and extends the techniques to WS (Holliday et al., 2008).

Also, the general concern about how SOA can be used in a

learning environment and how the environment must be

articulated in the context of business needs and other

software architecture methodologies are described by Lopez

et al. (Lopez et al., 2007). Finally, Tsai (Tsai et al., 2008)

introduces WS at the introductory level (high school grades 9

through 12 in this case).

In each of the above publications, the work described has

been aiming at the non-introductory levels. The only

exception is the work by Tsai. However, in that work, the

use of WS occurs at a very specialized level—in robotics

programming, unlike the generalized approach used in this

research.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

374

3. SAMPLE TEACHING MODULE OF THE WS

APPROACH

This teaching study targets sections of Information Systems

1 (IS 1)/Computer Science 1 (CS 1), the early programming

courses in the computer science and information systems

programs in many curricula. Both courses are designed to

introduce the basic problem solving and program design

skills that are used to create computer programs. To give a

sense of how the WS approach is used, a sample module

comparing the WS and traditional approaches for a typical

topic covered in IS1 or CS1 is presented. This topic, along

with various other topics, can be easily enhanced so that

students are exposed to the state-of-the-art technology. The

topic is presented with a typical delivery mechanism using

the traditional approach, then augmented with the WS

approach, and finally followed by an example depicting the

WS approach to the topic.

In the following selected module, the topic presented is

“Sequence, Iterative, and Decision Structures.” The learning

objectives aim to reinforce the concepts behind the

fundamental control structures of sequencing, looping, and

decision making (via if/else and/or case statements). Upon

completion of this module, students should be able to

ascertain the order in which the various tasks need to be

carried out, to apply the appropriate looping structure to

iterate over a collection of data, and to impose the necessary

conditions to filter the data for display purposes.

In the table below, three sections (Typical Delivery, WS

Delivery, and Example) are presented.

Module Name: Sequence, Iterative, and Decision Structures

Typical Delivery: These topics are typically covered by traditional discussion of scenarios that (1) necessitate a certain

ordering be imposed in order to solve a problem (e.g., read the input values before processing them), (2)

require a loop be used (e.g., processing a collection of numbers to find the average), and (3) need an if-

else structure be employed (e.g., find the largest and smallest numbers from a collection of numbers).

Web Service

Delivery:

Instead of merely processing a collection of meaningless numbers or strings that may not resonate with

students, one could present a scenario where the goal is to solve a problem by using the three

fundamental structures and existing WS to form a solution.

Example: A plausible scenario would be to solve the problem of finding the nearest city from, say, Chicago, given

a collection of cities to process. Further, the nearest city needs to be plotted on a map. Lastly, get a route

from Chicago to the nearest city.

This scenario may seem intractable in the traditional introductory programming environment. But there

exist various publicly available WS that can be composed together to form a mashup application that

solves this problem rather effortlessly. For example, there exist WS that convert a given city into its

latitude/longitude coordinate, find the distance between two coordinates, plot a particular coordinate on a

map, and plot the route given two coordinate endpoints. Thus, one can cover the Sequence, Iterative, and

Decision topics using a more interesting approach. There are a variety of web sites that offer freely

available WS. Sites such as xmethods.net, webservicex.net, and wiki.cdyne.com would be three good

places to start looking.

Here, the students need to determine the sequence in which the tasks ought to be carried out. They also

need to setup a loop that iterates over all the cities. Then, as each city is processed, its latitude/longitude

coordinate needs to be determined and compared with the current nearest city (involving if/else

statement). Finally, once the nearest city is ascertained, a map and a route can then be plotted, as given

below in Figure 1.

 [directions truncated]

Figure 1. A plot of directions to a location

Journal of Information Systems Education, Vol. 23(4) Winter 2012

375

In the “Typical Delivery” section, a typical approach

used for discussing the topics of “Sequence, Iterative, and

Decision Structures” is discussed. One example that

encompasses all three aspects of the above structures is:

“Process a collection of numbers (from the user), determine

which one is the largest, and finally display it.” Clearly, the

sequential aspect of this is that one needs to read the input

first before one can decide and then display the largest. The

iterative aspect is that one needs to establish a loop to go

through the list. The decision aspect is that as each number is

processed, an if/else statement is needed to keep track of the

largest (so far).

In the “WS Delivery” section, a comparable scenario to

the above is described. The idea here is to cover the same

topics, but using WS as the delivery mechanism. With WS,

the possibilities are endless and one can be creative in

incorporating the topics at hand in a way that engages the

students more. For example, instead of processing a random

list of numbers, the students can be processing a set of cities

and determining which one is closest to a given city. Further,

an added task might be to plot on a map the route to go from

the given city to the closest one found. Now, the input data

have meanings and the processing seems more interesting as

it ties in with their general knowledge about the US

geography and their experience with mapping.

Finally, in the “Example” section, a specific scenario

that details how the “WS Delivery” section can be

implemented is given. In the table, the example is about

finding closest city to the city of Chicago, plotting the cities

on a map, getting a route to go from one location to another,

and displaying turn-by-turn instructions for the route.

With many modern Integrated Development

Environments (IDE) such as NetBeans 7.x (NetBeans, 2012)

and Eclipse 3.7.x (Eclipse, 2012), one can easily plug in a

given WSDL (Web Service Description Language) URL,

which describes what the WS is and where and how it can be

accessed, and get the relevant code auto-generated. For

example, in NetBeans 7.0.1, the user interface for the

process is given below in Figure 2. Here, the WSDL for a

Microsoft’s WS called TerraService, which allows one to

convert a city/state/country to its latitude/longitude

coordinate, among other things, is used to generate the

necessary code to communicate with the underlying WS.

Figure 2: NetBeans WS Wizard

The generated code, which consists of a collection of

Java classes that permit the client to communicate with the

remote WS, is readily available for a client program to create

a local object that communicates with its remote WS

counterpart, see Figure 3. A similar approach can be used

other programming interfaces such as Microsoft’s Visual

Studio IDE, using Visual Basic and/or C#.

Figure 3. Code generated when importing a WS

Figure 4 below shows how one can use the generated

code to communicate with the WS to convert a city to its

latitude/longitude coordinate. First, note that the IDE

generates the convertPlaceToLonLatPt method where the

WS and its port (endpoint) are created upon request (a

simple drag and drop). With the generated method, one

simply needs to call it with a Place object and expect to get a

LonLatPt object back. In the main method, a place object is

created and its city, state, and country set. The method is

called and with the returned result, the latitude and longitude

of the city are displayed.

Sample Code:
public static void main(String[] args) {

 // This code finds and displays the lat/long coordinate of

 // Chicago, IL

 com.msrmaps.Place place = new com.msrmaps.Place();

 place.setCity("Chicago");

 place.setState("IL");

 place.setCountry("United States");

 LonLatPt result = convertPlaceToLonLatPt(place);

 System.out.println("The lat/long coordinate is:

 "+result.getLat()+"/"+result.getLon());

}

// This method is generated by the NetBeans IDE when the WS

// method is dragged and dropped private static LonLatPt

convertPlaceToLonLatPt(com.msrmaps.Place place) {

 com.msrmaps.TerraService service = new

 com.msrmaps.TerraService();

 com.msrmaps.TerraServiceSoap port =

 service.getTerraServiceSoap();

 return port.convertPlaceToLonLatPt(place);

}

Output:

 The lat/long coordinate is: 41.900001/-87.629997

Figure 4. Sample code and the resulting output utilizing

the city to latitude/longitude conversion WS

Journal of Information Systems Education, Vol. 23(4) Winter 2012

376

This section illustrates how the topic of simple control

structures, typically covered using the traditional approach,

may be covered using an approach that is enhanced with

WS. It shows that students can begin to experiment with a

state-of-the-art technology that permits them to explore

various, more meaningful data when learning essential topics

in an introductory course.

4. RESEARCH DESIGN

The course offerings at a large mid-western Midwestern

state university located in the USA were used to conduct a

series of quasi-experiments. Included were the introductory

programming courses in: Information Systems 1 (IS 1) and

Computer Science 1 (CS 1). Because the courses were

offered in the same school in the same university, students

were from a similar population. Sections of traditionally-

taught introductory Java programming courses were

compared with sections of the WS-based introductory Java

programming. The IS1/CS1 courses were combined in an

effort to ensure that a large enough sample of students was

available for analysis and because the content covered in

each course was similar. Each course is required for the

respective majors in the two fields. It should be noted that

the same topics and concepts were covered in all of the

IS1/CS1 sections whether they were using WS or not. Table

1 provides the number of sections and students taught over

four semesters.

 Computer

Science 1 (CS1)

Information

Systems 1 (IS1)

Traditional 4 (150) 5 (214)

Experimental (Web

service)
4 (94) 4 (128)

Table 1. Number of Sections (Number of Students)

At least two sections of each course were offered in each

semester in both IS1/CS1, one experimental section and one

or more traditional sections. Each semester, two CS

instructors and two IS instructors taught the courses; a total

of six instructors taught over the four semesters.

Students registered for the classes in the typical way,

which means they were not randomly assigned to the control

and experimental groups. While random assignment would

have enhanced the internal validity of the study, the fact that

the experiment was conducted in actual programming

courses offered in a university setting, with students who

selected courses using their usual criteria (e.g., to fit their

schedules), did much to insure the generalizability of the

study’s results to a real world context.

 To check for possible selection bias that might have

arisen from student choices of class sections, we compared

students who enrolled in the WS sections with those in the

traditional sections in terms of student gender, academic

majors, and mean cumulative grade point averages (GPA). A

total of 586 student participants were involved in the study

over four semesters. As can be seen in Table 2, the students

in the WS-taught classes were 38% of the sample, those in

the traditionally-taught classes were 62%; 20% of the

students were female, 80% male. After the University

official withdrawal date a total of 514 students continued in

the treatment and comparison group classes. Table 2

provides further descriptive statistics on the 586 students

who enrolled in the four semesters from the Fall of 2009

through the Spring of 2011.

When gauging the effects of the experimental teaching

method on the outcome measures (criteria), all of the

variables described above (gender, major, class rank,

cumulative GPA, etc.) were controlled in the analyses. The

main analysis method was multiple regression, which

enabled the researchers to measure the size of the effects of

the independent variable (WS instruction) on the dependent

variable (student learning as indicated by final exam scores)

while controlling for covariates that have been shown in past

studies to influence the outcome or dependent variable

(academic major, class rank, GPA, and gender).

Variable Number of Students Percent

Semester

 Fall 2009 183 31.2

 Spring 2010 119 20.3

 Fall 2010 167 28.5

 Spring 2011 117 20.0

Totals 586 100.0

Gender

 Female 117 20.0

 Male 469 80.0

Totals 586 100.0

Class Rank

 Freshmen 133 22.7

 Sophomores 161 27.5

 Junior 176 30.0

 Senior 90 15.4

 Other 26 4.4

Totals 586 100.0

Major

 CS & IS 278 47.4

 Others 308 52.6

Totals 586 100.0

Instructors

 Instructor 1 105 17.9

 Instructor 2* 94 16.0

 Instructor 3* 128 21.8

 Instructor 4 202 34.5

 Instructor 5 27 4.6

 Instructor 6 30 5.1

Totals 586 100.0

Group

 Control 364 62.1

 Experimental 222 37.9

Totals 586 100.0
*Note: Instructors 2 and 3 taught the experimental WS sections.

Table 2. Students by Semester, Gender, Class Rank,

Major, Instructor, and Group

Journal of Information Systems Education, Vol. 23(4) Winter 2012

377

Group, WS v Tradl N Mean Std. Deviation Std. Error Mean

GPA, Cumulative WS 222 2.71 .76606 .05141

Traditional

Total

364

586

2.58

2.62

.91999

.86641

.4822

.03579
Note: t = 1.716; df 584, [F = 2.946, df 1] p = .087.

Table 3. Cumulative GPAs of Students in WS and Traditional Classes

Cumulative GPA was of particular concern as it is

frequently the most important predictor in studies such as

this one. As can be seen in Table 3 above, there was little

difference in the cumulative GPAs between students

registering for the WS and the traditionally taught classes

(2.71 and 2.58 respectively). Not surprisingly, a difference

of 0.13 was not statistically significant at the .05 level (t =

1.716; df 584, [F = 2.946, df 1], p = .087).

Similarly, there were no significant differences in

enrollment patterns (i.e., student self-selection into the

control and experimental groups) between males and

females (Table 4, Chi Squared = 0.325, p = .569) nor among

academic majors (Table 5, Chi squared = 1.299, p = .254).

Note: Chi Squared = .325; p = .569.

Table 4. Gender Distribution of Enrolled Students

Note: Chi Squared = .1.299; p = .254.

Table 5. Majors of Enrolled Students

The main criterion (outcome) variable was: Final Exam

Scores. The scores were obtained using two common

cumulative final exams—one for IS sections and one for the

CS sections—with each major exam (IS or CS) containing

the same problems. WS were not included as part of the

exam material since WS were used in the experimental

sections as a tool to illustrate and to teach the concepts of

programming, but not used in the traditional sections.

Therefore, the cumulative final focused on the conceptual

material covered by both the control and experimental

sections.

5. RESULTS

The design was quasi-experimental. The 586 student

participants were not randomly assigned to treatment and

comparisons groups. Rather they enrolled in class sections

using whatever criteria they happened to use. Treatments

were assigned to some of those sections; the students in the

other sections served as a comparison group. The

disadvantage of a quasi-experimental design is that the

researchers had no control over the assignment of students to

experimental conditions. Because the learning experiment

was not a laboratory simulation but occurred in ordinary

classes, the investigators also had less control over the

delivery of the instruction than they probably would have

had under more controlled laboratory conditions. The

advantage of the study design was ecological validity (the

study closely approximated the situations to which it was

intended to generalize). The participants were real students

in real courses earning grades for credit. It could be argued

that investigating the real world, rather than the laboratory

world, makes it more likely that what was learned in the

research could be generalized to other real students in real

courses.

Even had the assignment to sections/groups been

random, it would still have been important to check for the

equal distribution of non-treatment variables that researchers

knew from literature reviews could influence the outcome

variable (final exam score). In a quasi-experiment without

random assignment, this step is crucial. Three of such

covariates examined in this study were students’ cumulative

GPAs, their genders, and their academic majors (see tables

3, 4, and 5 above). These three in addition to class rank were

included in the regression models along with the

independent variable: WS versus standard instruction.

Regression analysis assumes the normal distribution of

variables and the samples from which they were drawn. Both

the independent variable (treatment versus control) and the

dependent variable (exam scores) were left-skewed (more

scores at the lower end of the range), but not seriously

enough to merit transforming the data before analysis

(details are available from the authors).

It makes most sense to initially evaluate the project as

four separate quasi-experiments conducted over two years in

four consecutive semesters. While the treatment was

repeated each semester, semester-long teaching activities

naturally varied from semester to semester and over the two

years. The samples were distinct each semester. The

comparison group instructors also differed from one

semester to the next, and their teaching also undoubtedly

varied.

Table 6 summarizes the results summary for each

semester. The main dependent variable is score on the

common final exam. This is measured two ways for each

semester: with zeros included and excluded. In each

semester some students simply did not show up for the final

examination and were assigned a score of zero. One could

make a case for including the scores of these students, who

had, in essence, unofficially withdrawn from the course, or

for excluding them as missing data. We think the argument

for the latter is stronger, but in the name of completeness we

present the results both ways.

Group, WS v Tradl

Total Traditional WS

Gender Female 70 47 117

Male 294 175 469

Total 364 222 586

Group, WS v Tradl

Total Traditional WS

Major Others 198 110 308

IS & CS 166 112 278

Total 364 222 586

Journal of Information Systems Education, Vol. 23(4) Winter 2012

378

Column 1 gives the number of students still enrolled in

the course at the end of the semester who received a score on

the final exam. Looking at the first two rows, for Fall of

2009, we can see the effects of the different ways of

computing the outcome variable. For example, in row 1a,

with zeros included, 164 scores were used to calculate the

results; in row 1b, 145 were. The difference between the N

values 164 and 145 indicates that 19 students unofficially

dropped the course by not taking the final exam. Excluding

those scores of zero raises the exams’ means (Column 2) and

reduces their standard deviations (Column 3). The overall

effect of the missing data is to reduce the variance and

thereby the percentage of the variance explained by the

predictor variables (shown by the adjusted R2 in Column 7).

The main findings are in Column 4, which presents the

regression coefficients b. The figures in the column indicate

the difference in the scores of students who were in the

experimental groups. For example, the first number in

Column 4—6.38—means that on average students in the

experimental group classes scored 6.38 points higher on the

final exam than students in the comparison group classes.

This figure controls for other variables available to the

researchers that could have explained the outcome: students’

cumulative GPAs, genders, class ranks (freshman,

sophomore, etc.) and their academic majors (Computer

Science or Information Science, versus all others).

We also present the p values and the 95% confidence

intervals for those regression coefficients (in Columns 5 & 6

respectively). We do this more out of tradition than from a

belief that these statistics are appropriate for these data from

quasi-experiments. The p-value indicates the probability of

the outcomes in the population being as large, or larger than

those in the random sample, if the null hypothesis were true.

The null hypothesis here is: no difference between the

scores of the experimental and comparison groups.

However, it should be stressed that the calculation of p-

values and confidence intervals is firmly based on an

inferential statistical theory that assumes that the students

were randomly sampled from a known population and/or

that they were randomly assigned to experimental and

comparison groups. Neither of these necessary assumptions

is true in our research. When these statistics are provided in

research and for samples such as this one, what they

represent is what the statistics would have been if the

students had been randomly sampled from a population and

randomly assigned to control and experimental groups.

The results in Table 6 (apart from Columns 5 and 6) are

descriptive, not inferential. They pertain to the samples

actually studied in the quasi-experiments. We can make no

claim that they are representative of the results that would be

achieved at other universities with other professors. Such

claims can only be based on broader studies, which is why

we have expanded our study to include several other

institutions and instructors (see discussion below).

In any case, the results from the individual semesters in

Column 4 are mixed. For 3 of the semesters the increase

associated with being in the experimental group classes

ranged from about 2 to about 7 points on a 100-point test

with mean scores ranging between about 60 and 70.

However, in one semester (Fall ‘10, lines 3a & 3b), the

results were strongly in the opposite direction: students in

the experimental sections got markedly lower scores,

between 9 and 16 points lower depending on the method of

calculation (including or excluding zeros). When

discovering such an anomalous result, you have to ask

yourself, in the words of an old statistics professor: “Is this a

clue to pursue or a case to erase?” Often, it is some of each,

as it may be here. Examining the detailed data, it appears

that students taking the programming from one of the

experimental group’s instructors were less inclined to drop

out either officially or unofficially. Rather, this instructor’s

students tended to persist in the course and earn low grades

on the final exam, an effect that seemed to have been

especially marked in the 3rd iteration of the experiment. One

could make a case that such student persistence is itself a

positive outcome even if it tends to spoil the experimental

results by altering the measurement criteria. This kind of

complication is another consequence of studying the real

world rather than the laboratory world.

With comparatively small numbers of cases—ranging

from 82 to 166 in our four quasi-experiments—regression

estimates can be quite unstable, especially as the number of

predictors grows. We have 5 predictors in our study:

membership in the experimental group, GPA, gender, class

rank, and academic major. One solution to the problem of

unstable estimates due to small sample sizes is to pool data

into a sort of meta-analysis of the 4 sets of outcomes. When

 1 2 3 4 5 6 7

 N Mean SD b p val 95% CI Adj R2

SEMESTERS

1a. Fall 09, zeros included 164 65.47 28.37 6.38 .084 -.857, 13.62 .441

1b. Fall 09, zeros excluded 145 74.05 16.48 7.02 .007 1.93, 12.10 .268

2a. Sprg 10, zeros included 92 63.28 27.04 4.77 .242 -3.29, 12.83 .499

2b. Sprg 10, zeros excluded 82 71.00 16.33 1.92 .519 -3.98, 7.82 .357

3a. Fall 10, zeros included 166 51.74 32.35 -9.16 .064 -18.85, 0.54 .233

3b. Fall 10, zeros excluded 129 66.57 18.81 -15.79 <.01 -22.01, -9.57 .226

4a. Sprg 11, zeros included 92 58.37 26.76 5.09 .275 -4.12, 14.30 .346

4b. Sprg 11, zeros excluded 89 60.33 24.91 5.34 .246 -3.75, 14.43 .289

Table 6. Scores on the common final exams, by semester

Journal of Information Systems Education, Vol. 23(4) Winter 2012

379

Model

Unstandardized Coefficients

Standardized

Coefficients

t Sig. (p) b Std. Error Beta

1 (Constant) 17.176 5.682 3.023 .003

Expm Group = 1 4.168 2.022 .102 2.061 .040

Major, IS & CS = 1 2.751 2.113 .069 1.302 .194

class rank (1 – 4) .361 .981 .019 .368 .713

Cum GPA (0 – 4) 15.089 1.495 .504 10.094 .000

Gender, male = 1 6.794 2.442 .139 2.783 .006

Table 7. Regression results for Semesters 1, 2, & 4 pooled, N = 316

pooling data from all 4 semesters (full results not shown but

available from authors), the modest positive results from

semesters 1, 2, and 4 are canceled out by the negative results

from semester 3. The b coefficients for all semesters pooled

are, depending on the methods of calculation, + 0.878 and

−1.34, which essentially indicate no effect one way or the

other.

If the explanation for the anomalous 3rd semester is

convincing, we can set it aside and pool the results from the

other three semesters. The results are presented in Table 7.

Also presented are the full results of the regression

analysis including the coefficients for all 5 predictors: the

independent variable and the 4 control variables. This

enables us to examine the comparative importance of these

predictors. The unstandardized coefficients, b, present the

results in the original metric: points on the final exam. In

Table 7 we see that students in the experimental group

scored 4.168 points higher on average (after controlling for

other variables). This is a gain of about 6% (4.168 ÷ 69.39 =

6.0%) for students in the experimental group. Students who

were Computer Science or Information Science majors got

2.75 points higher. Each increase in class rank, from

freshman to senior (coded 1 – 4) was associated with about

1/3 of a point on the final. The effect of cumulative GPA

(on a 4-point scale, 0 – 4) was associated with a whopping

15 points on the final exam. It is hardly surprising that

students who generally do well in their courses tended to do

better in this course too—and vice versa. Finally, gender

also mattered; after controlling for the other variables, males

scored an average of 6.8 points higher. These results are

substantively interesting and also show why it was important

to include the control variables in the model and why we

have continued to do so in the expansion study described

below. When controls are not included, it is difficult at best

to estimate treatment effects accurately.

For comparing the relative sizes of the 5 predictor

variables, one should use the standardized regression

coefficient, beta. By expressing outcomes in standard

deviation units, the beta adjusts for differences in

measurement scales (e.g., Experimental Group, 1 – 0; Class

Rank, 1 – 4; GPA, 0 – 4). The beta coefficients can be used

as effect size measures in this mini-meta-analysis because

the number and definition of the predictor variables is the

same for each quasi-experiment. In Table 7, the pooled data

for the three semesters are presented (using the somewhat

more conservative estimate treating zeros as missing cases).

The beta for experimental group membership is .102. This

means that the gain attributable to participation in the

experimental group is about one-tenth of a standard

deviation, a number which by many rules of thumb is

considered the meaningful minimum for policy and decision

making. The effect size for gender is similar to that for the

experimental group membership, while the influence of

cumulative GPA is about 5 times as large (.504 or ½ a

standard deviation). That indicates why it will be important

to control for these variables, especially GPA, in subsequent

studies. Without controlling these covariates, the effects of

the treatment variable could easily be concealed.

In sum, we would characterize the overall results of the

4 quasi-experiments as encouraging, but by no means

definitive. Even had the outcomes been stronger and clearer,

no one university and no group of 6 instructors can be

considered representative. That is why we have endeavored

in our expansion study to include a much broader group of

institutions and instructors and to improve the reliability and

validity of our measures of predictors, mediators, and

outcomes. These improvements are sketched in the

following paragraphs.

6. LIMITATIONS, CONCLUSIONS, AND FUTURE

RESEARCH

There are several limitations to the conclusions of this study.

Most obviously, the data analyzed is from courses offered

over four semesters by six instructors in one university.

More data will need to be collected to determine whether the

initial successes in the pilot years can be replicated and

improved upon in the expansion study.

It should also be noted that there were a number of WS

failures in this pilot study. Because this was a pilot and our

experiences with the WS were limited in terms of their

reliability, several publicly available WS were either not

available when needed (perhaps due to heavy student usage)

or simply disabled prior to student use. This complicates the

assessment of the effectiveness of the WS approach. To

overcome this shortcoming, homegrown WS have been

developed to serve as backup services in case of failure.

Based on the pilot study, several improvements are

being implemented in the expansion study. The assessment

model from the pilot study was revised into a new

framework that is more standardized and comprehensive.

Four new variables have been added to the experimental

model: two pertain to student characteristics — their self-

efficacy and their engagement in instruction; also added are

two new measures of students’ learning.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

380

In the pilot study, the instruments for assessing student

learning (final exams) were developed in-house and not

based on a standardized, widely used instrument that has

been tested extensively. To address this shortcoming, a

revised instrument that is based on SALG (Student

Assessment of Learning Gains) (Seymour et al., 2000,

www.salgsite.org; Douglas et al., 2012) has been developed.

SALG is a nationally validated pre- and post-survey of

students’ self-assessment of their knowledge before and after

a course. Because it has been used in numerous courses over

many years, it can provide the basis for measured

comparisons of student learning. In addition to the students’

assessment of their learning, an objective test of knowledge

of programming concepts has been developed in

consultation with a team of faculty members teaching

programming courses. This constitutes a researcher

assessment of learning to supplement the student

assessment; it will be tested for reliability and validity in the

early iterations of the expansion study.

While measuring student learning was a key objective of

the pilot project, measuring student engagement was not

studied as systematically. Given the nature of WS, which

allows for the wealth of information on the Web to be

harvested easily through API (application programming

interface) calls from one’s computer program, it would be

remiss for the new framework to not capture student

engagement. Students are expected to be more engaged with

the WS approach as they are interacting with activities that

they often personalize to make them more interesting and

relevant (e.g., find all 3D movies that are playing in my

hometown (zipcode xxxxx), display all comments from my

favorite YouTube video, etc.). To measure student

engagement, we have also included in the SALG post-survey

an instrument designed to capture student engagement. The

instrument is modeled after several others in the field and

will serve as a mediating variable in the analysis (Ahlfeldt et

al., 2005; Carini et al., 2006).

There have been many different efforts in the literature

on engaging student learning using a variety of approaches.

They include the application of “gamification” to eLearning

to engage learners where the theory behind gaming design is

applied to build engagement interactive materials such as

eLearning (Raymer, 2011), the study of how learning

community participation affects student engagement (Pike et

al., 2011), the research on curiosity, or interest and

engagement in technology-pervasive learning environments

(Arnone, 2011). The proposed framework in the expansion

study allows the researchers to assess if the WS approach

represents another means to actively engage students in

learning the fundamentals of computer programming.

In addition to using the SALG assessments the

researchers have designed an assessment test module of

objective questions to be taken by students in both the

control and experimental classes at the end of each semester.

The questions measure student knowledge of programming

concepts and skills. This common module of objective

questions will allow comparisons across universities. The

questions have been reviewed at a workshop with the first

cohort of faculty participants; in the judgment of that group

as well as of the principle investigators the questions have

extensive face validity. Finally, the use of objective

questions with a large N of student participants will enable

the researchers to use more advanced analytic techniques to

measure student outcomes in the study, specifically: (1)

propensity score matching to simulate experimental

attribution of cause and (2) item response theory

(specifically differential item functioning or DIF) to conduct

subgroup analyses of responses to particular questions in the

module. The combination of these factors yields the causal

model shown in Figure 5.

The model postulates that WS instruction will promote

student engagement, which, in turn, will foster their learning

of programming concepts. Students’ background variables

and their self-efficacy (Bandura, 2006; Zajacova et al., 2005)

enter the model from the outside; they are determined before

students begin the course. Still, because of their potential

influence on the outcome, it is important to control for these

external/exogenous variables. This more complete model

enables the researchers to gauge the effects of WS

instruction with greater accuracy.

In conclusion, a quasi-experimental study was presented

that indicates using WS in an introductory programming

course significantly improved test scores by almost a half a

letter grade (4.2 on a 100 point grading scale) for sections

taught with this approach as opposed to a standard offering.

Suggestions for future research include using the SALG

instrument for a pre- and post-test to test the proposed

research model in Figure 5 at other colleges and universities,

teaching introductory programming courses incorporating

various programming languages.

 Background variables SALG

 Learning WS vs Traditional Student engagement

(Includes intensity

of implementation)

 Student self-efficacy TEST

Figure 5. Causal Model

Journal of Information Systems Education, Vol. 23(4) Winter 2012

381

7. ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. NSFDUE-

CCLI-0837056.

8. REFERENCES

Ahlfeldt, S., Mehta, S., & Sellnow, T. (2005)

“Measurement and analysis of student engagement in

university classes where varying levels of PBL

instruction are in use.” Higher Education Research and

Development, 24, 5-20.

Assunção, L. & Osório, A. (2006) “Teaching Web Services

Using .NET Platform,” ACM ITiCSE'06, Bologna,

Italy.

Avouris, N., Kaxiras, S., Koufopavlou, O., Sgarbas, K., &

Stathopoulou, P. (2010) “Teaching Introduction to

Computing through a project-based collaborative

learning approach,” 2010 14th Panhellenic Conference

on Informatics, pp. 237-241.

Bandura, A. (2006). Guide for constructing self-efficacy

scales in Self-Efficacy Beliefs of Adolescents. New

York: Information Age Publishing.

Bayliss, J. & Strout, S. (2006) “Games as a ‘Flavor’ of

CS1,” SIGCSE'06, March 1–5, 2006, Houston, Texas,

USA

Booth, D, Haas, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C., & Orchard, D. (2004) “Web Services

Architecture,” W3C Working Group Note

(http://www.w3.org/TR/ws-arch/), 1-98.

Carini, R.M., Kuh, G.D., & Klein, S.P. (2006) “Student

engagement and student learning.” Research in Higher

Education, 47, 1-25.

Douglas, J.A., Thomson, G., & Zhao, C. (2012) “The

learning outcomes race: the value of self-reported gains

in large research universities.” Higher Education, 64,

317-335.

Eclipse 2012, Eclipse IDE, Retrieved May 2, 2012 from

http://www.eclipse.org.

Gates, W. (2008) “Internet Software Services,” Retrieved

May 16, 2008 from

http://www.scripting.com/disruption/mail.html.

Greenberg, I., Kumar, D., & Xu, D. (2011) “Creative

Coding and Visual Portfolios for CS1,” SIGCSE’12,

February 29–March 3, 2012, Raleigh, NC, USA.

Holliday, Mark A., Houston J. T., & Jones, E. M. (2008)

“From Sockets and RMI to Web Services,” ACM

SIGCSE ’08, Portland, OR, USA.

Hosack, B., Lim, B., & Vogt, P. (2011) “Incorporating The

Use Of Web Services In Introductory Programming

Classrooms,” Journal of Informatics Education

Research.

Huet, I, Pacheco, O. R., Tavares, J., & Weir, G. (2004)

“New Challenges in Teaching Introductory

Programming Courses: a Case Study,” 34th ASEE/IEEE

Frontiers in Education Conference, pp. T2h5 –T2H9

Humphrey, M. (2004) "Web Services as the Foundation for

Learning Complex Software System Development,"

35th SIGCSE Technical Symposium on Computer

Science Education, Norfolk, Virginia USA March 3 - 7.

Kolling, M., Bett, K., & Rosenberg, J. (1995)

“Requirements for a First Year Object-Oriented

Teaching Language,” 26th SIGCSE Technical

Symposium on Computer Science Education, pp. 173-

177.

Lim, B., C. Jong, & P. Mahatanankoon (2005) "On

Integrating Web Services from the Ground Up into

CS1/CS2," ACM SIGCSE 2005, St. Louis, MO, Feb.,

2005.

Lasserre, P., Szostak, C. (2011) “Effects of Team-Based

Learning on a CS1 Course,” ITiCSE’11, June 27–29,

2011, Darmstadt, Germany.

Laufmann, S. (2010) “When To Use Web Services: Don't

deploy Web services without exploring these

essentials.” InformationWeek, July 10, 2010 (accessed

via the web, 5/2/2012).

Lawhead, P., Duncan, M., Bland, C., Goldweber, M.,

Schep, M., & Barnes, D. (2003) “Legos, Java and

Programming Assignments for CS1,” SIGCSE’03, pp.

47-48.

Lopez, N., Casallas, R., & Villalobos, J. (2007)

“Challenges in Creating Environments for SOA

Learning,” IEEE Proceedings of the International

Workshop on Systems Development in SOA

Environments.

Luxton-Reilly, A. and Denny, P. (2009) “A simple

framework for interactive games in CS1,” 40th ACM

Technical Symposium on Computer Science Education

(Chattanooga, TN, USA, March 04 - 07, 2009).

SIGCSE '09.

Markham, S. & King, K. (2010) “Using Personal Robots in

CS1: Experiences, Outcomes, and Attitudinal

Influences,” ITiCSE’10, Bikent, Ankara, Turkey.

McWhorter, W. & O’Connor, B. (2009) “Do LEGO

mindstorms motivate students in CS1?,” 40th ACM

Technical Symposium on Computer Science Education

(SIGCSE ’09), Chattanooga, TN, March 2009, 438-442.

NetBeans (2012) NetBeans IDE 7.0, Retrieved May 2,

2012 from http://netbeans.org.

Pedroni, M. & Meyer, B. (2006) “The Inverted Curriculum

in Practice,” SIGCSE’06.

Pendegrast, M. (2006) “Teaching Introductory

Programming to IS Students: Java Problems and

Pitfalls,” Journal of Information Technology Education

(5:X), pp. 491-515.

Phifer, G. (2012) “Agenda for Web Computing, 2012,”

Gartner White Paper, ID: G00230296, (accessed via

the web, 5/2/2012)

Rajaravivarma, R. (2005) “A Games-Based Approach for

Teaching the Introductory Programming Course,”

inroads-The SIGCSE Bulletin (37:4), pp. 98-102.

Reed, M.W., Balogh, B.A., Miller, D.C., & Chiang, C.C.

(2007) “Developing and learning web services with

open source software: an experience report,” Journal of

Computing Sciences in Colleges (22:4).

Sheil, B.A. (1981) “The Psychological Study of

Programming,” Computing Surveys (13:1), pp. 101-

120.

Journal of Information Systems Education, Vol. 23(4) Winter 2012

382

http://www.scripting.com/disruption/mail.html

Stepp, M, Miller, J., & Kirst, V. (2009) “A CS 1.5

Introduction to Web Programming,” ACM SIGCSE '09.

Stevenson, D. Wagner, P. (2006) “Developing Real-World

Programming Assignments for CS1,” ITiCSE’06, June

26-28, 2006, Bologna, Italy.

Tsai, W., Chen, Y., Cheng, C., Sun, X., Bitter, G., &

White, M. (2008) “An Introductory Course on Service-

Oriented Computing for High Schools,” Journal of

Information Technology Education (7:X), pp. 315-338.

Yue, K.B. (2010) “Experience on Mashup Development

with End User Programming Environment,” Journal of

Information Systems Education, Vol. 21(1).

WebServiceX (2010) “XML Web Service Solutions

Provider: Weather Forecast Web Service,” Retrieved

June 15, 2010.

Zajacova, A., Lynch, S.M., & Espenshade, T.J. (2005)

“Self-efficacy, stress, and academic success in college.”

Research in Higher Education, 46, 677-698.

Zilora, S. J. (2004) “Industry-Based Web Services Project

as a Classroom Teaching Tool,” ACM SIGITE’04, Salt

Lake City, UT, USA.

AUTHOR BIOGRAPHIES

Bryan Hosack is an Associate Professor of Information

Systems at Illinois State

University. He received his

doctoral degree at Florida State

University in Management

Information Systems. His

Bachelor of Science degree

came from Purdue University

and his Masters of Science in

Management Information

Systems from Clarkson

University. His research has

been published in the Journal of the Association for

Information Systems, Journal of Informatics Education

Research, Decision Support Systems, and the International

Journal of Production Research, as well as in the

proceedings of national and international academic

conferences. His research interests are in the areas of

decision support systems, information assurance and

security, information systems education, and IT decision

making simulations. Prior to pursuing his doctoral degree,

he worked in the manufacturing and information systems

industries.

Billy B. L. Lim is a Professor in the School of IT of Illinois

State University, Illinois,

USA. His research/teaching

interests are in the areas of

Web development

technologies, Object-Oriented

systems, and modern DBMSs.

He has published numerous

journal articles in these areas

and has also presented papers

in many international and

national conferences. Dr. Lim

has also received numerous grants from agencies such as

the National Science Foundation.

W. Paul Vogt is Emeritus Professor of Research Methods

and Evaluation at Illinois

State University where he

won both teaching and

research awards. He

specializes in

methodological choice

and is particularly

interested in ways to

integrate multiple

methods. His books include: Dictionary of Statistics and

Methodology (4th edition, 2011); Quantitative Research

Methods for Professionals (2007); and When to Use What

Research Design (2012). He blogs about research methods

at: http://vogtsresearchmethods.blogspot.com/

Journal of Information Systems Education, Vol. 23(4) Winter 2012

383

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2012 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

