Teaching ORDB with UML Class Diagram in an Advanced Database Cour se

Wang, Ming

Journal of Information Systems Education; Spring 2006; 17, 1; Research Library

pg. 73

Journal of Information Systems Education, Vol. 17(1)

Teaching ORDB with UML Class Diagram in an Advanced
Database Course

Ming Wang
California State University, Los Angeles
5151 State University Drive
Los Angeles, CA 90032

ming. wang@calstatela.edu

ABSTRACT

Object-relational database technology emerged as a way of enhancing object-oriented features in relational database
management systems (RDBMSs). In response to this evolutionary change, the author has incorporated the technology into her
advanced database course. This paper presents a teaching case on using UML (Unified Modeling Language) for object-
relational database (ORDB) design and its implementation with Oracle. Course organization, course content, class activities,
and impacts on the students’ learning outcomes are discussed. The paper is intended to provide a guide for database instructors
who desire to incorporate object-relational technology and design in their traditional database courses.

Keyword: UML, Object-relational database, Relational database, Database education, Database course

1. INTRODUCTION

The success of Relational Database Systems (RDBMSs)
cannot be denied, but they experience difficulty when
confronted with the kinds of "complex data" found in
advanced application areas such as geographic locations and
computer aided design (CAD). To meet the challenges,
major database vendors such as Oracle, IBM and Microsoft
have moved to incorporate object-oriented features into their
RDBMSs under the name of object-relational database
management systems (ORDBMSs). In response to the
evolutionary change of ORDBMSs, SQL:1999 started
supporting object-relational features in database management
standardization. SQL:2003 continued this evolution.

An object-relational database model (ORDBM) is a hybrid
of a relational database model (RDBM) and an object-
oriented database model (OODBM). ORDBM is essentially
a relational data model with object-oriented extensions
(Grorge, 2003, Elmasri & Navathe, 2003). As an
evolutionary technology, ORDBM has inherited the robust
transaction and performance-management features of its
relational ancestor and the flexibility of its object-oriented
cousin.

ORDBMSs allow users to take advantage of OODBM and to
maintain a consistent data structure in an existing RDB. With
ORDBMS, database designers can work with familiar
tabular structures and data definition languages (DDLs)
while assimilating new object-management possibilities
(Krishnamurthy er al, 1999). Many organizations have
invested heavily in relational databases for the past decades

73

and are not ready to switch to object-oriented database
management systems (OODBMSs). These organizations
would appreciate ORDBMSs that allow them to take
advantage of the new extensions in an evolutionary way
without losing the benefits of current database features and
functions (Garcia-Molina et al., 2003).

Stonebraker and Moore (1996) conclude that ORDBMSs
will be spurred by the rise of new multimedia applications
and Web applications in traditional organizations. Their
prediction has been vindicated by recent developments in the
database market. Garcia-Molina er al. (2003) indicate that
OODBMSs made limited inroads during the 1990’s, but
interest has waned. Instead of a migration from relational to
object-oriented DBMSs, as was widely predicted around
1990, the vendors of RDBMSs have moved to incorporate
many of the ideas found in object-oriented database
proposals.

The emergence of object-relational technology into the
commercial database market has piqued the database
professional’s interest in conceptual database design and
brought new challenges for IS instructors in teaching
ORDBMS in their database courses. Although the UML
class diagram was not created for database design, it can be
utilized to model ORDB design because it primarily supports
the ORDB’s data representation and functionality.
Transforming a UML class diagram an ORDBM consists of
its logical data structure and data behavior. This is not the
case with the traditional Entity-Relationship (ER) model.
Unlike RDB, object types in ORDB fully support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

encapsulation, where method definitions can be associated
explicitly with object type definitions.

This paper introduces a model of teaching ORDBM using
UML class diagrams with ORDBM design, mapping UML
class diagrams to ORDBM and implementing ORDBM with
Oracle. The paper provides course organization, class
activities, and concludes with a summary of learning
outcomes and a discussion of the significance of this
practice. The paper also presents a case study to illustrate the
design, mapping and implementation of UML class diagram
for ORDBM in details. The ORDBMS script included in the
case study has been tested with Oracle 9i/10g software
packages. The teaching model is based on the author’s
teaching experience in the advanced database course. The
author started teaching UML for ORDB design and
implementing it with Oracle 8i in database courses five years
ago (Wang, 2001). Through experience, a teaching model
has been developed and refined. The paper is intended to
serve as a useful teaching resource for those who are
interested in teaching object-relational technology in their
traditional database courses. Since researchers, major
database vendors, industrial users, and the SQL standards
have warmly embraced ORDBMS, integration of ORDBM
into the advanced database course should become an
essential topic in IS education.

2. COURSE ORGANIZATION AND ACTIVITIES

This paper describes a teaching model for an advanced
database course for seniors in the quarterly academic system.
Students enrolled in this course are required to have a
prerequisite in an introductory database systems course. The
introductory database course covers relational database
concepts, database design, management and implementation.
Conceptual and logical design is covered in three weeks,
normalization in one week, Physical design and database
creation in one week, and structured query language (SQL)
in two weeks. The course project provides students hands-on
experience in Oracle 9i/10G, goes through all the phases of
the database development process and summarizes all the
topics of the course.

The goal of the advanced database system course is to
introduce students to advanced database development
technology and database application development with tools.
With recent advances in object-relational technology and its
acceptance in the database industry, it is important for
undergraduates to understand and implement ORDBMSs
(Urban and Dietrich 2003). It will be appropriate to add this
new topic to the following IS2002 curriculum courses
(Gorgone et al., 2002):

1S2002.8 Physical Design and Implementation with DBMS
1S2002.9 Physical Design and Implementation in Emerging
Environments

1S2002.10 Project Management and Practice

2.1 Course Outline and Activities
Class activities are based on solving problems associated
with complex data in the real world. The strategy is to pick a

mini-world scenario in which students can have hands-on
experience through the learning process. The class activities
concentrate on following topics:

2.2 Re-engineering From Database Creation Script To
A Relational Schema '

Given an Oracle relational database creation script, students
are asked to re-engineer it to a relational schema, load data in
the tables and create database applications with Access. An
order system is the core the e-business system. The
following order database creation script is chosen as an in-
class example for students to refresh their knowledge learned
in their introductory database class.

CREATE TABLE Customer
(Cust_ID
INTEGER NOT NULL,
Cust LName  VARCHAR(25),
Cust FName  VARCHAR(25),
Cust_Zip VARCHAR(10),
CONSTRAINT CUSTOMER PK' PRIMARY KE
(Cust_Id)); .

CREATE TABLE Sales_Order

(Order_ID INTEGER NOT NULL,
Order_Date DATE,
Cust_ID INTEGER,

CONSTRAINT Order_PK PRIMARY KEY (Order_ID),
CONSTRAINT Order FK FOREIGN KEY (Cust_Id)
REFERENCES Customer(Cust_Id));

CREATE TABLE Product (

SKU VARCHAR(10),
Description VARCHAR(50),
Price NUMBER(6,2),

CONSTRAINT Product_ PK PRIMARY KEY (SKU));

CREATE TABLE ORDER_LINE (

Order_ID INTEGER,
SKU
VARCHAR(10),
Order_ Qty INTEGER NOT NULL,

CONSTRAINT  Order Line PK PRIMARY KEY
(Order_Id, SKU),

CONSTRAINT  Order_Line FK1  FOREIGN KEY
(Order_Id) REFERENCES Sales_Order(Order_Id),
CONSTRAINT Order_Line_FK2 FOREIGN KEY (SKU)
REFERENCES Product(SKU));

Figure 1 Relationai Scheﬁia of the Order System

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



)

Journal of Information Systems Education, Vol. 17(1)

Students are asked to install the above SQL script into their
own Oracle accounts, export the four tables to a Microsoft
Access DBMS using an Oracle ODBC link, and generate the
following relational schema with referential integrities via
Access with the guide provided by the instructor.

Further students are asked to normalize the table up to the
Third Normal Form (3rd NF) and to indicate the normal
form of each table based on their functional dependency
analysis. The normalization form table template is shown as
follows:

1st NF | 2ndNF [ 3rdNF

Customer

Product

Order Line

Sales Order
Table 2 Normalization Form Table Template *

* Write down an X in the table to show the normal form of

each relational table.

Students are also asked to enter three to five rows of data in

each of the above tables, to create order application forms
and report based on the above relational schema using
Access. Not only do the activities review what students have
learned in their introductory database course, they also lay
the foundation for learning the UML class diagram for
ORDB development.

2.1.1 Conversion of the Relational Schema to an ER
Diagram: Based on the above relational schema, students
are asked to convert it to an ER diagram, to illustrate its
business rules and to indicate the normal forms for the tables
after functional dependency analysis.

Further students are asked to write down the business rules
for the above ER diagram as follows:

One customer may or may not originate many orders.
One order must be originated by only one customer.

One sales order may contain many ordered lines.
One order line must be contained in only one sales order.

One product may or may not be sold for many order lines.
One order line must sell only one product.

2.12 Transformation from an ER diagram to a UML
Class diagram: Given the mapping rules in Table 1,
students transform the above re-engineered ER diagram to an
UML class diagram. The students’ mastery of UML class
diagrams is demonstrated by appropriately mapping from an
ERD to a UML diagram or vice versa.

Customer
h<PK> Cust_id ; Integer
LCust_Name : Object
-Cust_Type : Char
HCust ZIp : Intager
. Ordar_Line
LU | oS b 1D e |
-<PK>SKU : String -
0.2 Is originated -Order_Qty : Intager
Sales_Order : "
b<PK> Ord_ID : Integer ( 1 1. T R T
Onder Daio: s~ | | Sovctoion S
FCust_Id : Intager .  Price : M;ﬂal
~containg :

Figure 3 Product Order UML Class Diagram

ERD and UML have similarities. The rules of transformation
from ERD to UML are summarized in Table 1.

Of course, the UML class diagram provides additional
advanced concepts that are beyond the ERD scope.
Aggregation and composition are association details that are
absent from the ERD. Aggregation is an association that
models a whole-part relationship. Composition is a stronger
aggregation association. In Figure 3, the empty diamond
symbol shows the aggregation relationship between Product
and Sale Order class. In Figure 4 in Section 3, the solid

Figure 2 ER Diagram of the Order System

. 'Sales Order ; - o s
s e diamond symbol shows a composition relationship between
PK |Qeder 1D Bike and Wheel, Crank and Stem.
- Order_Date
SIS L] Y- Onginetes - O] Cust_ID
PK |Cust (D ; ERD UML
x 3
Cust_LName ! Entity Class
gzzz_;r;ame Confains Composite entity Associative class
= H Attributes Attributes
‘ Roles Roles
E— .Ordec Line | Connectivity Multiplicity
- Produet PK | Quder 1D Participation Multiplicity
PK | SKU - H~ =~ 45-Sold ~ - ~O¢ PK | SKU Cardinality Muttiplicity
Description Order_Qty Generalization/Specialization Inheritance
Price Relationship Association

Table 1 Transforming from ERD and UML*
* Modified from Chaudhri, A. And Zicari, R. 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

2.13 Implementation of the UML Class Diagram for
ORDB Design: Given the above UML class diagram for the
RDB, students are asked to extend it to ORDB by adding the
appropriate object types, methods, collection types,
inheritance, and object-views using Oracle 9i /10g.
SQL:1999 and SQL:2003 object type syntax is used to
manipulate and query the developed ORDB. The following
object-relational features are implemented (see the case
study in Section 4 in details:

User-defined object types

User-defined methods

VARRAY for multi-value attribute

Nested table for composition

Inheritance

Object views on a relational table

2.1.4 Development of database applications using Oracle
Tools: Based on the created Oracle ORDB, students are
asked to develop event triggers, cursors, and object views of
an object hierarchy with PL/SQL and embed them in Oracle
forms and reports using Oracle Form Builder and Report
Developers.

2.1.5 Development of Database Applications with
Java Server Technology: By querying over objects to the
created Oracle ORDB, students develop database
applications with Java Database Connectivity (JDBC) and
Java Server Page (JSP)/Java Servlet. JDBC essentially
defines the implementation of SQL in the database using the
Java language. Its definition ranges from the low-level APl
that connects and communicates with the database to the
high-level API used to move data to and from the Java
application. It works as a connector and transiator between
the database and Java applications.

Table 3 shows a set of JDBC programming templates that
guide students in writing database applications. A set of the
four JDBC console templates (insertion, deletion, update,
and selection) are the theme of the course. JDBC Graphical
User Interface (GUI) application, JSP Web application, JSP
PL/SQL application and JavaBean application templates are
derived from the set of four JDBC console templates on
Unix. The menu interface template integrates the four
application templates and calls the four operations. Six sets
of program templates utilized in the course are illustrated
from top-down sequentially in the following table (Wang,
2003).

Application | Menu

Templates | Interface
JDBC Unix LD, US Java file
JDBCGUI I, D,U,S JavaSwing
JSPServiet LD US Index.html file
JDBC&PL/SQL | LD, U,S glvea Swing
JSP&PL/SQL LD, US Index.html file
JSP&JavaBean LD, index.html file

S = Selection I =Insertion D =Deletion U =Update
Table 3 Database Web Application Templates

76

3. CASE STUDY: ORDB DESIGN WITH UML

3.1 Case Scenario

Pacific Bike Traders assembles and sells bikes to customers.
The company currently accepts customer orders online and
wants to be able to track orders and bike inventory. The
existing database system cannot handle the current
transaction volume generated by employees processing
incoming sales orders. When a customer orders a bike, the
system must confirm that the ordered item is in stock. The
system must update the available quantity on hand to reflect
that the bike has been sold. When Pacific Bike Traders
receives new shipments, a receiving clerk must update the
inventory to show the new quantity on hand. The system
must produce invoices and reports showing inventory levels.

3.2. Business Rules
The following business rules are developed for the new
database system:

One customer may or may not originate many orders.
One order must be originated from one and only one
customer.

One order must contain one or more bikes.
One bike may or may not be in many orders.

One employee may or may not place many orders.
One order must be placed by one and only one employee.

One bike is composed with a front wheel, rear wheel, crank,
and stem.

One front wheel, rear wheel, crank, and stem compose one
bike.

One employee must be either a full-time or part-time.
One full-time or part-time employee must be an employee.

3.3. UML Class Diagram

The Pacific Trader Database design is illustrated with the
UML class diagram in Figure 4. Each of the classes is
displayed as a rectangle that includes three sections: the top
section gives the class name; the middle section displays the
attributes of the class; and the last section displays methods
that operate on the data in the object. Associations between
classes are indicated with multiplicity (“min..max.”
notation). Inheritance is indicated with an empty triangle.
Aggregation is marked with an empty diamond, whereas
composition is marked with a solid diamond. Aggregation
models a whole-part relationship where individual items
become elements in a new class. In Figure 4, a sales order is
made of line items (bikes). Aggregation is indicated by a
small empty diamond next to the SalesOrder class. The
dotted line links to the associative class generated from the
many-to-many relationship.

4. CASE STUDY: IMPLEMENTATION OF ORDBM

Based on the Pacific Trader’s UML class diagram, the
following ORDB features are implemented with Oracle
9i/10g. The implementation shows how the UML class
diagram maps and supports major ORDB features. For the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Information Systems Education, Vol. 17(1)

Customer
P> cust_id © Integer Orderline
-name ; Object <PK> arder_id : Integer
Haddress | Object L<PK> flem_id ; Integer
<muttivalued>phons : Objact Lquantity : Integer
getFuliNamel) -sale_price : Decimal
Liine_amount | Decimal
1.1 -originates Hgetlinellem()
Hupdatel Insltam()
0. -is originated 1
{
Q.* 1 1.0
SalesOrder { Bike
<P ord_id : Integer <PK>serigl_no : Integer
Lord_date : Date ~contains Linodel_type : Sting
-eustjd © Integer -qty_on_hand : Integer
Feip id ; intager Liist_price : Dacimal
+updateOrder(} +updatenventory()
+getBike()
| 0.* -places I
‘ 1
| 1.1 «is placad
Employee 1 1
L<PK> amp_id . integar 2
-name : Objact
~address + Object Whee! Crank Stem
-phone : Object LSKU - Integer FSKU ¢ integer -SKU# | Integer
+getEmployeed) -rien ; Stri Fslze : Siring -size : String
Lspoke ; String ; bwaight - Sting - Lwaight : String
Hire * St rgetCrankl() rgetStem()
+getWheel(}
FullTime PartTime
Fsalary : Decimml | [Tate m{
Hupdale: ¥ HupdateRate()

Figure 4 Pacific Trader’s UML Class Diagram

sake of simplicity, it is assumed that referential integrity
constraints will be added later. The following object-
relational features are implemented for the case:

The following SQL statements define the object types:
address_ty and name_ty.

CREATE OR REPLACE TYPE address_ty AS OBJECT

4.1 User-Defined Object Types (street NVARCHAR2(30),
User-defined data types (UDT) or abstract data types (ADT) city VARCHAR2(25),
are referred to as object types. Object types are used to state CHAR(2),

define either object columns or object tables. The following  zip NUMBER(10));

UML Customer class is defined with object columns.

Customer
-<PK> cust_id : integer
-name : Object
-address : Object
-<multivalued>phone : Object
+getFullName()

CREATE OR REPLACE TYPE name_ty AS OBJECT (
f name VARCHAR2(25),

| name VARCHAR2(25),

initials  CHAR(2));

Mapping the above customer class, the following statement
is used to create the Customer table with the CustName and

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

CustAddress object columns using name_ty and address_ty.  The following SELECT statement calls the method defined

The column phone will be added to the table later. in the Customer table.

CREATE TABLE Customer( SELECT c.custName.full_name ( ), c.custAddress.City
Cust_ID Number(5), FROM customer c;

CustName name_ty,

CustAddress address_ty); ' . k;:“;i STNAME, }?Um ‘L”“LZ&»‘}MT NAME ‘Qf‘ CUSTADDRESS.CI

h‘ommy Ford ;fDes Moines

Type constructors are used to insert object data into the table.
The following INSERT statement uses constructors
name_ty() and address_ty() to add data into the two object The name_ty object type is associated with the full_name ()

columns. method, which concatenates the first and last names together.

If this functionality is embedded in the server, it allows the
INSERT INTO Customer VALUES ( functionality to be shared by all the applications, instead of.
1, name_ty (‘Tommy"', 'Ford', 'TF'), being defined in each application. The specified methods are
address_ty (‘3 Pine Street', 'Des Moines', '1A", 52345)); privately encapsulated in the object body. Reusability of

methods comes from the ability to store persistent standard
The following SELECT statement retrieves data from object ~ data type and functionality on the server, rather than having
columns in the Customer table. The syntax of the second them coded in each application.
SELECT statement displays an individual attribute of the
Address object column. The letter "c" used as a prefix to  The structure of an object type includes an interface and a
Address is an alias of the faculty table. Since Address was  body. Methods are defined in the object interface and
created as an object column, it is referred to by implemented in the object body. In Oracle, the public

table_name.object_column_name.data. interface declares the data structure and the method header

shows how to access the data. This public interface serves as
SELECT c.custName.l_name, c.custAddress.City,  an interface to applications. The private implementation fully
c.custAddress.state FROM Customer c; defines the specified methods. The rule is to modify the body

without changing the public interface and without affecting
the client program.

[Ford Des Moines  [lA Public interface

Specification: .
SELECT * from Customer; Attribute declarations
Method specifications
n AMESIN X STATE, ZIP Private implementation
= o : Body:
. ! DDRESS_TY(3 Pine i i
1 AME'_T‘Y( Tomm}’ 5 Street', 'Des_MogneS', MCthOd lmplementatlons
Ford', "TF) 1A', 52345) '

The following statement displays the public interface of the
object type name_ty. The output of the name_ty public

4.2. User-Defined Methods . . -
Once an object type is defined, the user can define metho ds interface shows attributes and method headers as follows:

for each object type for data access. Methods define the
behavior of data. The following statements modify the DESC name_ty

name_ty interface and add a method to the defined object \ : ,
type name_ty. The first statement adds the method header to [Na Nuli? % L .
the object interface. The second statement adds the method [F_NAME | WARCHAR2(25)
implementation to the body of the object type. ' L NAME l VARCHARZ(25)
ALTER TYPE name_ty [INITIALS | ICHAR(2)
ADD MEMBER FUNCTION  full name METHOD
RETURN VARCHAR2 CASCADE; MEMBER FUNCTION FULL_NAME
' RETURNS VARCHAR2
CREATE OR REPLACE TYPE BODY, name_ty
AS MEMBER FUNCTION full_name 4.3. VARRAY for Multi-Value Attribute
RETURN VARCHAR2 IS VARRAY is a collection type in ORDBMSs. A VARRAY
BEGIN consists of a set of objects that have the same predefined data
RETURN(f name || ' ' || 1_name); type in an array. In a relational model, multi-valued
END full_name; attributes are not allowed in the first normalization form. The
END; solution to the problem is that each multiple-valued attribute

is handled by forming a new table. If a table has five multi-

78

-____________________________________________
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 17(1)

valued attributes, that table would have to be split into six
tables after the First Form of normalization. To retrieve the
data back from that original table, the student would have to
do five joins across these six tables. ORDBM:s allow multi-
valued attributes to be represented in a database. ORDBMSs
allow users to create the varying length array (VARRAY)
data type to be used as a new data storage method for multi-
valued attributes. The following statement defines a
VARRAY type of three VARCHAR2 strings named
varray_phone_ty to represent a list of three phone numbers
in the Customer table.

CREATE TYPE varray_phone ty AS VARRAY(3) OF
VARCHAR2(14),
ALTER TABLE Customer
varray_phone_ty);
UPDATE customer )
SET phones = (varray_phone_ty('(800)555-1211',
'(800)555-1212','(800)555-1213")
WHERE cust_id=1;

ADD (phones

INSERT INTO values
(varray_phone_ty('(800)555-

1211,'(800)555-1212",'(800)555-1213"));

customer(phones)

The above example shows that using the varying length array
(VARRAY) data type can not only solve the Non-1NF
problem for the customer table, but also can speed up the
query process on customer data.

4.4. Nested Table for Composition Association

A nested table is a table that can be stored within another
table. With a nested table, a collection of multiple columns
from one table can be placed into a single column in another
table. Nested tables allow .user to embed multi-valued
attributes into a table, thus forming an object.

Bike
-<PK>serial_no : integer
-model_type : String
-qty_on_hand : Integer
-list_price : Dacimal
{rupdatetnventory(}

b

1

2 1 1

Wheet Crank Stem
— -y
-SKU : Integer -SKU : Integer -SKU# . Integer
-rim : String -size : String -size : String
-spoke : String [-weight : String -weight : String
-tire : String +getCrank() +getStem()
+getWheel()

CREATE TYPE wheel_type AS OBJECT(
SKU  VARCHAR2(15),
rim  VARCHAR2(30),
spoke VARCHAR2(30),
tire VARCHAR2(30));

CREATE TYPE crank_type AS OBJECT

(SKU VARCHAR2(15),
crank_size VARCHARZ2(15),
crank_weight VARCHAR2(15));

CREATE TYPE stem_type AS OBJECT
(SKU  VARCHAR2(15),
stem_size = VARCHARZ2(15),
stem_weight VARCHAR2(15)
)

The following statement creates nested table types:

wheel_type, crank_type and stem_type:

CREATE TYPE nested_table_wheel_type AS TABLE OF
wheel_type;

CREATE TYPE nested_table_crank type AS TABLE OF
crank_type;

CREATE TYPE nested_table stem_type AS TABLE OF
stem_type;

The following example creates the table named Bike with
four nested tables:

CREATE TABLE bike (

serial_no INTEGER PRIMARY KEY,
model_type VARCHAR2(20),
front_wheel

nested_table wheel_type,  rear_wheel
nested_table_wheel_type, crank
nested_table_crank_type, stem

nested_table stem_type

)
NESTED TABLE
front_wheel
STORE AS
front_wheel,
NESTED TABLE
. rear. wheel
STORE AS
rear_wheel,
NESTED TABLE
crank
STORE AS
nested_crank,
NESTED TABLE
stem
STORE AS
nested_stem;

Finally the next statement inserts a row into the Bike table
with nested tables using the three defined constructors:

INSERT INTO bike VALUES (1000, 'K2 2.0 Road',
nested_table_wheel_type(wheel_type('w7023',
'4R500', '32 spokes', '700x26¢' )),
nested_table_wheel_type(wheel_type(‘w7023',
'4R500', '32 spokes', '700x26¢' )),
nested_table_crank_type(crank_type('c7023',
'30X42X52', '4 pounds")),
nested_table_stem_type(stem_type('s7023',
'‘M5254', '2 pounds")));

The following statement shows the nested tables in the table
Bike.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Information Systems Education, Vol. 17(1)

. SLRIAL ‘RONT WI{EEL 2 kaU Rl

REAR WHEEL

'HRE)

'w7023', '4R500', 'w7023', '4R500',

(WHEEL_TYPE
1000
32 spokes', '700x26¢'))

WHEEL TYPE

'32 spokes', '700x26¢"))

3

0X42X52', '4 pounds'))

l(CRANK_TYPE('c7023‘

, |(STEM_TYPE('s7023',
M5254', 2 pounds')) )

The above example shows that using the NESTED TABLE
can implement composition association, store multiple parts
and also speed up the data retrieval speed for the Bike table.

4.5 Object type Inheritance

ORDBMSs allow users to define hierarchies of data types.
With this feature, users can build subtypes in hierarchies of
database types. If users create standard data types to use for
all employees, then all of the employees in your database
will use the same internal format. Users might want to define
a full time employee object type and have that type inherit
existing attributes from employee_ty. The full_time_ty type
can extend employee_ty with attributes to store the full time
employee’s salary. The part_time_ty type can extend
employee_ty with .attributes to store the part-time
employee’s hourly rates and wages. Inheritance allows for
the reuse of the employee_ty object data type. The details are
illustrated in the following class diagram:

Employee
-<PK> emp_id : Integer
-name : Object
-address : Object
-phone : Object

+getEmployee()

FullTime PartTime
-salary : Decimal -rate : Decimal
TupdateSalary() -hours : Integer

La +updateRate()

Object type inheritance is one of new features of Oracle 9i.
For employee_ty to be inherited from, it must be defined
using the NOT FINAL clause because the default is FINAL,
meaning that object type cannot be inherited. Oracle 9i can
also mark an object type as NOT INSTANTIABLE; this
prevents objects of that type from being derived since
employee_ty is a super_type. Users can mark an object type
as NOT INSTANTIABLE when they use the type only as
part of another type or as a super_type with NOT FINAL.

EMP_ID

INI T ‘\Lh)

AME_TY

1001 Jim', 'Fox', 'K ")

The following example marks address type as NOT

(626)789-1234')

INSTANTIABLE:

CREATE TYPE employee_ty AS OBJECT (
emp_id NUMBER,
SSN NUMBER,
name name_ty,
dob DATE,
phone varray_phone_ty,
address address_|

) NOT FINAL NOT INSTANTIABLE;

To define a new subtype full time ty inheriting attributes
and methods from existing types, users need to use the
UNDER clause. Users can then use full_time_ty to define
column objects or table objects. For example, the following
statement creates an object table named FullTimeEmp.

CREATE TYPE full_time_ty UNDER employee_ty
( Salary NUMBER(8,2));
CREATE TABLE FullTimeEmp of full_time_ty;

The preceding statement creates full_time_typ as a subtype
of employee_typ. As a subtype of employee_ty, full_time_ty
inherits all the attributes declared in employee_ty and any
methods declared in employee_ty. The statement that defines
full_time ty specializes employee_ty by adding a new
attribute “salary”. New attributes declared in a subtype must
have names that are different from the names of any
attributes or methods declared in any .of its supertypes,
higher up in its type hierarchy. The following example
inserts row into the FullTimeEmp table. Notice that the
additional salary attribute is supplied.

INSERT INTO FullTimeEmp VALUES (1000, 123456789,
name_ty('Jim', 'Fox', 'K'),'12-MAY-1960',
varray_phone_ty('(626)123-5678', '(323)343-2983',
'(626)789-1234"),

Address_ty ('3 Lost Spring Way', 'Orlando', 'FL', 32145),
45000.00);

SELECT f.emp_id, f.name, f.phone FROM FullTimeEmp f}

s

80

.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

A supertype can have multiple child subtypes called siblings,
and these can also have subtypes. The following statement
creates another subtype part_time_ty under Employee_ty.

CREATE OR REPLACE TYPE part_time ty UNDER
employee_ty (

rate Number(7,2),

hours Number(3))NOT FINAL,;

CREATE TABLE PartTimeEmp of part_time_ty;

A subtype can be defined under another subtype. Again, the
new subtype inherits all the attributes and methods that its
parent type has. For example, the following statement
defines a new subtype student part time _ty under
part_time_ty. The new subtype inherits all the attributes and
methods of student_part time _ty and adds two attributes.

CREATE TYPE student_part_time_ty UNDER part _time_ty
(school VARCHAR2(20), year VARCHAR2(10));

4.6. Object Views on a Relational Table

Object view allows users to develop object structures in
existing relational tables. Object view creates a layer on top
of the relational database so that the database can be viewed
in terms of objects (Loney & Koch, 2002). Object views are
virtual object tables, which allow you to add Object-Oriented
(OO) structures on top of your existing relational tables. This
enables you to develop OO features with existing relational
data. It is a bridge between the relational database and OO
programming. The following statements show how to create
the SalesOrder table:

CREATE TABLE SalesOrder (
ord_id NUMBER(10),
ord_date DATE,
cust_id NUMBER(10),
emp_id NUMBER(10));

INSERT INTO SalesOrder VALUES
(100,'5-Sep-05', 1, '1000");

INSERT INTO salesOrder VALUES
(101, '1-Sep-05', 1, '1000");

The following statements show how to create an object view
on the top of the SalesOrder relational table:

CREATE TYPE SalesOrder_type AS OBJECT(
sales_ord_id NUMBER(10),

ord_date DATE,

cust_id NUMBER(10),

emp_id NUMBER(10));

CREATE VIEW customer_order_view OF SalesOrder_type
WITH OBJECT IDENTIFIER (sales_ord_id)

AS

SELECT o.ord_id, o.ord_date, o.cust_id, o.emp_id

FROM salesOrder o
WHERE o.cust_id=1;
The following SQL statement generates the view output:
SELECT * FROM customer_order_view;

81

100 [05-SEP-05 [1 [1000
1101 01-SEP-05 |1 [1000
The object view is a bridge that can be used to create object-
oriented applications without modifying existing relational
database schemas. By calling object views, relational data
can be retrieved, updated, inserted, and deleted as if such
data were stored as objects. The following statement can
retrieve Analysts as object data from the relational
SalesOrder table. Using object views to group logically-

related data can lead to better database performance,

5. LEARNING OUTCOMES

Teaching ORDBMSs with the UML class diagram in the
advanced database course provides students hands-on
experience with the challenge of the new object-relational
technology. At the end of the course, students are able to
utilize the UML class diagram to design ORDB, implement
it with Oracle 9i/10g, and create ORDB applications using
various tools. As a result, the following learning outcomes
are demonstrated at the end of the class. Students are able to:

1. Transform an ER diagram to a UML class diagram

2. Design ORDB using UML class diagrams

3. Create object columns and object tables with user-
defined object types and methods

4.  Solve non-1NF problems with the VARRAY type

5. Implement composition associations with the
NESTED TABLE type

6. Define object type inheritance

.7.  Develop database applications using PL/SQL and

Oracle tools

8. Deploy database applications on the Web with

persistent data in ORDB

ORDB technology helps students to better understand object-
oriented principles such as encapsulation, inheritance, and
reusability. During the learning process, they have reviewed
the object-oriented paradigm they learned from their
previous programming courses and are able to tie it to
ORDBMS and object-oriented system design. With a grasp
of ORDB technology, students are able to make their
database design more structured and utilize data in a more
reusable way. With object reuse, standard adherence, and
defined access paths, students are able to create a de facto
standard for database objects and multiple database
applications. In addition, they have learned to solve complex
database problems with object-relational technology, to
eliminate potential database complexity, and to improve
database performance. The motivation to learn in class is
high because students realize that object-relational
technology is an important methodology that will help their
career development in a competitive job market.

6. CONCLUSION

Using a UML class diagram for ORDB design has great
significance in advanced system development. UML class




Journal of Information Systems Education, Vol. 17(1)

diagrams are used to show the primary entities or objects in
the system. They are the most important tools used in
systems design. Event models such as a sequence, activity,
or state chart diagrams are based on the class diagrams that
illustrate the timing of various events and show how
messages are passed between objects on the system.
Eventually, ORDB design will become an essential
component in object-oriented information systems.

The beauty of ORDBMSs is reusability and sharing
Reusability mainly comes from storing methods in object
types and performing their functionality on the ORDBMS
server, rather than have it coded in each application. Sharing
comes from using user-defined standard data types to make
database structure more standardized (Connolly & Begg,
2005). If multiple applications use the same set of database
objects, then a de facto standard for the database objects has
been created, and these objects can be extended (Price,
2002). Furthermore, ORDBMSs have advantages in solving
non- INF problems in RDB and in speeding up query
processes with collection types. To sum up, object-relational
technology can be utilized to improve some weaknesses of
RDB. UML class diagram is an appropriate tool to model the
ORDB.

One of the major criticisms of ORDBMS is that its
complexity results in the loss of the essential simplicity and
purity of the relational database model. That might be so for
those traditional database users who do not know object-
oriented technology. However, the author found
implementation of ORDBMSs at the IS senior level to be
straightforward, because these students have already grasped
the concept of relational databases and the object-oriented
paradigms, and have learned either Java or C++.

7. REFERENCES

Connolly, T., and Begg C. 2005. Database systems: A
practical approach to design, implementation, and
management, 4th Ed. Addison Wesley

Chaudhri, A. And Zicari, R. 2000. Succeeding with object
database: A practical look at today’s implementations with
Java and XML, Wiley.

Elmasri, R. & Navathe, S. 2003. Fundamentals of Database
Systems, 4th Edition, Page 44, Addison Wesley.

Fortier, P. May 1999 SQL3: Implementing the Object-
Relational Database, Osborne McGraw-Hill,

Garcia-Molina, H., Ullman, J. & Widom, J. 2003. Database
Systems: The Complete Book, Prentice Hall, Upper Saddle
River, NJ. Page 166.

Grorge, J., Batra, D., Valacich, J. and Hoffer, J., 2003.
Object-oriented systems analysis and design, Prentice Hall,
Upper Saddle River. Page 242.

Gorgone, J., Davis, G., Valacich, J., Topi, H,, Feinsytein, D.
and Longenecker, H., 2002. “IS 2002 model curriculum
and guidelines for undergraduate degree programs in

82

information systems, Association for Information Systems.
URL:
http://192.245 222.212:8009/1S2002Doc/Main_Frame.htm

Krishnamurthy, Banerjee and Nori, 1999. Bringing object-
relational technology to the mainstream, Proceedings of
the ACM SIGMOD International Conference on
Management of Data and Symposium on Principles of
Database Systems, May 31 - June 3, Philadelphia, PA

Loney, K. & Koch, G. 2002. Oracle 9i: The complete
reference, Oracle Press/McGraw-Hill/Osborne.

Price, J. 2002. Oracle9i, JDBC Programming, Oracle
Press/McGraw-Hill/Osborne

Stonebraker M. and Moore, D. 1996. Object-relational
DBMSs: the Next Great Wave. San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

Urban, S. and Dietrich, S. 2003, Using UML class diagrams
for a comparative analysis of relational, object-oriented,
and object-relational database mappings, SIGCSE
Bulletin, Volume 33 Issue 1, p 21-25

Wang, M. 2001. Implementation of object-relational DBMSs
in a relational database course: ACM SIGCSE Bulletin,
Volume 33, Issue 1 February 2001, p 367-370

Wang, M. 2003. "E-business application development with
java technology and oracle: The Fortune Invest Inc. Case"”,

Journal of Information Systems Education, 14(3). 293-299.

AUTHOR BIOGRAPHY

Ming Wang teaches in the Department of Computer
Information Systems at California State
University in Los Angeles. She received
her Ph. D. from Southern Illinois
University in 1993 and taught previously
at Embry-Riddle Aeronautical
University in Daytona Beach, Florida.
She has more than 20 publications in
refereed journals and books, and more
than a dozen of publications in
international conference proceedings. Her current research
interests are in ERP, e-commerce globalization, e-service
quality, e-satisfaction, agent technology, and Information
Systems education.

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096



