Object-Oriented Programming Principles and the Java Class Library
Cavaiani, Thomas P

Jougr%%l of Information Systems Education; Winter 2006; 17, 4; Research Library
Pg.

Journal of Information Systems Education, Vol. 17(4)

Teaching Tip

Object-Oriented Programming Principles and the Java
Class Library

Thomas P. Cavaiani
Department of Networking, Operations, and Information Systems
College of Business and Economics
Boise State University
Boise, Idaho 83725
tcavaiani(@boisestate.edu

ABSTRACT

For novices, learning an object-oriented programming language can be a daunting task. Not only do students need to learn
basic programming concepts, but they are also confronted with object modeling concepts as well. Learning Java presents an
additional difficulty. Students must learn how to use the Java Class Library to locate the details of classes, methods, and
toolkits that they can use in their own classes. One of my primary goals in teaching Java to novices is helping them acquire an
understanding of a specific subset of tools in the Java Class Library. This goal is addressed by emphasizing the use of
inheritance and a specially designed set of exercises. To demonstrate this approach, this paper will outline the creation of a
simple text editor. This example illustrates how considerable functionality can be added to complex programs by using

existing classes documented in the Java Class Library.

Keywords: Object-Oriented Programming, Guided Instruction, Java Programming, Class Libraries

1. INTRODUCTION

Novice programming students have minimal difficulty
gaining a conceptual understanding of Object-Oriented
Programming (OOP) principles such as code reuse,
inheritance, and overloading, but typically experience
considerable difficulty applying these principles when
coding. Over the last four semesters I have devised a list of
objectives that address the role that OOP principles, such as
code reuse and inheritance, play in searching the Java Class
Library. These objectives are as follows:

e Assist students in learning how to apply the concept of
inheritance to practical examples.

e Assign practical examples that require students to use
and extend existing classes.

o Deliver specific instruction designed to familiarize
students with the packages documented by the Java
Class Library.

e Assist students in learning searching techniques for
locating specific classes and methods in the Java Class
Library.

These objectives have led to the development of specific
teaching methods and exercises used in my introductory Java
programming course. The teaching methods address how to

appropriately structure the learning environment, create
programming exercises that pertain to "real world"
applications, and provide students with a guided approach
that helps them discover how to solve problems. A brief
discussion of the basis for this approach follows.

Several researchers have discussed the need to appropriately
structure the learning environment (Bandura, 1977; Bruner,
1966; Bruner, 1986; Vygotsky, 1978). Continually adjusting
the level of help in response to a learner's level of
performance not only produces immediate results, but also
instills individuals with the skills necessary for independent
problem solving later on (Vygotsky, 1978). Bandura (1977)
indicates that most human behavior is learned
observationally through modeling. By observing others one
learns how new behaviors are performed. Later this coded
information is used by an individual to as a guide for action.
A major theme described by Bruner (1966) is that learning is
an active process in which learners construct new ideas or
concepts based upon their current and/or past knowledge.
The leamer selects and transforms information, constructs
hypotheses, and makes decisions, relying upon schemas and
mental models, to provide meaning and organization to
experiences that allows the individual to go beyond the given
information. With regard to a guided approach to instruction,
Bruner (1966, 1986) indicates that instructors should try and

365

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

encourage students to discover principles by themselves.
Curriculum should be organized in a spiral manner so that
students continually build upon what they have already
learned. With regard to programming the research indicates
that individuals typically do not learn just to program, but
that they learn to program something (Adelson and Soloway,
1990; Harel and Papert, 1985). This conclusion implies that
students will be more successful in learning to program if
programming concepts are presented in the context of
practical examples.

2. PROGRAMMING EXERCISES

Six programming assignments are assigned during the
semester in my introductory Java programming course. The
first four are practical examples that cover topics on code
reuse, creating an applet, graphical user interfaces, event-
driven programming, decision-making, looping, arrays and
maps, file creation, and data input and output. The first
program is an animation program built completely from
existing classes provided to students from a sample program
discussed early in the semester. The second exercise requires
creation an applet that displays a digital clock. Exercises
three and four require students to create an airline ticketing
system to assign seats to passengers, and then write a seat
map to secondary storage. Exercises five and six pertain to
creating a simple text editor; exercise five focuses on
creating the graphical user interface (GUI) while exercise six
adds functionality to the GUI, including opening and saving
files, and editing and formatting text.

Each of these assignments pertains to practical examples that
most students have become familiar with before entering this
course. The Airline booking program and text editor
exercises have been designed to provide students with
insights into how real-world programs are coded. The simple
text editor is designed specifically to introduce students to
the use high-level objects in their programs as described in
the Java Class Library, and is the focus of the remainder of
this paper. Complete descriptions of these exercises can be
fond on the on-line course website at
http://cispom.boisestate.edu/cis| 25tcavaiani/cis 1 2Scrsotl.htm

3. BUILDING A SIMPLE TEXT EDITOR

The simple text editor project helps students learn how to
create a functional word processor with a graphical user
interface. The Java Class Library contains packages that
facilitate building the GUI from objects such as frames,
menus, dialog boxes, buttons, and drop down lists. After
creating the GUI, students add ActionListeners to these GUI
objects to "listen" for user-generated events during program
execution, and code methods that act upon the events.

The Java Class Library (http://java.sun.com/j2se/1.5.0/docs/
api/) is an extensive set of documentation for all the Java
packages that have been developed by the Sun Corporation.
Without some guidance students would have no idea which
library class to use to create the GUI. The JFrame class
provides the required functionality. The following set of
guidelines for searching the Java Class Library is
demonstrated to students:

1. Select the All Classes pane in the Java Class
Library window.

2. Select the Find on this page... option from the
browser Edit menu. The Find dialog box appears.

3. Type jframe in Find what text area of the Find
dialog box.

4. Click on the JFrame class name that appears at the
bottom of the All Classes pane. Documentation for
the JFrame class appears in the main pane (See
Figure 2).

3.1 Creating the Interface
The GUI for the simple text editor is modeled after MS
Notepad (See Figure 1).

w

<] H o

Figure 1: The Simple Text Editor Model

Considerable information is provided by this page. The class
hierarchy displays the list of parent classes from which
JFrame inherits functionality. Students are encouraged to
investigate the Component and Container classes, to become
familiar with methods that they make available to the JFrame
class. They are also encouraged to investigate the
MenuContainer link to determine which classes implement
this interface (See Figure 3). Lastly they are encouraged to
investigate the How to Make Frames tutorial, which provides
a good starting point for developing a GUI. Students quickly
become aware that many of the classes required for the
simple text editor (JFileChooser, JMenu, JMenultem, and
JTextArea) are listed as classes that implement the
MenuContainer interface.

The GUI window is created using a JFrame. Editing
functionality is obtained by adding a JText4rea to the frame.
A menu bar, menus, and menu items are created using the
intuitively named JMenuBar, JMenu, and JMenultem
classes. Methods to add menus and menu items to the
JFrame, and to make the JFrame object visible (setVisible)
are all easily located using the Edit Find option described
earlier. These methods are found in either the Component or
Container classes, so it is important to emphasize to students
that extend their search beyond the Method Summary (See
Figure 5) for a given class.

3.2 Adding Editing Functionality to the GUI

Upon completion of the graphical user interface, students
will have a text editor with numerous menu options,
including an Edit menu that includes Cut, Copy, and Paste
options. Adding functionality for cut, copy, and paste is a
trivial task, once students discover that JTextArea inherits
functionality from the JTextComponent class (See Figure 4).

366

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

jarax swing
Class JFrame

Java.lang.Object
L J&va. aut . Component
L java.avr.Container
[Java.avt . Window

L java.aut . Frame
Lja'ax.-winq.ﬂ'!'rw

All Implemented Interfaces:
ImageObserver, MenuContainer, Senalizable, Accessible, RootPaneiContamer, WindowC onstants

public class JFrame
extends Frame
implements WindowConstantz, Accessible, RootPanscontainer

An extended version of java.aut . Frame that adds support for the JFC/Swing component architecture. You can
oriented documentation about using JFrame in The Java Tutorial, in the section How to Make Frames.

Figure 2: The Initial JFrame Class Documentation Window

jwnawt
Interface MenuContainer

All Known Implementing Classes:
AbstactButtyn, AbatractCelerChonserFanel, Applet, RasicAurowEutt,
BasicCombok uxF endﬂ et O"LS esourie, Ra,n:l u..b:\? apup, B

T"wup fienu \q-r arator, e,
1B ar, J3eparator, I
\pm'r MumberEditor, 15phtPane, JTabbedPane
TToggleRunon, ITaoBar, JToolar Separator, JTao
soibe Rl MetalC

slenderar,

Figure 3: Classes Implementing the MenuContainer Interface

juraxswing
Class JTextArea

1ava.iang.Object
L Jave.avs ., Cowponent
L java.swr.container
1ng. JComponent

levax -'xn' JTextArea

Figure 4: The JTextArea Class Hierarchy

Method Summary
veid append(5tring str)
Appends the given text to the end of the document

T ey CreateDefaultModel ()

Creates vhe default mplememanon of the model to be used af

| ssemimleonessn Lucre:-ihleCnnkxt()

Gets the AccessbleConwd assomted with thu JT extArea

Retums ﬂw numbcr of cohms m the TextAren

provecsed tne! gMCo.lunnHulth 0
Gets column width

Figure 5 Part of the JTextArea Method Summary

367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(4)

Searching the JTextArea Method Summary (See Figure S)
does not reveal cut, copy, or paste methods. (Method names
are in alphabetical order).

Further searching of the class hierarchy indicates that cut,
copy, and paste methods are available in JTextComponent
class (See Figure 6).

Ln gneve, ge(ar et x
Focugscelerans

Figure 6: Methods lnherited from the JTextComponent
Class

3.3 Adding a File Dialog to the GUI

Implementing File-Open and File-Save is nearly as easy. A
File Chooser tutorial is available at
http://java.sun.com/docs/books/tutorial/uiswing/component
s/filechooser.html. This link (also available on the course
web site) describes the use of predefined dialog boxes that
can be used to display File-Open and File-SaveAs dialog
boxes.

Figure 7: A Standard JFileChooser Open Dialog Box

Bringing up a standard open dialog (See Figure 7) requires
only the following two lines of code (the first to create a
file choose object and the second to associate the dialog
box object with a File-Open menu click action):

JFileChooser fc = new JFileChooser();

int returnValue = fc.showOpenDialog(frame);
Displaying a SaveAs dialog box is similar. A statement like
File file = fc.getSelectedFile(),; can be used to associate the
file selected in the dialog box with an actual file on disk.
Code to open and read the file can be included to transfer
the contents of the file into a JtextArea frame.

4. CONCLUSION
This paper has provided an overview of the types of

exercises students participate in during the semester. It
attempts to illustrate the role of the Java Class Library in

368

helping programmers create their own programs, and how
inheritance affects the search techniques that students must
learn to be successful in obtaining information necessary to
locate and reuse classes documented in the library.

Providing instruction for incorporating use of the Java
Class Library into an introductory Java programming
course can be quite valuable to students as they attempt to
gain an understanding of Object Oriented Programming
principles such as inheritance and code reuse. Based upon
research in learning theory, novice student programmers
will not discover these techniques without some guidance.
An understanding of these principles and the ability to
search for and locate existing packages can greatly
streamline the programs they write and save them from
"reinventing the wheel". If this is the case students will gain
confidence in their ability to write fairly complex programs
knowing that much of the hard work has been done for
them and that documentation is available that explains how
to incorporate these classes into the programs they create.

5. REFERENCES

Adelson, B. and Soloway, E. (1985), The Role of Domain
Experience in Software Design. IEEE Transactions on
Software Engineering SE-1, no.11, pp.1351-1360.

Bandura, A. (1977), Social Learning Theory. General
Learning Press, New York.

Bruner, J. (1966), Toward a Theory of Instruction, Harvard
University Press, Cambridge, MA

Bruner, J. (1986), Actual Minds, Possible Worlds. Harvard
University Press, Cambridge, MA

Harel, 1. and Papert, S. (1990), "Software Design as a
Learning Environment." Interactive Learning
Environments, Vol. 1, no. 1, pp. 1-32.

Vygotsky, L.S. (1978), Mind in Society: The Development
of Higher Psychological Processes. Harvard University
Press, Cambridge, MA.

AUTHOR BIOGRAPHY

Thomas P. Cavaiani received his Ph.D. in Mathematics
Education from Oregon State
University in 1988. Currently, he
teaches in the Department of
Networking, Operations, and
Information Systems at Boise State
University. He has published in the
American Technical Education
Association Journal, the Journal of
Research on Computing in
Education, and the Journal of
Information Systems Education. His teaching interests
include Java programming and computer networking.

i
Badoyds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

