I ntroducing the Unified M odeling L anguage into the I nformation Systems Curriculum
Golden, Donad;Matos, Victor
Journal of Information Systems Education; Spring 2006; 17, 1; Research Library

pg. 83

Journal of Information Systems Education, Vol. 17(1)

Introducing the Unified Modeling Language into the
Information Systems Curriculum

Donald Golden
Victor Matos
Department of Computer and Information Science
Cleveland State University
Cleveland, Ohio 44115, United States
golden@cis.csuohio.edu

matos(@cis.csuohio.edu

ABSTRACT

The Information Systems undergraduate program at Cleveland State University (CSU) has adopted the Unified Modeling
Language (UML) as the tool for defining a system model through out the development process. This paper discusses the
revised CSU curriculum, the use of UML as a common tool to unify several aspects of system development and
implementation, and the way in which this approach replaces traditional software development tools. In general, the current
CSU curriculum matches the IS 2002 curriculum model in which the implementation of database systems is a continuation of
the analysis and logical design course. At CSU, to simplify course scheduling issues, students may take either course first or
both at the same time, compromising the IS 2002 suggested prerequisite structure. Our teaching approach to this academic
scenario is presented, as is our teaching methodology. Several examples are shown, including the use of tools such as

Rational Rose, MS-Access, and Oracle.

Keywords: IS Curriculum Design, Database Implementation, UML, ERD, Systems Analysis, Object-Oriented Systems

1. INTRODUCTION

In 1998 the Information Systems curriculum at Cleveland
State University (CSU) underwent a major renovation, based
in large part on the IS ‘97 (Davis, 1997) model curriculum,
and has recently undergone review based on the IS 2002
report (Gorgone et al., 2002). Our goal at CSU is to prepare
our students to play an effective role in entry level
information systems positions, and to give them a solid
foundation that allows them continued career growth. The
flexibility of the IS 2002 model curriculum fits well with that
goal. The current structure of the CSU IS curriculum is
shown in Figure 1; the diagram also shows how each of our
courses compares with the corresponding IS 2002.X course
model; for instance our Systems Analysis Methods (IST 321)
closely matches the TS 2002.7 course suggested in (Gorgone
et al.,, 2002).

In addition to business courses and general education
courses, the Information Systems program requires students
to take a core of eight computer-based courses and three
elective courses. The core covers programming, systems
analysis, database development, networks, and the
relationship between information systems and business.
Electives include subjects such as web site development,

knowledge management, project management, advanced -

programming, emerging technologies, etc.

83

In addition to the fact that the CSU program does not include
quite as many courses as the IS 2002 program, there are
differences in course prerequisites, particularly those relating
to the systems analysis and database implementation courses.
Many of our students (possibly a majority) are part-time
students, which means that they take a few courses each
semester and cannot fit into any type of “lock-step” program.
As a result, we try to avoid locking students into long chains
of course prerequisites since doing so could extend their
degree completion time by a year or more. One consequence
of this situation is that for many of the courses beyond the
first few semesters, we cannot control the order in which
students take courses. In particular, we cannot predict
whether students will take the systems analysis course before
the database course or vice versa. Given this situation, we
have structured each course so that, in addition to teaching
about the courses main topic, we also show students how the
topic fits into the system development process.

In the initial redesign of the program (circa Fall, 1998), we
identified two goals to emphasize across the curriculum: (a)
placing emphasis on -problem solving strategies and critical
thinking; and (b) identifying and using best-practice and
state-of-the-art techniques in problem solving. At that time,
our general approach to system development was structured,
and -except for obvious knowledge dependencies, we treated
most courses as independent of each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

Cleveland State University
BBA with Information
Systems major

Freshman

157203 152002.P0

Software Tools
for Personal
Productivity

(3-0-3)

l

T ippmmt ) 152002.1
i 1ST211 | 182002.5 1sT221 182002.2
Fundamentais of | Information 1S2002.3
Systems | Systems in
Development | Organization
1 (3-0-3) | (3-0-3)
Sophomore I
i
[ ! ]
Junior i 1
&
2 IST311 152002.9 182002.7
Sanjer Pdvenced S sle‘r?\:s:r:al is
Programming of 4 Method el
Business Systems 4-0-4 9
(3-0-3) (4:0:4)
1S2002.4
Design and Management of
Implementation Busnm(a;sz—r:?twork
(4-0-4) j
ISTées Elctves Miimum
price f 9 hours
Integration 9
Systems
(3-0-3)
Comments.

1. Allows a single point assessment
2. Supports the SAP initiative in the college
3. Increases managerial content in the core

Notation 1S2002.X indicates equivalent course under
182002 Curriculum Model

Figure 1 — Current IS Course Sequence

Over the next few years (the early 2000’s) it became clear
that we should be teaching object-oriented systems
development and several changes were made to the
curriculum. First we adopted a third goal: (c) presenting the
entire systems development effort in a common, uniform,
and unambiguous framework. Today, IS courses embrace
the object-oriented model, and traditional structured
development tools such as entity-relationship diagrams, data
flow diagrams, and structure charts (Ramakrishnan and
Gehrke, 1998; Yourdon, 1989; Page-Jones, 1988) have been
replaced by UML diagrams. This has proven to be highly
beneficial for several reasons. The UML tool provides a
single complete and extendable tool for representing the
entire life cycle. Although mastering the whole range of
UML diagrams may seem overwhelming for the novice
student, by presenting different parts of UML in different
courses we make the learning process manageable, and
students respond well to learning about specific types of
diagrams. More importantly, the repetition of the diagrams
in different IS courses has a remarkable effect in helping
students to understand, review, and accept the systems
development effort as a continuous and complex process.
Rather than associating UML diagrams with just analysis

84

and design, they are exposed repeatedly to the same tool in
different parts of the system life cycle.

As a result, faculty have been willing to adopt UML as the
common language to depict a problem as well as its
solutions, and UML has proven to be appropriate for
instruction at several levels. Different courses use UML
diagrams that are appropriate to their specific needs. For
instance, the intermediate programming course (IST 311)
extensively presents use case, class, sequence, and state
diagrams as ways of describing problems and their solutions
using object-oriented tools. The database course (IST-331)
has adopted the UML Data Model Profile (Gornik, 2003) as
the mechanism to represent the implementation effort.
Networking courses use deployment and activity diagrams to
describe the hardware configuration and transactional
behavior of a network, and so on.

2. ENTITY RELATION DIAGRAMS AND THE
UNIFIED MODELING LANGUAGE

There is no question but that Entity Relation Diagrams are a
perfectly satisfactory tool for developing databases. After

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.

Journal of Information Systems Education, Vol. 17(1)

all, they have been used extensively in database design since
1976, when they were first introduced by Peter Chen (Chen,
1976); and today many commercial ERD software tools are
available for both database developers and students,
including products such as Erwin', Sybase DataArchitect?,
Oracle Modeling3, Visible Analyst’, etc.

A strong argument in favor of the use of ERDs is their
minimality, simplicity, and ability to document related data
issues that are important to the database developer from a
structural viewpoint. ERDs support the illusion that a
complete and reliable data organization could support any
type of future operations. To draw an analogy with the
construction industry, having a well-designed and solid
foundation allows the builder to erect many kinds of
structures. Extrapolating this statement might suggest that
any kind of database could be implemented on top of a solid
ERD, but this is not necessarily true. A weakness of the
ERD model is its inherent lack of support for a behavioral
description of entities. Le., what do entities do, in what
activities do they participate, when do events happen, what is
needed for behaviors to work, what result is produced, etc.

In typical structured analysis and design courses, a collage of
heterogeneous and non-integrated diagrams must be used to
document entities’ behavior (Yourdon, 1989). Indeed, in
1998, Paul Dorsey published an on-line article (Dorsey,
1998) which not only pointed out the - problems of
documenting behavior using ER diagrams, but which
concluded, “ERD’s [sic] are dead. There is absolutely no
reason that people should still use a design method, which, in
almost every way, has been improved upon by UML”.

Even earlier, some studies (Sharble & Cohen 1993) seemed
to suggest empirically that the data-centric design approach
supported by ERDs was less effective than the function-
centric view of object-oriented models. In an experiment
they conducted, the Function-Centric solution resulted in a
set of classes far more reusable and with behavior more
evenly distributed than equivalent solutions based on the
data-centric ERD solutions.

Furthermore, ERDs see little or no use outside the database
field. This caused no problem in the past since the design
and implementation of databases was generally viewed as an
independent process with little connection to other system
development activities. However, as information systems
become larger and more complex, it has become increasingly
important to treat the development process as an integrated
whole, from the discovery and documentation of user
requirements and business rules, to the creation of a logical
system model, to the design and implementation of the
physical system. With the advent and increasing use of
object-oriented  systems and  methodologies, this
development sequence becomes much smoother and
produces a system which is easier to maintain and modify.

While the design and implementation of the physical
database is still a specialized field, the initial specification of
the database — the discovery of data requirements, the
creation of a logical data model, etc. — becomes an integral

85

part of the system development process. The Unified
Modeling Language (UML 2.0) has become the de facto
standard for object-oriented system specification, and its
class diagrams have all the data specification capabilities of
ERDs. For this reason alone — the fact that one tool can
serve the needs of many phases of the implementation
process — we believe that the value of using of ERDs in
database courses has decreased substantially, If class
diagrams can serve the same purposes as ERDs and are used
in other parts of the system planning process as well, why
should students be asked to learn a second, redundant tool?

In addition to the redundancy of ERDs as a development
tool, we view the database design process itself as an
extension of the overall system development process, an
approach that reflects the recommended curriculum proposed
in the IS 2002 report. This is not to say that database design
has become part of systems analysis. Rather, we view
database design as a branch coming off an initial system
modeling root, just as process implementation, data
communication, and other specialized components of the
overall implementation process are branches coming off the
same root.

3. PEDAGOGY APPLIED TO THE TEACHING OF
SYSTEMS ANALYSIS AND DATABASE

Adopting UML as a common theme across the IS curriculum
provides the students with a framework for continuous and
consistent learning. Our experience using UML as a bridge
between systems analysis and database implementation has
been very positive, and the next two sections provide an
overview of the academic strategy used at CSU to deliver the
systems analysis and database courses. Section 3.1
summarizes the approach we use to guide the student during
the creative process of design in order to produce an object-
oriented depiction of a system. To make the issues more
concrete, we use a Borrower-Library case. Section 3.2
briefly describes the database course using the Library case
to illustrate how the UML database model profile could be
used to convert the early conceptual specifications into
representations appropriate for the physical implementation
of a relational database.

3.1 The Systems Analysis Course (IST 321)

The systems analysis course begins with a discussion of the
overall concept of planned system development, followed by
an introduction to the system development life cycle.
Overall, the methodology that is used is based on the
Rational Unified Process (RUP) (Kroll and Kruchten, 2003),
but we use the process as a guide, not a straightjacket.

Requirements specification is the first life cycle activity
discussed in depth. We utilize use cases extensively, with
emphasis on the interaction between the user and the system.
Students are asked to avoid (or at least minimize) any aspect
of physical implementation at this stage. On the other hand,
we emphasize that every action performed by the system
must be triggered by some event, either a state change within
the system (e.g., an attribute reaches a critical value) or an
action performed by a user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

Although there is no attempt in systems analysis to discuss
anything about how data is structured or stored, students are
taught to be specific about what data is visible when a task is
executed. For example, it is perfectly correct to say that the
system shows the customer’s name, address, and payment
history (date and amount of each payment) for the past six
months, without being concerned (yet) about whether the
data is actually stored in the system, how it is structured, etc.
However, it is not acceptable to say that “the system displays
the customer data,” since this statement is too fuzzy.

Once students have learned about use cases, the next step is
to develop classes. We use two steps for this activity.
Students begin with the “noun analysis™ process commonly
used with RUP. That is, they identify the nouns in use cases,
establish a list of candidate classes, and then eliminate the
candidates that are not appropriate for classes. This activity
creates a working set of classes, but those classes are little
more than names. In the real world there are many ways to
add flesh to these skeletal classes, depending on issues such
as the analysts’ familiarity with the system domain, the
nature of the system, its relationship to existing systems, etc.
To simplify the process for the classroom, we add basic
attributes to classes by using the students’ general
knowledge of the domain (e.g., a university registration
system), then move into the CRC (Class/Responsibility/-
Collaboration) process (Wilkinson, 1995) to refine the set of
attributes in each class and to start adding functionality to the
classes. Although the CRC process is not actually a part of
the Rational Process, it is commonly used as part of object-
oriented analysis and we find it to be an effective way for
students to learn how to determine class functionality and
object interactions.

Initially, the behaviors (methods) assigned to classes are only
brief descriptions such as “Compute Grade Point Average.”
The next step, therefore, is to define both methods and tasks
(e.g., “Produce Grade Report”) in greater detail, including
documenting class relationships and object interactions or
collaborations. Although we start using class diagrams as
soon as students understand the general concept of classes, at
this time we refine the class relationships with concepts such
as aggregation, composition, and inheritance, using IBM
Rational Rose® as the modeling tool. We also introduce
control and boundary classes, start to refine the behaviors
that are assigned to classes, and use sequence diagrams to
show the collaborations between objects that support more
complex tasks.

Next, we need to consider not only what behaviors and
attributes must exist, but the class to which each attribute or
behavior is assigned. For example, consider a decision that
must be made in the library example used by Wilkinson
(Wilkinson, 1995, p. 48). In this case study, borrowers
(people using the library) borrow books and other items from
the library. Before a borrower can check out another book,
the system must verify that none of the items already on loan
to this botrower are overdue. This raises the question of
which class has the responsibility for determining a
borrower’s eligibility to obtain additional books from the
library. To answer the question of eligibility, we need to

86

know which books the borrower already has on loan and
whether any of them are overdue, which in turn means that
we need to know when each book is due to be returned.

The way in which we allocate the behaviors needed to
answer these questions affects how certain attributes are
allocated to classes. For example, do we want to make a list
of due dates be an attribute of the Borrower® class? Experi-
ence using this example in class indicates that this is, in fact,
how most students would address the problem. That is, give
the Borrower the responsibility for determining eligibility,
and give Borrower all the attributes needed to make the
decision. However, this approach ignores the fact that
determining if a borrower’s book is overdue as part of
determining eligibility is simply a special case of
determining if a book is ever overdue, which suggests that
the responsibility for determining if a book is overdue
belongs to the Book class, and that Borrower needs to
collaborate with Book to determine eligibility. In this case,
although Borrowers need to know which books they have on
foan, only Books need to know their due date.

Of course, in the analysis phase of the life cycle we are not
concerned with physical data requirements. During database
design, the designer may decide to put a copy of the Book’s
due date with the Borrower data for the sake of efficiency,
but that type of decision is irrelevant at this stage.
Nonetheless, most students come to a systems analysis
course from one or more programming classes, and they find
it difficult to ignore physical data considerations. We try to
discourage this type of thought, but since it seems to occur
naturally we also seek to emphasize good data design
techniques, always with the emphatic statement that the
students will learn more about the topic in the database
course. For those students who have already taken the
database course, the emphasis is on the fact that they are not
designing databases, and that they should focus on logical
considerations, not physical ones.

There are, however, techniques used by relational database
designers that we believe are of value to the analyst. In
particular, we feel that simple normalization (through third
normal form at most) can give useful insights into a system’s
structure. For example, consider the commonly used
example of a customer purchase order. This business
document typically consists of header information such as
the date, customer name and address, etc; a body, containing
of one or more line items, each of which typically consists of
a quantity, item description, unit cost, and extended cost; and
a footer, which typically will consist of items such as a
subtotal, tax, shipping or handling charges, and an order
total. Although we can certainly create a Customer Purchase
Order class that contains all this information, doing so hides
the fact that the source document really contains data relating
to customers, data relating to products that our company
sells, and data that pertains only to this particular purchase.
While it is not necessary at this time to be concerned about
details of data storage, it is useful to the analyst to be aware
of this Customer-Product-Purchase relationship since this
awareness can help to understand relationships with other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Information Systems Education, Vol. 17(1)

services in the system (such as inventory management,
purchasing, accounting, etc.).

Finally, we should emphasize that the process of defining
data and behaviors for classes also has the effect of defining
the ways in which those behaviors constrain the data. Ie., in
defining class behaviors, we also define (and document) the
business rules that must later be implemented as data
constraints, triggers, etc.

In summary, although IST 321 places no emphasis on
physical data structuring (and, indeed, discourages physical
considerations), there is a conceptual relationship between
systems analysis activities and database implementation.
Systems analysis is the starting point for understanding what
data is inherent in the system domain, what logical structures
exist in the data, how attributes should be assigned to classes
to maximize the logic and flexibility of the system, how the
data must be manipulated to provide the services that users
require from the system, which classes perform the
manipulation, and what relationships exist between those
classes. For those students who have not yet studied
database design, we provide the logical foundation on which
a physical relational database should be built. For those
students who already have studied database design (or who
are taking the database course concurrently with the systems
analysis course), we show how the logical model is created
and how to understand the language that defines it.

3.2 The Database Design Course (IST 331)

Currently our students are prepared to interact with
Relational DBMS technology (RDBMS). However plans
have been made to include in the near future tools emerging

for the Post-Relational approach, such as Caché’. Clearly
the object-oriented nature of a Post-Relational DBMS
environment will favor UML depictions of the structural and
behavioral characterization of the system to be dealt with,

For the relational database developer, producing an
appropriate software solution includes consideration of many
factors such as the design of tables, evaluation of the
physical organization of the database (possibly over a
network and multiple computers); storage of the data
(perhaps spanned over multiple disks located in multiple
locations); efficient access to the data; implementation of the
various views required by the different parts of the system;
implementation of business rules expressed in the form of
triggers and constraints; construction of the presentation
layer; migration of legacy data; design of security
mechanism; recovery plans for non-catastrophic failures;
daily operation and administration of the data resources, etc.
To cover these subjects, the database syllabus includes a
broad range of topics such as data models and modeling
tools, SQL, programming tools for the database developer,
etc.

At CSU two types of RDBMS platforms are discussed:
Microsoft Access for small applications, and Oracle for
enterprise scale solutions. Emphasis is given to the mastery
of SQL to retrieve, maintain, and administer the database
resources. Application code is written using Visual Basic for

87

Applications (VBA) for the MS-Access solutions, and a
combination of Visual Basic NET and ADO.NET for the
Oracle solutions. Modeling is done using either IBM
Rational Rose or Microsoft Visio software.

The UML Data Modeling Profile (UML-DMP) (Gornik,
2003) is used to describe conceptual database models using
stereotyped class diagrams. In UML-DMP, classes and
associations play roles very similar to entities and
relationships in ERDs. In addition, there are a number of
concepts that are introduced in UML-DMP which are not
available in classical ERDs, such as node, schema, database,
and tablespaces.

Generally students who have taken the analysis and design
class prior to the database course find the UML-DMP
material easy to deal with and a good re-enforcement of
concepts already learned. For those students lacking this
background we have found that the compactness and
simplicity of UML-DMP representations is manageable, and
students are able to learn the data modeling strategy and
tools very quickly. For example, Figure 2 shows a fragment
of the library case introduced in the previous section. The
figure shows the class diagram at the top, and its equivalent
UML-DMP representation at the bottom. The logical version
of the Borrower and the Book classes is transformed into a
physical map showing three tables T_Borrower, T_Book,
and the new file T Loan. Observe the conversion of the
many-to-many link into a pair of 1-to-many associations in
the physical model, as well as the occurrence of stereotypes
signaling primary key (PK), foreign key (FK), and Trigger
constraints. Although we made minor changes to the table
definitions, most of the work was done automatically by
Rational Rose.

Clearly, UML-DMP modeling is at least as expressive as ER
modeling, and we argue that the degree of difficulty
associated with learning the tool is essentially the same as
that of learning ERDs. Therefore, the database students who
lack the recommended analysis and design background are
not substantially disadvantaged with respect to their
counterparts.

Our strategy when teaching database implementation is to
minimize the number of UML charts used to describe a
system. Under this minimalist pedagogical approach only a
few types of representations are given to the students,
namely use case, class, and sequence diagrams.

Use case diagrams are presented as a succinct depiction of
the main functions of the system showing its services at a
high and consistent level of resolution. Identifying the
functions and the actors of a system is an essential part of the
design effort, and fortunately, students — with or without
previous UML experience ~ tend to see this as a relatively
natural and workable step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

Ly Author : SMALLINT
 Publisher : SMALLINT
PET_Book_ID : INTEGER

3<<PK>> PK_T_Book()

<<Identifying>>

\0.,'

Book
&<<PK>> ISBN Borrower
& Title & <<PK>> Employee ID
&~Author +Borrows &Name
&Publisher &Unpaid Fines
&Date Borrowed n n |&;Department )
“SMyTitle() “WEligible()
: ®Overdue()
T_Book T_Borrower
‘ (from S_Borrow) (from S_Borrow)
.ISBN : SMALLINT mployee ID : SMALLINT
i Title : SMALLINT ame : SMALLINT

{Unpaid Fines : SMALLINT
i.Department : SMALLINT
#NT_Bomower_ID : INTEGER

#%<<PK>> PK_T_Bomower()

1
<<|dentifying>>

T_Loan
(from S_Borrow)

B¥T_Boower_ID : INTEGER
EXT_Book_ID : INTEGER
#Date Borrowed : SMALLINT

M<<PK>> PK_T_Loan_Key()

<Index>> TC_T_ixBomower()
<Index>> TC_T_ixBook()
<Trigger>> TRIG_T_Loan_Overd

ue()

Figure 2. An UML-DMP fragment of the Library Case

Sequence diagrams have already been used in -either the

design or the advanced programming course. - The sequence

diagrams offer the students a dynamic description of what ‘
happens in a process at a high level of detail. As with use .
case diagrams, student understanding of these types of
diagrams occurs. very quickly and easily.

A major effort is made in learning how to represent the
designer’s perception of the system at hand using UML-

DMP diagrams. A typical teaching strategy to deliver this .
topic is the following:

¢ In class, we present a simple and familiar example
to which students can relate without many
explanations, such as the library problem
introduced earlier.

e After seeing a number of examples in class,
students are given homework using a simple
problem involving a small number of classes and
associations, such as Purchase Order, Soccer

38

Tournament, Library System, Bureau of Motor
Vehicles, Video Rental, Employee Project,
Employee Education Level, etc.

Students are first asked to draw the UML-DMP
data model by hand. After class discussion, a
common correct solution is collectively agreed
upon, and students use the computer software
(IBM Rational Rose or-MS-Visio) to represent the
chosen solution (Figure 2).

A representative portion of the system is selected.
For example, in the case of the library problem, we .
may choose to describe the details telling how a*
person borrows a book. This description is

pictorially represented as a sequence diagram (see

figure 3). (Although practitioners generally do not

show response messages to the extent shown in

this example, we want to emphasize to the students

where the system must wait for a response.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Information Systems Education, Vol. 17(1)

% j : \‘ | |
== i g

: Employee : Terminal ~Librarian ~Borrower  onloan:Book new book : Book
| get desired function( ) | '
"Borrow" . L\J 9
== desired function | |
1 give eligibility( ) |
L tellif overdue() |
i not overdue
( OK. L
- get book title( ) ]
itle
book title L‘J T
add to on-loan list(\)
1
T check out( )

transaction complete( )

)\

S, =

Figure 3 — Sequence Diagram for Borrowing A Book

e In the final phases of implementation, forms,
reports, and code are produced to materialize the
specifications of the system.

Today, most IS curricula use a relational solution such as
Microsoft Access, SQL-Server, IBM DB2, Oracle, MySQL,
Sybase. The UML-DMP components listed in Table 1 are
mapped to the MS-Access and Oracle environments — used
at CSU — as shown in Figure 4.

4. FUTURE PLANS

Figure 1 (Section 1) shows the current structure of the
Information Systems curriculum. Except for the capstone
course (IST 465), later courses are independent of the
systems analysis course. This structure provides maximum
flexibility for students and generally reflects the typical view
of the system development process, in that programming,
database design, network management, and systems analysis
tend to be viewed as more or less independent activities once

89

requirements have been defined and a basic logical model
has been created.

However, increased faculty experience with object-oriented
methodologies has led us to a more integrated view of the
development process. That is, programming, database
design, network implementation, Web site development, etc.
are now viewed as specialized but related activities that
should build on a single comprehensive analysis model. To
reflect this development philosophy we intend to revise the
curriculum as shown in figure 5.

Ideally, we would prefer to make systems analysis a
prerequisite for the intermediate programming course as
well, since this would allow us to include formal systems

design techniques into the programming course. However, as

a practical matter of curriculum planning, students need to
take at least one course concurrently with systems analysis.
The scheduling issues previously discussed are very real and
we cannot have long prerequisite lists, but after several years
experience with the current curriculum, it is our opinion that
the advantages of requiring students to take systems analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

UML-DMP | MS-Access ORACLE Implementation
Component GUI interface SQL command
CREATE TABLE T_Borrower ( .
EmployeelD SMALLINT NOT NULL,
Name SMALLINT NOT NULL,
UnpaidFines SMALLINT NOT NULL,
y Department SMALLINT NOT NULL,
Table Seeiguedd T_Borrower_ID  SMALLINT NOT NULL,
CONSTRAINT PK_T_Borrower PRIMARY KEY
(T_Borrower_1ID),
CONSTRAINT TC_T_Borrower CHECK (Department>99)
)i
View Named Query CREATE VIEW Late_Borrowers AS (SELECT ..FROM..WHERE..)
Column Fig. 4-b. Part of the Create Table command, for example
EmployeeID SMALLINT NOT NULL,
Index Fig. 4-c. CREATE INDEX IXBorrower ON T_Borrower ..
<<PK>> ALTER TABLE T_Borrower ADD CONSTRAINT PK_T_Borrower
Fig. 4-d. PRIMARY KEY (T_Borrower_1ID) :
Primary Key
<<FK>> ALTER TABLE T _Loan ADD CONSTRAINT FK_T_Borrower
Fig. 4-¢ . REFERENCES T Borrower (T_Borrower_ID) ;
Foreign Key
CREATE OR REPLACE
L - TRIGGER TRIG_T_ Loan_Overdue
<<Trigger>> | Not available BEFORE INSERT OR UPDATE ON T_Loan
BEGIN
--Code to check for fines and raise application
error if needed.
END; _
Check Value CONSTRAINT TC_T Borrower CHECK (Department>99)
Fig. 4-f
Verification
‘Table 1. UML-DMP components mapped on Microsoft Access and Oracle.
database design outweigh the - scheduling - developed by the system analyst. Since the analyst develops -
disadvantages. the model in UML, it also follows that the database designer

Even with this compromise, the new program will allow us
to present database design as a functional successor to the

task of preparing a logical system model. With this view of '

system development, it necessarily follows that the database

designer should begin his/her work from the logical model -

should be using UML, not ERDs.
5. CONCLUSION

We believe that the use of ERDs as the primary database
design tool is being replaced by the use of UML diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



______________________________________
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

Revised Version of the
BBA with Information

1S2002.P0
. iST203
Systems major - Software Tools
for Personal
Productivity
Freshman e

- 152002.1
1ST211 152002.5 - 1ST221 1S2002.2
Fundamentals-of Information 182002.3
Systems Systems in .
Development Organization
(3-0-3) (3-0-3)
Sophomore | ] i 'I
. l‘ L T TR @“l % ]
Ju;ior I gl A
IST311 152002.9 187321 152002.7
Senior Advanced Systems: .
Programming of Analysis
Business Systems Methods
(3-0-3) (4-0-4)

[ 1

182002.4

1IST341 152002.6 ,,.,,,',?,’3';’3,.,,,, S
Management of Design and
Business Network Implementation
(3-2-4) (4-04)
| |
1ST465
Enterprise Electives Minimum
Integration of 9 hours
Systems
(3-0-3)

Notation 1S2002.X indicates equivalent course under *
182002 Curriculum Model

Figure S — Revised IS Curriculum Structure

Therefore, we have changed our database design course so
that the primary tool is UML,; although ERDs are still taught,
their use has been reduced substantially. ~We must
emphasize that this change is not simply a matter of style, or
due to the increasing use of object-oriented software.
Rather, it reflects the growing understanding that for new
systems, database design is not an independent process but is
an integral part of the overall system development process.
UML reflects this view while ERDs do not. Furthermore,
ERDs have an inherent weakness in that they do not support
the specification of business rules and the resulting data
behavior, while UML includes behavior specification as a
fundamental ' component of the system model. As
information systems' and the databases that they require
become increasingly complex, it becomes ' increasingly
difficult to provide appropriate design specifications with
ERDs. Therefore, it is vital that students learn how UML is
used throughout the system  development life cycle,
including the design and implementation of databases.

However, in spite of the increased use of UML and the Data
Modeling Profile, the use of ERDs is by no means a dead
issue. For example, David Kroenke has virtually buried all
references to UML diagrams in an appendix in the latest
(10™) edition of one of his text books (Kroenke, 2006).
Also, ERDs have been used extensively to design and
document existing databases, and are still used in many
organizations to develop new databases or modify existing
ones.” An IS program would do a great disservice to its
students by omitting all use of ERDs. None the less, it is our
believe that, as object-oriented methodologies (particularly
UML) are used more and more extensively to develop new
systems, practitioners- who become familiar with these
methodologies will find little reason to use ERDs as well.

6. ENDNOTES

'o 2005, Computer Associates, Inc.

201999, A component of PowerDesigner 7.0, Sybase, Inc.

91

3 © 2002, Oracle, Inc.




Journal of Information Systems Education, Vol. 17(1)

* © 2004, Visible Systems Corporation

* IBM Rational Rose software is available to universities as
part of the IBM Scholar program.

© “horrower” refers to a person, while “Borrower” is'the class
that represents borrowers.

7 © 2005, InterSystems Corporation

7. REFERENCES

Chen, P. (1976) “The Entity Relationship Model — Toward a
Unified View of Data,” TODS, Vol. 1, No. 1.

Davis, G., Gorgone, J., Cougar, J.D., Feinstein, D., and
Longenecker, H. (1997) “IS ’97 Model Curriculum and
Guidelines for Undergraduate Degree Programs in
Information systems.” Association of Information
Technelogy Professionals.

Dorsey, P. (1998) “Introduction to Object Modeling in
Oracle8,” <www.dulcian.com/papers/Intro_to_Object_ —
Modeling_in_Oracle8.htm>, p. 14.

Gornik, D. ¢2003) “UML Data Modeling Profile,” IBM-
Rational Software, Technical Article TP165, 05/02.

Gorgone, J., Davis, G., Valcich, J.S., Topi, H., Feinstein, D.,
and Longenecker, H., Jr. (2002) “IS 2002 Model
Curriculum and Guidelines for Undergraduate Degree
Programs in Information systems,” Association for

Computing Machinery, Association for Information
Systems, Association for Information Technology -
Professionals.

Kroenke, D. (2006) Database Processing: Fundamentals,
Design, and Implementation, 10" Edition, Prentice Hall,
Englewood Cliffs, NJ.

Kroll, P. and Kruchten, P. (2003) The Rational Unified
Process Made Easy, Addison Wesley, Boston, MA.

Page-Jones, M. (1988) The Practical Guide to Structured
Systems Design, Yourdon Press, Englewood Cliffs, NJ.

Ramakrishnan, R. and Gehrke, J. (1998) Database
Management Systems, McGraw-Hill, New York, NY.

Sharble, R.C. and Cohen, S.S. (1993) “The Object-Oriented
Brewery: A Comparison of Two Object-Oriented
Development Methods,” Software Engineering Notes, Vol.
18, No. 2, pp. 60-73.

Unified Modeling Language, Version 2.0 (2005), © The
Object Management Group, Inc., <www.omg.org>.

Wilkinson, N. (1995) Using CRC Cards, SIGS Books, New
York, NY. :

Yourdon, E. (1989) Modern Structured Analysis, Yourdon
Press, Englewood , NJ.

92

AUTHOR BIOGRAPHIES

Donald Golden is an Associate Professor of Computer and.
Information Science at Cleveland

State University in Cleveland, Ohio. -
His primary research area is systems
analysis and design, particularly with

object-oriented systems.

Victor Matos is an Associate Professor of Computer and
Information Science at Cleveland
State University in Cleveland, Ohio.
His research area - is primarily
database systems

=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096



