Teaching Object-Oriented Programming Concepts Using Visual Basic .NET
Ritzhaupt, Albert Dieter;Zucker, Ron James

Journal of Information Systems Education; Summer 2006; 17, 2; Research Library

pg. 163

Journal of Information Systems Education, Vol. 17(2)

Teaching Object-Oriented Programming Concepts Using
Visual Basic NET

Albert Dieter Ritzhaupt
Ron James Zucker
Department of Computer and Information Sciences
University of North Florida
Jacksonville, FL 32246
rita000 1 @unf.edu rzucker@unf.edu

ABSTRACT

This paper presents an object-oriented approach to Visual Basic .NET instruction to be delivered in a traditional academic
semester for information system curricula. The paper first discusses some of the inherent problems with Visual Basic .NET
instruction and then proposes an object-oriented approach. This approach includes a systematic set of programming projects to
take students on a journey that traces the principles of the object-oriented, the event-driven, and the procedural paradigms into
a coherent framework. The Unified Modeling Language Class Diagram notation is used to model an object-oriented system
that is developed and enhanced throughout the duration of the course. Practical recommendations and programming exercises
are provided and evaluated in the discussion. This course is intended to be at minimum a second programming course for
information system students to satisfy IS 2002 guidelines.

Keywords: Object-oriented programming, information system curricula, Visual Basic .NET

1. INTRODUCTION VB.NET student must develop to proficiently utilize the
language.
For many years now information system faculty at both the

Associate of Science and Bachelor level has made the

decision to adopt the Visual Basic programming language
into the curriculum. This decision ranges in reasons from its
ease in the development of windows applications to its
forgiving development environment — Visual Studio. Some
institutions have even selected Visual Basic as the first
programming language for students to learn in the
curriculum. The Visual Basic programming language,
however, has made a fundamental change with the debut of
Visual Basic .NET from the previous versions — 6.0 and less.
This presents some interesting problems for information
system educators. Visual Basic .NET (VB.NET) is now fully
object-oriented rather than event-driven.

1.1 Problems in VB.NET Instruction

“Microsoft's .NET not only represents a major shift in the
approach taken to software development and deployment, it
also has the potential to change what is done in the college
classroom” (Murray, 2003). The difficult process of
integrating .NET into the college classroom has taken off in
the past few years (Haiduk, 2002; Murray, 2003; Chaytor
and Soleda, 2003). Some of the problems encountered are
outlined in the subsequent discussion. Figure 1 capture the
essence of these problems by showing the vast skills a

'\\ P S
Procedural E\éent-BrNen
Paradigm aradigm

// Visual Basic
NET Student
Object-OrientedN ‘

\ Paradigm

\Mw/fv‘

Figure 6 - Essence of a VB.NET Student

1) The .NET framework is a comprehensive application
programmer interface providing services to many languages
supported by the .NET platform. The services available are
documented in the Microsoft Developers Network
(Microsoft, 2005). At first glance, the MSDN can overwhelm
the introductory student. However, the services provided by
the framework are critical to the development of robust and

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

reusable applications. The incorporation of the MSDN is
therefore critical to instruction in VB.NET. Knowing which
packages to include in the course can be a challenge for
faculty that has not been properly exposed to the MSDN and
a further challenge for students with limited software
development experience.

2) Visual Basic texts are having trouble outgrowing their
roots. The language originated as a non-object-oriented
language, to which object facilities were added over time.
VB.NET is a re-creation of the language, fully object-
oriented, which incorporates the same syntax as Visual Basic
as a subset. Yet many textbooks still seem to use the
approach developed within earlier versions of the language:
a combination of event-driven and procedural programming.
In Bradley and Millspaugh’s “Programming in Visual Basic
NET,” 4™ edition, object-oriented programming is given a
cursory glance in the first chapter and covered separately in
chapter 6 (Bradley, Millspaugh, 2003). Koneman’s “Visual
Basic .NET Programming for Business,” covers many of the
advanced topics, such as Collections (chapter 8), without
first addressing object-oriented programming (chapter 9)
(Koneman, 2003). Object-oriented programming is treated
little and later in the texts as a separate thought rather than
the cohesive glue that binds all the concepts together.

3) The fundamental principles of program design are based
on a few similar ideas, yet the approach to developing a
solution differs depending on the programming paradigm.
Three programming paradigms have emerged as the superior
approaches to program development: procedural, event-
driven, and object-oriented. Each paradigm exhibits unique
characteristics that are important enough to differentiate the
environments as three different worlds. The approach
discussed in this section embraces an object-oriented
software development perspective, while emphasizing the
critical points of the other paradigms. As if teaching three
different programming paradigms is not difficult enough,
there is also a significant challenge associated with teaching
active procedural and event-driven programmers the object-
oriented paradigm because it requires a paradigm shift from
long lasting procedural and event-driven principles and
habits that are not acceptable practice in the object-oriented
world (Turk, 1997).

4) Visual Studio .NET is the Integrated Development
Environment (IDE) that can be used to develop and deploy
VB.NET applications. This comprehensive utility provides
many services that introductory students will not fully
understand without substantial practice, such as the wide-
ranging properties found for each control, the debugger, the
form editor, et cetera. Learning Visual Studio .NET is a skill
on its own because it utilizes many advanced technologies.
The students will have to learn the IDE with some degree of
proficiency to be able to develop VB.NET applications
(Chaytor and Soleda, 2003). Students might easily get lost in
the IDE and confuse the tool with the language.

Undoubtedly, these are some of the many problems faculty
will or have encountered in the instruction of VB.NET.
Consequently, this paper argues that the VB.NET

programming language should be at minimum the second
programming language learned by information systems
students for the following reasons: (1) the language
encompasses aspects of the procedural, object-oriented, and
event-driven paradigms; (2) the development environment,
Visual Studio, provides many advanced technologies outside
the scope of a traditional introduction to programming
course; and (3) the language and environment can
unintentionally promote poor software development
practices if students do not understand good software design
principles (e.g., option strict off). Although this paper does
not provide evidence to support this argument, we believe
educators are aware of these problems and we believe that
educators should consider the drawbacks of such a
widespread technology as the first programming experience
students encounter.

Thus, it is imperative that information system programs take
a proactive stance in reviewing their curricula and making
plans to align them with the object-oriented paradigm if the
Visual Basic .NET programming language is to be taught.
We believe that VB.NET instruction without a strong
emphasis in object-orientation is a disservice to both the
student and programming language.

1.2 Curriculum

This course was offered twice as an introductory
programming course in Visual Basic .NET at the community
college level with substantial success reported by the
students. An advanced course is also offered that focuses on
the NET framework and its advanced component
technologies, such as the ADO.NET. One of the many
challenges facing community college instructors is the
diversity of students entering the information systems
courses, which include a combination of associate of science
students in an information systems area, associate of art
students transferring to a university, and practitioners
retooling for the workforce. The curriculum for this approach
is rigorous and quite adequate for an object-oriented
programming course offered at the university level.

Students enrolling in the course are expected to be proficient
in programming concepts and the procedural paradigm. This
course is intended to build a strong foundation in object-
orientation so that advanced topics can be more easily
addressed in the subsequent course. Unlike similar
approaches, this course tackles object-orientation by
addressing the perspective eatlier in the curriculum to build a
foundation for advanced study (Chaytor and Soleda, 2003).
Our perspective is that a student well-seasoned in object-
orientation will more easily understand advanced topics in
the NET framework.

The course also fits quite nicely within the 2002 Information
System Undergraduate Curricula Guidelines (IS, 2002). IS
2002.5 — Programming, Data, File and Object Structures
should include the “traditional and visual development
environments that incorporate event-driven, object-oriented
design” (Gorgone et al., 2002). This course covers many of
the topics in the scope and discussion of this course
requirement.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

2. APPROACH

This section describes the approach and system description
for the course. A Unified Modeling Class Diagram is
presented to capture the static relationships of the system to
be developed. A figure is provided to show where th
elearning objectives are covered in the programming projects
while tracing through the three programming paradigms.

2.1 System Description

Figure 2 shows the complete software system to be
developed in the duration of the semester as a UML class
diagram. Each programming exercise adds more complexity
to the overall software system in a piecemeal fashion where
the concepts to be covered in the course are aligned with the
new components added to the system.

The object-oriented system proposed here is a simplified
investment application that computes future values for three
different types of accounts. These accounts hold the
attributes necessary to make the appropriate calculation and
are derived from the generic account class: the interest, the
principle or payment, and the term. The interface allows the
user to create, update, and maintain many customers, each
with their own accounts. The application can capture the
state of the customers by use of serialization to the Simple
Object Access Protocol (SOAP) as a file on secondary
memory. The application also generates a report of the total
value of each of the customers, the total value of all the
customers, the total number of customers, and the average
value of each customer.

2.2 Instructional Environment

The instructional environment for this approach utilizes
blended learning. Traditional lecture and class exercises are
supplemented with online discussion to enhance ideas and
clarify points of interest via Blackboard, a course
management system. All student questions related to the
course material are directed to the discussion board to spur
dialog and to streamline similar questions and answers. The
discussion board has proven to be very helpful in that it
triggers fruitful design and implementation dialog among the
students and forces them to communicate their technical
ideas in natural language. The use of the discussion board is
restricted, however. Students are given clear instructions not
to use source code from their programming projects but to
provide similar examples. Students are allowed to discuss the
design and implementation issues of their program — not
provide a solution to programming problems via source
code.

Controls: Forms, buttons,

validation
Data rules

textboxes, menus, etc.
Data manipulation
Data Entry and Validation

Business logic and

Business classes

During lecture and class exercises, a parallel example is
presented using a simple payroll application with three
different compensation types: Salary, Hourly, and Salary
plus Bonus. The application closely resembles the one being
developed in the programming projects. First a lecture is
provided to cover the ideas and answer questions, and then
the class exercise is completed with the students practicing in
the environment. Design discussion during classroom lecture
is promoted by the instructor. The problems encountered in
the class exercises map to the problems encountered in the
programming exercises. The parallel example also includes
the development of a Unified Modeling Language Class
Diagram to capture the static relationships of the design.

2.3 Unified Modeling Language Class Diagrams

The Unified Modeling Language (UML) is the result of
many years of software modeling experience. UML is a
standard suite of many diagrams and is currently it its second
version (Object Management Group, 2005). Class diagrams
are one of the more popular conceptual models because they
are rich with content, which attests to the easy transition
from design to implementation. It is assumed the reader has a
basic understanding of UML class diagrams.

Class diagrams clearly present composition, aggregation,
generalization, and association between classes. Class
diagrams also depict cardinality, multiplicity, abstraction,
encapsulation, and specialization as well as the access
modifiers of the attributes and operations. Programming
projects require the delivery of a UML class diagram to
develop the student’s skills in software modeling and design.

2.4 Three-Tier Model

One of the major goals of software development is
maintainability. Maintenance is historically an expensive
cost to businesses; therefore techniques have been developed
to support ease of maintenance. The three-tier model is one
of these techniques. Each tier can be understood to be highly
cohesive yet loosely coupled with the other tiers. Figure 2
shows an example of the three-tier model and the
responsibilities assigned to each of the tiers. Consequently,
modifications to the system will not necessarily require
changes to each of the tiers. For example, a change in the
appearance of the presentation of the system would not
necessarily require a change to the business or data tiers and
vice versa.

This model is embraced throughout the development of the
system to discuss design considerations as well as
implementation details in relation to the maintainability and

Primarily Database
Data access components
Stored procedures

Figure 2 - Three Tier Model

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

extensibility of the system. Students learn how to develop a
system where the user interface is loosely coupled to the
business tier — the customer and accounts. This model should
be used as a frame of reference throughout the design and
implementation phases of the system development life-cycle.

2.5 Programming Exercises

There are five phases to the programming project, each using
principles of the three programming paradigms. Figure 3
shows the relationship between the programming paradigms
and the programming projects as learning objectives. The
course was offered in a 15-week semester, the amount of
time placed on each of the projects is shown in the table as
well. This section will briefly outline the specifications for
each of the projects.

2.5.1 Programming Project 1: The first phase requires
students to create an interface for a Future Value calculator
with the functionality attached to the form. Although it is
discussed as being the incorrect implementation for a robust
solution, it is necessary to start here to understand why the
three-tiered approach is a better implementation. The future
value program calculates three different future value types:
Compound Interest, Simple Interest, and Payment
Compound Interest (an annuity). Students are encouraged to
enhance the user interface with different texts, colors, and
borders to broaden your understanding of these properties.

At this point, the students can assume that a user will enter
valid data. Therefore, the system assumes it is impossible for
a user to enter erroneous input. Students are also instructed
that the interface should have a picture that relates to the
topic. For instance, one might use a picture of dollar signs or
money. As shown in Figure 4, many important programming
topics are covered here, such as sequential logic, and
arithmetic precedence.

2.5.2 Programming Project 2: In the first phase, students
created an interface for a Future Value calculator with the
functionality attached to the form. This is not the preferred
approach because it is necessary to decouple the business
logic from the user interface. Students create a class called
FutureValue as part of the new solution. The class has three
class methods, one for each type of future value calculation,
given public access modifiers so that the methods can be
used as services.

In this phase, students are required to check for erroneous
input. Erroneous input at this point is defined as data that is
nonnumeric or less than or equal to zero. If either of these
errors occurs, the user should be notified with a message box
indicating the type of error and how to fix the error. Students
are asked to provide a flow chart for the logic of the data
validation routine to achieve the most logically sound
solution. Examples are provided in class using subroutines
and functions to facilitate the optimal solution. During this
phase, students are also instructed to deliver a UML class
diagram of the software. It is important to note that there are
two classes shown in the diagram, but no association shown
between the interface and FutureValue class because the
operations are class methods.

2.5.3 Programming Project 3: The focus of this phase is to
learn to build a set of problem domain classes with instance
variables and functions. Students are instructed to reuse the
FutureValue class from the previous phase to make the
calculations. Students are then instructed to create an
Account class with the following protected instance
variables:

e Term — Integer

e Principal — Double (also the payment)

¢ Interest — Double

The Account class should have accessors (getters) and
mutators (setters) for each of the variables specified. The
account class should be defined as must inherit, meaning no
instantiations of the Account class are permitted — an abstract
class. The Account class should have the following
functions:

e MustOverride Function: getFutureValue() As Double

e MustOverride Function: getAccountType() As String

Students are then instructed to create three simple classes
named: SimpleAccount, CompoundAccount, and
PaymentCompoundAccount. These classes must inherit from
the Account class emphasizing the concept of generalization
and specialization (inheritance). Students are instructed to
provide for each of the accounts a:
¢ Constructor: XXXXAccount(...) - to provide the data
to instantiate an object of the specific Account.
¢ Overrides Function: getFutureValue() As Double- to
override the parent class and return the future value
(using the proper calculation of future value for the
particular class).
e Overrides Function: getAccountType() As String - to
return a String representation of the “Specific
Account”.

This programming exercise is a turning point because
students learn two of the most fundamental object-oriented
concepts: inheritance and polymorphism. The students are
instructed to declare a class scope Account reference in the
user interface class. In the new UML class diagram, a
composite relationship exists between the user interface and
account class because the lifetime of the account is
dependent upon the lifetime of the user interface. The
specific account class instances are assigned to the generic
Account reference (polymorphism, and ‘is a).

2.5.4 Programming Project 4: Upon beginning the fourth
phase, students are building a full-scale object-oriented
software system for both the presentation and business tiers.
They are told to think of the Future Value System as an
extremely simplified banking application.

The specifications are provided here. A bank has a collection
of customers, and each of these customers has an array of
accounts. The collection suggested is an ArrayList. Each of
these accounts yields a different type of future value based
on the type of account created. This phase uses the account
classes created in the previous project. A class will have the
following protected properties:

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

O - Primitive data types
O Abstract data types:

Controls and forms

Programming Exercise
1
(2-weeks)

Coooo0Oo

Journal of Information Systems Education, Vol. 17(2)

User-triggered events QO Basic arithmetic

Basic user interface Q Sequential logic

Design O Data types, declaration,
Tab Orders initialization

Hot Keys

Basic Controls

Programming Exercise UML class diagrams
Inheritance
Polymorphism
Instance variables/
functions

Method overriding

(3-weeks)

0 0ooog

Decision logic using case
structures
pass by reference versus

copy

Separation of presentation
and business logic tiers

Programming Exercise Q Serialization Q
Q Sorting Using Collections m]
(3-weeeks) O UML dlass diagrams
O Multiple Inheritance o

Figure 3 - Learning Objectives and

Future Value Accoun

uture Value Method

£ Simple Interest

£ Compound lnterest

£ Payment Compound Interest

Printing O Basic report generation
Separation of presentation, a Sorting

business logic, and data

tiers

File Dialogs

Programming Paradigms

Future Value Variables

Toarm

Interest

Principal

| Create Account 1

Figure 4 - Example of System User Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

Customer Customer Identification — String
Customer Last Name — String

Customer Accounts — Account[]

Number of Account — Integer

Shared Number of Clients — Integer
Shared Total Investments — Double

The customer can have a maximum of five accounts. The
customer class should have accessors and mutators for the
customer name and identification number. The Customer
should have the following operations:

e Constructor: Customer(Customer First Name,
Customer Last Name) - to provide the data to stantiate
an object of the Customer class.

¢ addSimpleAccount(interest, principal) As Boolean —
instantiates a SimpleAccount object to add to the
Customer, returns a Boolean indicating whether it was
successful.

e addCompoundAccount(interest, principal, term) As
Boolean ~ instantiates a CompoundAccount object to
add to the Customer, returns a Boolean indicating
whether it was successful.

¢ addCompoundPaymentAccount(interest, payment,
term) — instantiates a PaymentCompoundAccount
object to add to the Customer, returns a Boolean
indicating whether it was successful.

o getNumberAccounts() As Integer — the number of
Accounts the customer owns.

o getTotalFutureValue() As Double — the total future
value of all of the customer’s accounts

o Shareable: getTotallnvestmentValue() As Double —
the total future value for all the customers and all their
accounts.

o Shareable: getNumberCustomers() As Integer — the
number of customers.

Students are told the user interface should be designed to
accommodate all of the functionality of the system, which
includes managing customers and accounts. The system is
designed for banking employees, so the employees will need
to be able to create new customers. The customer
identification is the current date and time appended with a
hyphen to the current total number of customers created.
This is a variable created within the constructor of the
Customer class. For example, assume the current date and
time is 07/04/04 — 11:22AM. The customer identification
then is 07/04/04 — 11:22AM — 01, assuming this is the first
customer created. The user interface should prompt the
banking employee for the appropriate information to create a
customer.

The interface should also allow the banking employee to
traverse through the different customers so that they can
view or update their information. The only field that should
be editable is the customer name. The interface should also
show the number of customers currently in the system.

The system also enables the banking employee to view a
summary of the customers account information (total number
of accounts, and the total future value). Accounts cannot be

changed or removed. There should be an option to add an
account. However, if the number of accounts is already at the
maximum of five, a message box should appear indicating
that no other accounts can be added. When iterating through
the different customers, the program should reflect the future
values and number of accounts for each customer. The
interface should also show the total future value for all the
customers in the system. An example is shown in Figure 5.

This phase is where the student should realize the object-
orientation as the underlying theme. Students come to
understand how class methods and data work together with
instance methods and data. The concept of composition is
expanded by emphasizing the relationship between the user
interface and Customer, and the Customer and Account (‘has
a’). This programming project also emphasizes arrays,
Collections, and repetition logic. The total value of a specific
customer instance is a derived variable from the array of
Accounts. It is suggested to students in this phase to reuse
the user interface from the previous phase to capture the
account information for a customer — multiple forms.

2.5.5 Programming Project 5: This phase will require
making four modifications to the previous phase to provide
functionality for the final tier in the multi-tier model: sorting
capabilities, report generation and printing, file save
capabilities using Simple Object Access Protocol
serialization, and search capabilities. The third tier is treated
lighter than the other two because the intent of the next
course is to elaborate on the ADO .NET.

The Customer class implements the IComparable interface
and provides the implementation of the required compareTo
function (Microsoft, 2005). The Customer class sorts based
on last name and first name, if necessary ignoring the case.
The user should have the option to sort the customers at any
given instance of time.

The software system also allows the user to save the current
listing of customers at any given point in time. The system
should also enable the user to load the current listing saved.
Therefore, SOAP serialization is used to save the ArrayList
and all of its contents out to a file. The FileDialogs are used
to save and load the files to specific locations. A caveat for
this feature is that private and shared (class) data will not
serialize. Therefore a mechanism for reloading the collection
into primary memory is necessary. This can easily be
accomplished by traversing the list and recreating each of the
objects to be inserted into a new list.

The software also generates reports and prints the reports.
Students are instructed to use the PrintDocument and
PrintPreviewDialog to accomplish this. It is required that the
report be sorted by last name. The report reflects the total
value of each of the customers, the total value of all the
customers, the total number of customers, and the average
value of each customer. Finally, students build searching
capabilities into the form. The user should be able to search
for a Customer by their last name. Students are instructed to
accommodate for multiple instances of the same name.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

3. CLOSING REMARKS

This paper has documented some of the problems
surrounding VB.NET instruction in information system
curricula, which includes the textbooks not outgrowing their
origins in the earlier versions of the language. The VB.NET
student must develop skills in many areas: procedural, event-
driven, and object-oriented paradigms; MSDN navigation
and use skills; and a proficiency in the IDE — Visual
Studio.NET.

The approach presented in this paper is intended to be at
minimum a second programming course for information
system students. The approach embraces an object-first
methodology to lead to advanced topics in software
development. We believe that a strong foundation in object-
orientation is necessary to for students to be able to design
robust and maintainable source code in VB.NET.

This course was offered twice at the community college
level. The course retained 21 students out of 27 enrolled
(78%) in the first semester and 17 students out of 24 enrolled
(70%) the second semester. Overall, the retention rates for an
intermediate programming class, we felt, are reasonable for
the demands of such a rigorous curriculum.

Student response to this approach has been positive.
Feedback from students includes beliefs that the course
provided a strong foundation in object-oriented
programming for future study and use in industry, good
exposure and use of the MSDN, and that the UML class
diagrams help them understand object-oriented programming
better. “The projects assigned to us were excellent - gave me
a full sense of object oriented programming (Annamalai, S.,
interview, October 21, 2005).”

One student mentioned that the approach to presenting the
material was critical to the effectiveness of the course. “I
found the content valuable, but it may not have been so had
it not been for the presentation of the material (Martin, G.,
interview, October 21, 2005).” The only negative feedback
received from the course is that the workload is too intensive
for an intermediate level programming course. “For a person
with no prior experience in object-oriented programming, I
would say it was a really challenging course, but I learned a
lot (Ornelas, Y., interview, October 24, 2005).”

We feel that the positive feedback compensates for the
negative, and IS faculty should consider adopting such an
approach in their curriculum.

4. ACKNOWLEDGEMENTS

We are grateful to Florida Community College at
Jacksonville (FCCJ) and the University of North Florida for
their support in offering this course, and to Derrol Andre
Poole, an instructor at FCCJ for his insights and constructive
criticism in the writing of this article.

5. REFERENCES
Julia C.

Bradley, and Millspaugh, Anita C. (2003),

"Programming in Visual Basic .NET," Fourth Edition,
McGraw Hill, 0072938706.]

Chaytor, Louise and Soleda Leung, 2003, “How to
Creatively Communicate Microsoft. NET Technologies in
the IT Curriculum.” Proceeding of the 4th conference on
Information Technology Education, pp. 168-173.

Haiduk, H. Paul. (2003), “Object-Oriented Classic Data
Structures for CS 2 in Visual Basic .NET,” Journal
Computing of Sciences in Colleges, Vol. 18, No.l,
October 2002, pp._185 - 198.

Gorgone, John T., Davis, B. D., Valacich, J. S,
Topi, H. Feinstein, D. L., Longenecker (2002), “IS 2002:
Guidelines for Undergraduate Degree Programs in
Information Systems,” Association of _Information
Systems.

Koneman, Philip A., "Visual Basic.Net Programming for
Business," Prentice Hall, 2003, 0-13-047368-5.

Microsoft, Microsoft Developers Network Retrieved On
February 24, 2005 from:
http://msdn.microsoft.com/library/.

Murray, M. (2003), “Move to Component Base
Architectures: Introducing Microsoft’s NET Platform into
the College Classroom,” Journal of Computing Sciences
in Colleges, Vol. 19, No. 3, January 2004, pp. 301 - 310.

Object Management Group, Unified Modeling Language 2.0,
Retrieved on February 24, 2005 from:
http://www.uml.com.

Turk, Michael. (1997), “Introducing Object-Orientation to
Experienced Procedural Programmers,” Proceedings of
the 2nd Australasian conference on Computer science
education, Vol. 2, pp. 135 - 140.

AUTHOR BIOGRAPHIES

Albert D. thzhaupt is an adjunct instructor at the
University of North Florida. He has
a B.S. in Computer and Information
Sciences and an M.B.A. from the
University of North Florida. He is
currently a research assistant
conducting research in instructional
courseware development for
information systems curriculum and
is completing his Ph.D. at the
University of South Florida. Albert has taught in the areas of
UNIX and Linux, data processing mathematics, Internet
programming, Visual Basic .NET, microcomputer
applications, Java programming, and COBOL Programming.

Ron J. Zucker is an instructor at the University of North
Florida. He has over 35 years of
information technology experience
including over twenty years in industry
and seventeen years teaching at the
university level. He has a Master’s
Degree in Computer and Information
Science from Troy State University in
Montgomery and is currently a PhD
Candidate in Computer Science and
Engineering at the University of South Florida. His current
research is in Human Computer Interaction.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

