
Journal of Information Systems Education, Vol. 21(1)

111

Experience on Mashup Development with End User

Programming Environment

Kwok-Bun Yue
Department of Computer Information Systems

University of Houston-Clear Lake
Houston, Texas, USA

yue@uhcl.edu

ABSTRACT

Mashups, Web applications integrating data and functionality from other Web sources to provide a new service, have quickly
become ubiquitous. Because of their role as a focal point in three important trends (Web 2.0, situational software applications,
and end user development), mashups are a crucial emerging technology for information systems education. This paper
describes the result of a pilot experiment of an open-ended mashup assignment using an end user Web-based visual
development environment: Yahoo’s Pipes. Surveys, qualitative analysis, peer evaluations, and comparative analysis were used
to assess the assignment. Initial results indicated that the assignment was effective, well received, and cost efficient. Students
found it to be useful, interesting, appropriate, and of the right level of difficulty. They gained the needed expertise in mashups
and Yahoo’s Pipes within a short period of time. They developed mashup applications with the expected degree of
complexity, maturity, and innovativeness. There were no logistical bottlenecks and grading the open-ended assignment
appeared to be consistent among the instructor and peers. The peer evaluations were perceived by students as very useful, even
more so than the actual mashup development. Although Yahoo’s Pipes were in general well received, its limitations, such as
the lack of programming capability, created some minor issues and changed the designs of some mashups slightly. IS
educators interesting in integrating open-ended mashup assignments into their courses may consider including a robust peer
evaluation component and selecting a mashup development environment that matches the assignment goals.

Keywords: Mashup, Web 2.0, situational software applications, end user programming, end user programming environment,
Yahoo’s Pipes, IS assignments, peer evaluations

1. INTRODUCTION

Mashups are Web applications that combine data or
functionality from other Web sources into a new and
integrated service (Wikipedia 2009a, Yu et al. 2008, Zang
and Rosson 2008). They are expected to be developed
quickly using open data sources or Application Programming
Interfaces (API) (Zang and Rosson 2008). Their rapid initial
successes, especially in using Google Map API, quickly
fueled phenomenal development and adoption. Mashup “has
become one of the hottest buzzwords in the Web application
development area” (Yu et al. 2008). For example, the
website programmableWeb (2009), which tracks mashups
and related open APIs, recorded 4,254 mashups and 1,425
APIs. It also reported an increase of three mashups every day
on the average.

The importance of mashups is not only in its ubiquity. It
is also a focal point of three interlinked major trends in
information systems: Web 2.0, situational software
applications, and end user programming.

Since coined in 2004, Web 2.0 (O’Reilly 2005) has
already become a household term. The pervasiveness of
representative Web 2.0 applications, such as Facebook,
Flickr, Twitter, Google Docs, and YouTube, ensures that the

term has become a fundamental lexicon for the modern
society. Besides being used universally, Web 2.0 also deeply
influences nearly every facet of our lives: culture, education,
business, technology, etc (Kim et al. 2009).

In particular, the importance of Web 2.0 cannot be
underestimated in IS education. The Journal of Information
Systems Education recently devoted a special issue with
twelve papers on the effective uses of different Web 2.0
technologies, including blog, wiki, podcast, social network
and virtual world, in IS education (Harris & Rea 2009).
However, the impact of Web 2.0 is even deeper than the
proper integration of Web 2.0 technologies into IS learning
and teaching. Equally importantly, Web 2.0 profoundly
affects core components of the subject knowledge of IS
education: how software are conceived, planned, specified,
designed, developed, updated, and used. Web 2.0 techniques,
architectures, tools, standards, software development
methodologies, design patterns, and project management
approaches should be studied and assimilated into IS
curriculum to complement the existing set of methodologies.

From this perspective, mashups are exemplary as an
embodiment of Web 2.0 ideals (O’Reilly 2005, Kim et al.
2009). Mashups are highly popular and they frequently use
Web 2.0 technologies such as AJAX, XML, RSS, JSON,

Journal of Information Systems Education, Vol. 21(1)

112

Open APIs, and Web data sources (Kim et al. 2009). Their
application areas are diverse and closely associated with key
Web 2.0 application domains such as social networks. Their
development methodologies are representative of Web 2.0:
rapid development and modification, crowd sourcing,
extensive use of open standards and APIs, etc. Thus,
mashups are excellent pedagogical vehicles for Web 2.0.

The second closely related trend is the proliferation of
situational applications (SA), which loosely refer to
applications built for addressing a particular situation,
problem, or challenge (Cherbakov et al. 2007). Wikipedia
(2009b) defines them to be “’good enough’ software created
for a narrow group of users with a unique set of needs.” The
application may be used specifically for a given task of a
small social group (Shirky 2004), an enterprise business
problem (Cherbakov et al. 2007), or any targeted situations.
SAs are very useful because of their custom-made nature for
particular situations. However, with limited user size,
functionality, scope, and life-span, SAs can only be cost
effective if their development cost is low enough. Until
recently, this cost and benefit consideration did not favor
SAs. Developing SA was just very expensive. The cost
effectiveness balance had recently changed to largely favor
SAs as their development cost was substantially lowered.
Cherbakov (2007) listed eight contributing factors to the
rapid rise of the popularity of Web-based SAs. These factors
include general advances in the computing world: lower
infrastructure costs, and advances in general computer
literacy. They also include changes in the business world:
increased requirements for business agility. However, the
majority of these factors are related to the progress of Web
2.0: introduction of Web 2.0 technologies, Service-Oriented
Architecture adoption, acceptance of community-based
computing and collaboration, proliferation of APIs and Web
components, and availability of numerous mashups and SAs
in the public domain.

The rapid swelling of SAs represents special challenges
to IS educations since SAs are quite different from
traditional IS applications. SAs are supposed to be
constructed in a quick-but-not-necessarily-dirty way in
which simplicity, usability and accessibility are more
important than function completeness and extensibility (Yu
et al. 2008). Traditional component-based IS methodologies
target professional software developers and do not
necessarily work well with this new breed of applications
which may be best developed by domain experts, not
programmers (Cherbakov et al. 2007). From the perspective
of SA, mashups are crucial. The purposes of the majority of
mashup applications are mostly situational. In fact, Yu et al.
(2008) stated that “mashup development differs from
traditional component-based application development mainly
in that mashups typically serve a specific situational (short-
lived) need and are composed of the latest, easy-to-use Web
technologies.” Conversely speaking, a large class of SAs is
Web-based and many Web-based SAs are mashups. Since
mashups are interesting to many students, using them to
introduce SAs into IS curriculum can be effective.

The third closely related trend is the ascension of end
user programming and its development environment (Myer
et al. 2006). In end user programming, software is driven,
modeled, and developed by end users and not traditional
programmers. End user programming is especially crucial

for SAs since end users are domain experts of the situations
and they know the business logic well to develop the
software within the required short development life-cycle.
Thus, Cherbakov et al. (2007) indicated that the new breed
of SAs, “often developed by amateur programmers in an
iterative and collaborative way, shortens the traditional edit-
compile-test-run development life cycle.”

This vast expansion of software developers to include a
large class of end users resonate well with the underlying
Web 2.0 concepts of community participation, crowd
sourcing, and especially mass amateurization (O’Reilly
2005). Shirky (2004) compared the software development
movement from programmers (experts) to end users
(amateurs) with similar and inevitable movement in typing
from secretaries (experts) to everyone (amateurs). However,
software development is much more complicated than
typing. Thus, the development of feature rich, easy to use,
and domain-specific end user programming environments is
crucial for the mass amateurization of programming.

Early mashup development, such as those involving
Google Map API, was programming intensive. They were
designed and developed by traditional programmers. More
recently, much attention was devoted to end user
programming environments for quick mashup development
by non-programmers (Beletski 2008). Major companies
provided Web-based mashup development platforms to
encourage experimentation. Examples include Yahoo’s Pipes
(Yahoo 2009a), Google Mashup Editor (Google 2009),
Microsoft’s Popfly (Microsoft 2009), IBM’s Damia (IBM
2009), and Intel’s Mashmaker (Intel 2009). These tools
provide easy to use visual environments for supporting to
various degrees the different tasks of mashup development:
identifying data sources, retrieving and parsing data from
sources, and assembling data to create the desirable output of
the mashups. Although not all of these efforts survived in
standalone forms, their results were frequently absorbed into
other main products.

It can be argued that the innovation of end user mashup
development environment is at least as intensive in
academia. Many end user programming environment
prototypes have been built in academia based on different
paradigms such as flowcharts, trees, and spreadsheets
(Beletski 2008, Wang et al 2009). Examples include
Marmite (Wong and Hong 2007), d.mix (Hartman et al.
2007), Mashroom (Wang et al. 2009), and Mashlight
(Albinola et al. 2009). The vast interest in mashups and the
subsequent innovation in mashup development tools are thus
important drivers of the commercialization and research of
end user programming. Mashups are in the forefront of end
user programming. From this perspective, mashups are ideal
for introducing end user programming and its environments
into IS curriculum.

In summary, mashups are a crucial emerging
technology at the center of three important IS trends and they
are primed to be integrated into IS education. Although there
are plenty of works on the uses of mashups in education,
there is a lack of studies on mashup development in IS
education. The purpose of this paper is thus to contribute in
filling this gap by describing our experience gained through
a pilot experiment on an open-ended graduate mashup
assignment with peer evaluations using Yahoo’s Pipes.
Students were allowed to develop mashups of their own

Journal of Information Systems Education, Vol. 21(1)

113

choices in the open-ended project. We attempted to answer
six questions that are probably interesting to like-minded IS
educators:

1. Would the students be able to overcome the initial
learning curve of the mashup development
environment quick enough?

2. Would students be receptive to a mashup
assignment in which no programming is needed?

3. Were open-ended mashup assignments interesting,
useful and appropriate to the students?

4. Would the open-ended mashup assignment possess
reasonably degrees of substance and complexity?

5. Could grading of such open-ended mashup
projects be consistent?

6. Were peer evaluations valuable, and should they
be included as an effective part of a mashup
assignment?

The remainder of this paper is organized in the
following manner. Section 2 provides background
information about Yahoo’s Pipes and why it was selected.
Section 3 describes the experimentation setup, delineating
the assignments, peer evaluations and surveys. Section 4
discusses the results of the experiment. We draw our
conclusions in Section 5. Appendices are listed in Section 6.

2. YAHOO’s PIPES

According to Yahoo (2009a), “Pipes is a free online service
that lets you remix popular feed types and create data
mashups using a visual editor.” Pipes use a flowchart
approach for building mashups (Wang et al. 2009) in which
the Web-based visual editor provides developers a canvas to
drag, drop and use preconfigured Pipes modules to compose
the mashup. Yahoo (2009b) currently provides 53 modules
in nine categories: Data Sources, User Input, Operator, URL,
String, Date, Location, Number and Deprecated. Each
module serves a single function and output from one module
can be wired as an input to another module. The pipes of
chained modules are eventually fed into an output module
for deployment in the Yahoo’s Pipes site, which hosts tens of
thousands of Pipes. As an example, Figure 1 shows a basic
Pipes mashup for depicting current weather information of a
user specified weather station ID, such as KRIC at
Richmond International Airport, in a map.

Figure 1. A Basic Weather Information Pipes Mashup

The internal Pipes layout for the basic weather mashup
looks like a flowchart and is shown in Figure 2. Weather
station id is obtained from the user using a User Input
module (module #1) to construct a string with a String
Builder module (module #2), which is then used to compose
an URL (module #3). The URL is used to fetch the weather
information in a custom-designed XML format from
National Oceanic and Atmospheric Administration's
National Weather Service (2009) (module #4) The geo-
location of the retrieved XML weather information is
determined using a Location Extractor module (module #5).
Since the mashup output format is Really Simple
Syndication (RSS 2009), selected key elements are copied
and renamed from the input XML content using a Rename
module (module #6). In particular, the <description> output
RSS element is prepared by using regular expressions in the
Regex module (module #7) so that it can be used as the
content of the map’s popup window. The RSS output is then
fed to the Pipe Output module (module #8). On executing the
mashup, Yahoo’s Pipes determines the existence of geo-
location information and automatic displays a Yahoo’s map
for the mashup.

Figure 2. Layout of the Basic Weather Pipes Mashup

It can be seen that no programming is involved in the

construction of the mashup. The use of regular expressions
amounts to one of the more stringent expertise required for
Pipes development. Thus, Yahoo’s Pipes fits the description
of end user development well. After studying similar
commercial mashup tools briefly, we eventually selected
Yahoo’s Pipes for our assignment. Unlike other enterprise
mashup application products, Yahoo’s Pipes is free. It is
reasonably popular, with tens of thousands of Pipes hosted.
The learning curve appears to be acceptable. Its visual editor
is a purer end user programming environment as
programming is not even supported. We were interested in
investigating how students response to such a purer system.

3. EXPERIMENT SETUP

The graduate course XML Applications Development in our
university is usually taken by majors of Computer
Information Systems, Software Engineering and Computer
Science. The course provides an overview of XML standards
and technologies, including XML, XML servers, XML
editors, XML databases, Document Type Definition (DTD),
XML Schema, XML parsing using Document Object Model
(DOM) and Simple API with XML (SAX), XML Style Sheet
(XSL), XSL-Transformation (XSLT), and XQuery.

Journal of Information Systems Education, Vol. 21(1)

114

We conducted our experiment in a nine week course
during the summer semester of 2009. The students were
required to complete five homework assignments. One
assignment was a brief term paper in an approved XML
topic. The other homework assignments involved software
development using XML parsers, remote data sources, and
XSLT. The Yahoo’s Pipes assignment was the third
homework assignment and thus represented about one fifth
of the student work.

The first assignment asked the students to develop a
simple XML server to serve news information on a user
specified topic in a predefined XML format. The original
news headings were obtained and extracted from two
different data sources in RSS 2.0 (which is in XML format)
and Comma Separated Value (CSV) respectively. Thus,
although the concept of mashup had not formally been
introduced in the class before the Pipes assignment, students
already gained experience in integrating remote data sources
for situational applications.

The Yahoo’s Pipes Mashup assignment had two phases.
In the first phase, students were required to design and
implement a Yahoo’s Pipes application of their choices, with
the emphasis that the application should be innovative,
useful, and significant. There was no restriction on the nature
and application areas of the Pipes applications. We decided
early on that open-ended projects were more appropriate for
mashup applications. After all, mashups are ideal for open
innovation by mixing publicly available data sources.
Furthermore, if every student worked on the same Pipes
application, plagiarism can be an issue since Pipes is
searchable and its internal layout is public. However, grading
would be more difficult for open-ended assignments and we
included mechanism to investigate whether grading could be
consistent. The result will be discussed later in the paper.

The students also needed to turn in a report on their
Pipes applications with five sections:

1. Data sources used
2. Data extraction and processing procedure
3. Yahoo’s Pipes modules used
4. Screenshots
5. Discussion
The discussion section included three sub-sections:

difficulties encountered, Pipes experience gained, and
mashup experience gained.

After the completion of the first phase, each student was
asked in the second phase to evaluate five randomly selected
peer applications using a standard template (Appendix 1).
They rated their peer work on a Likert scale from 1 (worst)
to 5 (best) and provided the rationale for the ratings on five
aspects of the applications: innovativeness, usefulness,
interestingness, design and implementation, and overall
applications. Finally, they answered the question; “If you
were the instructor of this course, what grade will you assign
(from 0 to 100)? Why?” A broad perspective is crucial for
successful mashup development. We felt that peer
evaluations would encourage students to study other mashup
applications systematically to gain a panorama view.

To provide the necessary background, a one hour
lecture on mashup and Yahoo’s Pipes development was
provided. This included a brief discussion on the definition,
nature and landscape of mashup development, followed by a
live demonstration of developing from scratch the basic

weather Pipes mashup described in Section 2 using the Web-
based Pipes visual editor.

To gauge students’ initial perception and experience on
mashups in general, and Yahoo’s Pipes in particular, a
General Mashup Survey (Appendix 2) and a simple Yahoo’s
Pipes Survey (Appendix 3) were conducted before the
lecture. To measure changes in perception, students repeated
the General Mashup Survey again after they turned in their
peer evaluations. At this point, students also completed a
more detailed survey on their Pipes experience on the
assignment (Appendix 4 Pipes Assignment Survey.)

4. RESULTS

It is important to note that there were only eight students in
the class so any result of this pilot experiment should be
considered preliminary. However, interesting perception and
patterns can already be observed and the initial result is
promising.

4.1 Yahoo’s Pipes Development
The Pipes assignment was open in nature with no strict
guideline on complexity, substance, and areas of
applications. To analyze the appropriateness of the
assignments, several characteristics were measured. Table 1
shows the results obtained by studying the Pipes flowcharts
and submitted Pipes reports.

Characteristics
Student Pipes

Min Avg Max
C1. # of Yahoo’s data sources 0 0.75 1

C2. # of other data sources 0 1.63 3
C3. Total # of data sources

(C1 + C2)
1 2.38 4

C4. # of data feed 1 3.5 7
C5. # of kinds of Pipe’s

modules used
5 10 13

C6. # of Pipe’s modules 5 18.8 29
C7. # of user input fields 0 2.13 6
Table 1. Characteristics of Student Pipes Mashups

The Yahoo’s Pipes editor provides five built-in modules

for fetching from selected data sources: Yahoo! Search,
Yahoo! Local, YQL, Google Base and Flickr. They are the
easiest to use. Characteristic C1 of Table 1 measured the
number of Yahoo’s data sources used. To use other data
sources (Characteristic C2), developers need to investigate
the data format, construct the appropriate URL to fetch the
source, and parse the content. They are thus more
complicated. Characteristic C3 sums up C1 and C2. Since a
mashup can use more than one data feeds (Characteristic C4)
from the same data source, C4 can be larger than C3.
Characteristic C5 measures how many of the available 53
Pipes modules were used. Since each kind of modules could
be used more than once, the number of Pipes modules used
(Characteristics C6) could be more than C5. Finally,
Characteristic C7 measures the number of user input fields.

We performed a simple comparative analysis on a
random collection of 20 Yahoo’s Pipes selected from the top
100 results of searching for the string “*” in the Yahoo’s
Pipes website. This provides a comparison framework to
study the relative substance and complexity of the student

Journal of Information Systems Education, Vol. 21(1)

115

works. Pipes flowcharts, such as the one shown in Figure 2,
are public. The selected Pipes were studied to compile Table
2 as a comparison with the student Pipes.

Characteristics
Average of

Student
Pipes

Average of
20 Random

Pipes
C1. # Yahoo’s data

sources
0.75 0.1

C2. # Other data sources 1.63 1.7
C3. Total # of data

sources
2.38 1.8

C4. # of data feed 3.5 1.8
C5. # of kinds of Pipe’s

modules used
10 6.7

C6. # of Pipe’s modules 18.8 9.25
C7. # of user input fields 2.13 2.15

Table 2. Average Characteristic Scorings of Students
Pipes Compared to Twenty Randomly Selected Yahoo’s

Pipes

Besides these characteristics, we also tracked whether a
map was used in the mashup output (Characteristic C8) and
whether regular expressions (Characteristic C9) were used to
construct the Pipes flowchart. The results are shown in Table
3. We reasoned that the use of regular expressions is a good
indicator of complexity.

Characteristics
Percentage

used in
Student Pipes

Percentage used
in Random Pipes

C8. Use of maps in
output

75% 5%

C9. Use of regular
expressions

50% 25%

Table 3 Use of maps and regular expressions

It can be seen that student Pipes are significantly more
complicated and substantial than randomly selected Pipes in
nearly all characteristics. The differences are especially
prominent in characteristics C1 (# of Yahoo’s data sources),
C4 (# of data feed), C6 (# of Pipes modules) and C9 (uses of
regular expressions). More detailed analysis would put the
average student Pipes in the top quartile of complexity with
respect to the randomly selected Pipes. The elevated
complexity is appropriate as the students were developers
with information systems and computing background
whereas the expected general authors of Yahoo’s Pipes were
a mix of end users and developers. The complexity of
Yahoo’s Pipes mashups is limited by their natures as
situational applications, and by the restrictions of the Pipes
platform. Thus, we reasoned that the complexity and
substance of the homework assignment was appropriate to
represent one fifth of the student work, even though there
were no programming activities.

It is worthy to point out some interesting patterns. The
randomly selected Yahoo’s Pipes only used 0.1 Yahoo’s data
sources (Characteristic C1) on the average, as compared to
0.75 of the student Pipes. It is likely that the tens of
thousands of Pipes in the Yahoo’s site consumed the mixing
possibilities of the five built-in Yahoo’s data sources
quickly. As a result, the majority of Pipes mashups used
other external data sources. On the other hand, students were

not asked to study other Pipes before developing their own.
They were not affected by existing Pipes that used built-in
Yahoo’s data sources. They might thus tend to use Yahoo’s
data sources more frequently because of their ease of use.
Adding an additional phase for evaluating existing mashups
before actual development may be beneficial for developing
more unique Pipes, and it will be a target of future study.

Perhaps the most significant difference was the use of
maps (75% in student Pipes and 5% in randomly selected
Pipes). The low percentage of map applications in the
randomly selected sample is somewhat surprising since it is
generally agreed that mapping applications account for a
large percentage of mashups. In fact, early successes of
mapping applications such as Chicago Crime Map (2009)
and housingmaps.com (2009) contributed to a large degree to
the initial popularity of mashups. About 35% of all mashups
cataloged in the website programmableWeb (2009) were
tagged as mapping applications. Since our sole classroom
Pipes demonstration was a mapping mashup, it might skew
more mapping mashup development and thus student Pipes
were more in line with the percentage of mapping
applications recorded in programmableWeb.

One reason for the relatively low percentage of
mapping applications in Yahoo’s Pipes might be that many
authors used them as embedded mashups to extract data lists
and images for their own websites, blogs or social networks
through a mechanism called Yahoo’s Badges (Yahoo
2009c). These embedded mashups are even more situational
in nature and tend not to use maps a lot. As mashups become
more ubiquitous, mashups as an embedded component will
be even more common. Embedded mashups as assignments
are thus a target of our future study.

4.2 Pipes Reports
Students turned in reports to accompany their mashup
applications. The lengths of their reports ranged from a
minimum of 409 words to 1,626 words, with the average
being 1,007 words. Overall, they matter-of-factly cataloged
their mashups in the first four sections: data sources, data
extraction and processing methods, Pipes modules used, and
screenshots. On the other hand, the technical discussion in
the last section displayed much more interesting variety and
insight.

The number of technical difficulties delineated in the
student reports ranged from 0 to 3, with an average of 1.5.
Table 4 summarizes the categories of technical difficulties
elaborated.

Technical Problems Counts
T1. Finding appropriate data sources 3
T2. Limiting Pipes framework (including module
library)

2

T3. Inadequate Pipes documentation 2
T4. Getting and parsing appropriate data from data
sources

2

T5. Pipes editor runtime problem 1
T6. Usage of Pipes modules 1
T7. Technical problems in the application domain 1

Table 4. Technical Problems Described in Student
Reports

Journal of Information Systems Education, Vol. 21(1)

116

The main technical difficulties were associated with
data sources (T1 and T4) and the Yahoo’s Pipes platform
(T2, T3, T5 and T6). Only one was related to application
logic (T7). None of these technical problems were
overwhelming and they were eventually overcome, some
with ease. In two instances, the original designs changed
slightly because of problems in data sources and the lack of
programming capability in Pipes. No students reported that
the learning curve was too steep. This result suggested that
the level of difficulties of the assignment might be
appropriate.

Students also elaborated on their Pipes experiences,
which are summarized in Table 5.

Cited Yahoo’s Pipes Merit or Drawback Counts
P1. Limiting framework (including module
library)

4

P2. Easy development 4
P3. Decent visual development 3
P4. Strong capability 3
P5. Lack of programming capability 3
P6. Inadequate documentation 1
P7. Inadequate data sources 1
Table 5. Pipes Experience Described in Student Reports

Yahoo’s Pipes generally gained rather warm reception
as an easy-to-use visual mashup platform with strong built-in
capabilities (P2, P3 and P4 of Table 5). This spoke well for
its use as the tool for a relatively small assignment. One
student summarized this well: “The interface is very nice and
easy to use, and the visualization of the flow of data through
various functions makes the application not only easy to
understand but logical and enlightening. I really enjoyed this
assignment very much.” Another student suggested assigning
Pipes homework to introductory undergraduate computing
courses since the visual flowchart can help beginners to
grasp how data is acquired and processed to generate the
required output.

However, not everyone was all rosy about Pipes.
Limitations of the Pipes platform (P1) and lack of
programming capability (P5) had been cited to have
constrained the scope and depth of their Pipes applications.
One student was especially adamant in the view that the lack
of programming capability has rendered Pipes “almost
useless”. Selecting a more flexible mashup with
programming capability may mitigate these constraints but
can significantly increase the assignment complexity. For
example, Joomla (2009), an open source Content
Management System (CMS), can be regarded as a kind of
mashup environment where Joomla components using
different data sources can be mixed to create a web page.
Yue, et al. (2009) described using Joomla to develop
domain-specific social network websites with and without
programming as capstone projects. However, these were
semester long projects. The effective use of programmable
end user mashup platforms in relatively short assignments is
an issue for future study.

4.3 Peer Evaluations
The purpose of peer evaluations was to spur students to
carefully study other works to acquire a broader perspective
on mashups. Creativity does not work in vacuum and

exposure to diverse ideas on the same subject area facilitates
innovation. This peer investigation can help students gaining
insight on mashup patterns (Wong & Hong 2008), which are
crucial in effective application formulation. Each student
evaluated five randomly selected peer works using a
standard template (Appendix 1). Not counting the words in
the template, the lengths of peer evaluations ranged from a
minimum of 83 words to 470 words, with the average being
199.6 words. Thus, each student wrote a total of about 1,000
words on the average, a reasonable length with respect to the
nature of the evaluation assignment. Furthermore, qualitative
analysis of the peer evaluations indicated that students
provided reasonable level of insight in their comments, many
of which are parallel to those made by the instructor.

Table 6 summarizes the average assessment score of the
peer evaluations in a Likert scale from 1 (worst) to 5 (best).
The result was not unexpected except for the interesting
observation that the overall grades were more generous than
individual quality assessments.

Mashup’s Quality Score (1 to 5)
Innovativeness 3.83

Usefulness 3.65
Interestingness 3.60

Design and implementation 3.66
Overall quality 3.85

Grade (0 to 100) 91.75
Table 6. Average Peer Evaluation Result

A question we set out to investigate was whether there

would be consistency in assessing and grading an open-
ended end user development project like ours. To do so, we
ranked the eight student works using peer evaluations from 1
to 8. We also ranked the student works using grades assigned
by the instructor. A preliminary analysis of the correlation of
these rankings indicated that the instructor and peer
evaluations were in general in agreement.

Overall, these preliminary results show that consistent
assessment of open-ended mashup assignments is attainable
among different evaluators, especially if the scope and
methodology are clearly specified.

4.4 Mashup Survey Results
The same General Mashup Survey (Appendix 2) was
conducted before and after the assignment. A Yahoo’s Pipes
background survey (Appendix 3) was also conducted before
the assignment. In term of background in mashups, no
student had developed any general mashups application or
Pipes application beforehand. Before the assignment, the
average expertise level of mashups experience in a Likert
scale of 5 (1: know nothing to 5: expert) was reported as
1.50, with the majority knew nothing about mashups. The
highest claimed mashup expertise level was 3. This lack of
experience was even more prominent in Yahoo’s Pipes as
only one student claimed some cursory prior knowledge.
After the assignment, the claimed average expertise level
rose to 3.56, with one student indicated an expert knowledge
level of 5. This initial lack of prior knowledge and the
subsequent significant increases in self-perceived expertise
level suggested that the assignment was both effective and
appropriate. The learning curve appeared to be reasonable.

Journal of Information Systems Education, Vol. 21(1)

117

The changes in average perception on mashup before
and after the assignment were summarized in Table 7.

Mashup Applications Perception Before After
Usefulness (1 not useful at all, 3
neutral, 5 very useful)

3.86 4.13

Interestingness (1 not interesting at
all, 3 neutral, to 5 very interesting).

4.14 4.13

Difficulty in development (1 very
difficult, 3 neutral, to 5 very easy).

2.75 3.44

Appropriateness as assignments (1
not appropriate at all; 3 neutral, to 5

very appropriate)

4.43 4.38

Table 7. Changing Mashup Perception in Survey before
and after the Assignment

In the two surveys, students maintained the perception

that mashup applications were interesting and that it was
very appropriate to use them as assignments. Importantly,
after the assignment, their perceptions on the usefulness and
ease of development significantly improved. Both
observations signified the attractiveness of the assignment
and the potential of rapid gain in mashup expertise.

4.5 Course Survey Results
After the assignment, students also completed a course
survey (Appendix 4) to reflect on course related aspects of
the assignment. The median student reported to have spent
about five hours to learn Pipes after the lecture as
preparation and ten hours to actually develop the mashup
application. Three students indicated that they were
immediately ready after the lecture. The longest time
reported was 40 hours for the whole assignment. This seems
to be a reasonable amount of time for an assignment of this
nature. Table 8 summarizes the average perceived
assignment characteristics.

Assignment Interest-
ingness

Usefulness Appropriate-
ness

Part 1
Development
and Report

4.38 3.75 4.00

Part 2 Peer
Evaluations

4.00 4.13 4.13

Overall 4.25 3.94 4.00
Table 8 Perceived Assignment Characteristics

Overall, the survey results indicated that the assignment

was well received. We expected the students to be more
interested in mashup development than peer evaluations, and
the survey confirmed this anticipation. Peer evaluations were
added as a part of the assignment based on their usefulness in
providing a wide view of the subject matter. We hoped that
the student might agree to their usefulness, even if they
might not be as interesting. It turned out that the students
more than agreed and rated peer evaluations as even more
useful than mashup development. After spending hours to
gain insight on their own development, it is likely that the
students found investigating mashups of different aspiration,
formulation, designs, approaches, and techniques strongly
enriched their freshly gained experience. This result thus

suggested that adding a robust peer evaluation component to
open-ended assignments may be rather beneficial.

The remaining results of the course survey are similar to
the results reported earlier and they are skipped here.

5. CONCLUSIONS AND FUTURE WORK

This paper presents our pilot experiment on an open-ended
mashup assignment using Yahoo’s Pipes. Mashup is a
crucial emerging technology for IS education and the initial
result was promising. It indicated that such assignment can
be cost effective. The preliminary results show positive
answers to all six questions we set out to investigate.
Students show no major difficulty in using a visual end user
programming environment and they gained expertise in
mashup development quickly. A robust peer evaluation
component was perceived to be highly useful for the open-
ended project.

In the future, we would like to expand the experiment in
several directions. This includes embedded mashups, and the
use of an alternative mashup development environment that
allows programming to fit the course goals. The assignment
setting may also be modified to include a study of existing
mashups before the actual application development. We
would consider the addition of some restrictions on the open-
ended project. We would also like to study how mashups can
effectively be integrated into various IS courses in different
curricula, such as the model curricula for the undergraduate
program, IS 2002 (Gorgone et al. 2002), and the graduate
program, MSIS 2006 (Gorgone et al. 2006).

6. ACKNOWLEDGEMENTS

I would like to thank our students, the anonymous reviewers,
and the assistant editor for their invaluable input.

7. REFERENCES

Albinola, M., Baresi, L., Carcano M., and Guinea, S. (2009),

“Mashlight: a Lightweight Mashup Framework for
Everyone.” 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web
(MEM 2009) at 18th International World Wide Web
Conference (WWW 2009) Madrid, Spain, April 20-24,
2009.

Beletski O. (2008), “End User Mashup Programming
Environments.” Retrieved August 10, 2009 from
http://www.tml.tkk.fi/Opinnot/T-
111.5550/2008/End%20User%20Mashup%20Programmin
g%20Environments_p.pdf.

Cherbakov, L., Bravery, A. and Pandya, A. (2007), “SOA
meets situational applications, Part 1: Changing
computing in the enterprise.” IBM developerWork,
retrieved August 17, 2009 from
http://www.ibm.com/developerworks/webservices/library/
ws-soa-situational1/?S_TACT=105AGX01&S_CMP=LP

Chicago Crime Map (2009), “EveryBlock's Chicago crime
section.” Retrieved August 10, 2009 from
http://chicago.everyblock.com/crime/.

Google (2009), ”Mashup Editor Blog.” Retrieved August 20,
2009 from http://googlemashupeditor.blogspot.com/2009
/01/from-mashup-editor-to-app-engine.html

Journal of Information Systems Education, Vol. 21(1)

118

Gorgone J., Davis, B., Valacich, S., Topi, K., Feinstein, D.
and Longenecker, H. (2002), "IS 2002 Model Curriculum
and Guidelines for Undergraduate Degree Programs in
Information Systems." Retrieved October 7, 2008 from
http://www.aisnet.org/Curriculum/IS2002-12-31.doc.

Gorgone J., Gray P., Stohr E., Valacich J. and Wigand R.
(2006), "MSIS 2006: model curriculum and guidelines for
graduate degree programs in information systems."
SIGCSE Bulletin, Vol. 38, No. 2, pp. 121-196.

Harris, A. and Rea, A. (2009), Web 2.0 and Virtual World
Technologies: A Growing Impact on IS Education,
Journal of Information Systems Education, 20 (2), pp 137-
144.

Hartmann, B., Wu, L., Collins, K. and Klemmer, S. (2007),
“Programming by a sample: rapidly creating web
applications with d.mix.” Proceedings of the 20th Annual
ACM Symposium on User interface Software and
Technology, Newport, Rhode Island, October 07 - 10,
2007, pp 241-250

Housingmaps.com, “Housingmaps.com Home Page.”
Retrieved August 10, 2009 from http://www.housingmaps
.com/.

IBM (2009), “Damia”, Retrieved August 20, 2009 from
http://services.alphaworks.ibm.com/graduated/damia.html.

Intel (2009), “Mashmaker.” Retrieved August 20, 2009 from
http://mashmaker.intel.com/web/

Joomla (2009), “Joomla’s home page.” Retrieved August 15,
2009 from http://www.joomla.org/.

Kim, D., Yue, K., Hall, S. & Gates, T. (2009), Web 2.0
Technologies, Principles, and Applications: Global
Diffusion of the Internet XV: Web 2.0 Technologies,
Principles, and Applications: A Conceptual Framework
from Technology Push and Demand Pull Perspective46,
Communications of the Associations of Information
Systems, Vol. 24, pp 657-672.

Microsoft (2009), “Popfly.” Retrieved August 20, 2009 from
http://www.popfly.com/.

Myers, B.A., Ko, A.J., and Burnett, M.M. (2006), “Invited
research overview: end-user programming.” Proceedings
of CHI Extended Abstracts, Montreal, Quebec, Canada,
April 22-27, 2006, pp. 75-80.

National Oceanic and Atmospheric Administration's
National Weather Service (2009), “XML Feeds of Current
Weather Conditions.” Retrieved August 9, 2009 from
http://www.weather.gov/xml/current_obs/.

O'Reilly (2005), "What Is Web 2.0? Design Patterns and
Business Models for the Next Generation of Software."
Retrieved August 18, 2009 from http://www.oreillynet
.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html.

ProgrammableWeb (2009), ”Mashups Tag Searching.”
Retrieved August 10, 2009 from http://www.
programmableweb.com/tag/mapping.

RSS (2009), “RSS 2.0 at Harvard Law.” Retrieved August 9,
2009 from http://cyber.law.harvard.edu/rss/rss.html.

Shirky C. (2004),”Situated Software.” Retrieved on August
17, 2009 from http://www.shirky.com/writings/situated
_software.html.

Wang, G., Yang, S., and Han, Y. (2009). ”Mashroom: end-
user mashup programming using nested tables.”

Proceedings of the 18th international Conference on
World Wide Web (WWW '09), Madrid, Spain, April 20-
24, pp. 861-870.

Wikipedia (2009a), “Mashup (web application hybrid)”
Retrieved August 17, 2009 from http://en.wikipedia.org/
wiki/Mashup_%28web_application_hybrid%29.

Wikipedia (2009b), “Situational application” Retrieved
August 20, 2009 from http://en.wikipedia.org/wiki/
Situational_application

Wong, J. and Hong, J. (2007), “Making Mashups with
Marmite: Re-purposing Web Content through End-User
Programming.” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, San Jose,
California, April 28 - May 03, 2007, pp 1435-1444.

Wong, J. and Hong, J. (2008), “What do we "mashup" when
we make mashups?” Proceedings of the 4th international
workshop on End-user software engineering: WEUSE 08,
Leipzig, Germany, May 12, pp. 35-39.

Yahoo (2009a), “Yahoo’s Pipes documentation page.”
Retrieved August 9, 2009 from http://pipes.yahoo.com
/pipes/docs.

Yahoo (2009b), “Yahoo’s Pipes Editor.” Retrieved August 9,
2009 from http://pipes.yahoo.com/pipes/pipe.edit.

Yahoo (2009c), “Yahoo’s Pipes Badges.” Retrieved August
10, 2009 from http://pipes.yahoo.com/pipes/badgedocs.

Yu, J., Benatallah B., Casati F. and Daniel, F. (2008),
“Understanding mashup development.” IEEE Internet
Computing, 12(5), pp. 44-52.

Yue, K., De Silva, D, Kim, D., Aktepe, M., Nagle, S.,
Boeger, C. Jain, A, & Verma, S. (2009), “Building Real
World Domain-Specific Social Network Websites as a
Capstone Project.” Journal of Information Systems
Education, 20(1), pp. 67-76.

Zang, N. and Rosson, M. (2008), “What’s in a mashup? And
why? Studying the perceptions of web-active end users,”
IEEE Symposium on Visual Languages and Human-
Centric Computing. VL/HCC, Herrsching am Ammersee,
Germany, September 15-19, pp.31-38.

AUTHOR BIOGRAPHY

Kwok-Bun Yue (B.S., M.Phil., Chinese University of Hong

Kong, M.S., Ph.D., University of
North Texas) is a Professor of
Computer Information Systems and
Computer Science at University of
Houston-Clear Lake (UHCL). He is
the chairperson of the Division of
Computing and Mathematics. His
research interests are in Internet
computing, semi-structured data, and

information systems and computer science education. He had
published more than 30 technical papers. Dr. Yue was a
recipient of the UHCL Distinguished Teaching Award, the
UHCL Piper Award and the UHCL Fellowship Award, and
had served as a CTO of a startup company.

Journal of Information Systems Education, Vol. 21(1)

119

APPENDICES

Appendix 1 Peer Evaluation Template
Rank the application from 1 (worst) to 5 (best) on the following categories. Provide justification.

1. How do you rate the innovativeness of the application (1 to 5)? Why?
2. How do you rate the usefulness of the application (1 to 5)? Why?
3. How do you rate the interestingness of the application (1 to 5)? Why?
4. How do you rate the design and implementation of the application (1 to 5)? Why?
5. How do you rate the overall application (1 to 5)? Why?
6. If you were the instructor of this course, what grade will you assign (from 0 to 100)? Why?

Appendix 2 General Mashup Survey
Scale: 1 (negative answer) to 5 (positive answer)

1. How familiar are you with Web Mashup applications? (scale from 1 to 5: 1 know nothing; 3 average; 5: expert).
2. Have you developed Mashup Applications? Yes or no? If yes, how many Mashup applications have you developed?
3. How useful do you think Mashup Applications are? (scale from 1 to 5: 1 not useful at all; 3 neutral; 5 very useful).
4. How interesting do you think Mashup Applications are? (scale from 1 to 5: 1 not interesting at all; 3 neutral; 5 very

interesting).
5. How difficult do you think Mashup Applications are? (scale from 1 to 5: 1 very difficult; 3 neutral; 5 very easy).
6. Do you think Mashup Application development assignments are appropriate for CIS/CS/SWEN students? (scale

from 1 to 5: 1 not appropriate at all; 3 neutral; 5 very appropriate).

Appendix 3 Yahoo’s Pipes Survey

1. How familiar are you with Yahoo’s Pipe Mashup applications? (scale from 1 to 5: 1 know nothing to 5: know
expert).

2. Have you developed Yahoo’s Pipe Mashup Applications? Yes or No? If yes, how many Yahoo’s Pipe Mashup
applications have you developed?

Appendix 4 Pipes Assignment Survey

1. How many hours have you spent on learning Yahoo’s Pipes (not counting working on the assignment)?
2. How many hours have you spent on the assignment?
3. In the following table, please rate the interestingness, usefulness and appropriateness of the assignment on the scale

of 1 to 5, 1 being not interesting, 3 being neutral and 5 being most interesting, etc.

Assignment Interestingness Usefulness Appropriateness

Part 1 Pipes Development and
Report

Part 2 Peer Evaluations

Overall

4. Now that you have completed the assignment, was the assignment more difficult or less difficult than you initially
thought? (1: much more difficult; 3: about the same; 5 much easier).

5. What is the most difficult part of your assignment?

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2010 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

