
Journal of Information Systems Education, Vol. 13(2)

 95

Transaction Management in Distributed Database
Systems: the Case of Oracle’s Two-Phase Commit

Ghazi Alkhatib

Senior Lecturer of MIS
Qatar College of Technology

Doha, Qatar
Alkhatib@qu.edu.sa

and

Ronny S. Labban

Computer & Communications Engineer
Consolidated Contractors International Company

Athens, Greece
r.s.labban@ieee.org

ABSTRACT

Distributed database systems (DDBS) pose different problems when accessing distributed and replicated databases.
Particularly, access control and transaction management in DDBS require different mechanism to monitor data
retrieval and update to databases. Current trends in multi-tier client/server networks make DDBS an appropriated
solution to provide access to and control over localized databases. Oracle, as a leading Database Management System
(DBMS) vendor employs the two-phase commit technique to maintain consistent state for the database. The objective
of this paper is to explain transaction management in DDBS and how Oracle implements this technique. An example
is given to demonstrate the step involved in executing the two-phase commit. By using this feature of Oracle,
organizations will benefit from the use of DDBS to successfully manage the enterprise data resource.

Keywords: Transaction management, two-phase commit, distributed database systems, Oracle database

I. INTRODUCTION TO DISTRIBUTED
DATABASE SYSTEMS (DDBS)

Distributed database systems (DDBS) are systems that
have their data distributed and replicated over several
locations; unlike the centralized data base system
(CDBS), where one copy of the data is stored. Data
may be replicated over a network using horizontal and
vertical fragmentation similar to projection and
selection operations in Structured Query Language
(SQL). Both types of database share the same
problems of access control and transaction
management, such as user concurrent access control
and deadlock detection and resolution. On the other
hand, however, DDBS must also cope with different
problems.

Access control and transaction management in DDBS
require different rules to monitor data retrieval and
update to distributed and replicated databases. Oracle,
as a leading Database Management Systems (DBMS)
employs the two-phase commit technique to maintain
a consistent state for the databases. The objective of
this paper is to explain transaction management in
DDBMS and how Oracle implements this technique.
To assist in understanding this process, an example is
given in the last section. It is hoped that this
understanding will encourage organizations to use and
academics to discuss DDBS and to successfully
capitalize on this feature of Oracle. The next section
presents advantages, disadvantages, and failures in
Distributed Database Systems. (Connolly et al., 1997)

Journal of Information Systems Education, Vol. 13(2)

 96

Subsequent sections provide discussions on the
fundamentals of transaction management, two-phase
commit, Oracle’s implementation of the two-phase
commit, and, finally, an example on how the two-
phase commit works.

1.1 Advantages of Distributed DBS
Since organizations tend to be geographically
dispersed, a DDBS fits the organizational structure
better than traditional centralized DBS. Each location
will have its local data as well as the ability to get
needed data from other locations via a communication
network. Moreover, the failure of one of the servers
at one site won’t render the distributed database
system inaccessible. The affected site will be the only
one directly involved with that failed server. In
addition, if any data is required from a site exhibiting
a failure, such data may be retrieved from other
locations containing the replicated data.

The performance of the system will improve, since
several machines take care of distributing the load of
the CPU and the I/O. Also, the expansion of the
distributed system is relatively easy, since adding a
new location doesn’t affect the existing ones.

1.2 Disadvantages of Distributed DBS
On the other hand, DDBS has several disadvantages.
A distributed system usually exhibits more complexity
and cost more than a centralized one. This is true
because the hardware and software involved need to
maintain a reliable and an efficient system. All the
replication and data retrieval from all sites should be
transparent to the user. The cost of maintaining the
system is considerable since technicians and experts
are required at every site.

Another main disadvantage of distributed database
systems is the issue of security. Handling security
across several locations is more complicated. In
addition, the communication between sites maybe
tapped to.

1.3 Failures in Distributed DBS
Several types of failures may occur in distributed
database systems:

Transaction Failures: When a transaction fails,
it aborts. Thereby, the database must be restored to the
state it was in before the transaction started.
Transactions may fail for several reasons. Some
failures may be due to deadlock situations or
concurrency control algorithms.

Site Failures: Site failures are usually due to
software or hardware failures. These failures result in
the loss of the main memory contents. In distributed

database, site failures are of two types:
1. Total Failure where all the sites of a distributed

system fail,
2. Partial Failure where only some of the sites of

a distributed system fail.

Media Failures: Such failures refer to the failure
of secondary storage devices. The failure itself may be
due to head crashes, or controller failure. In these
cases, the media failures result in the inaccessibility of
part or the entire database stored on such secondary
storage.

Communication Failures: Communication
failures, as the name implies, are failures in the
communication system between two or more sites.
This will lead to network partitioning where each site,
or several sites grouped together, operates
independently. As such, messages from one site won’t
reach the other sites and will therefore be lost. The
reliability protocols then utilize a timeout mechanism
in order to detect undelivered messages. A message is
undelivered if the sender doesn’t receive an
acknowledgment. The failure of a communication
network to deliver messages is known as performance
failure, (Ozsu et al., 1991).

2. FUNDAMENTALS OF TRANSACTION
MANAGEMENT

Transaction Management deals with the problems of
keeping the database in a consistent state even when
concurrent accesses and failures occur, (Ozsu et al.,
1991).

2.1 What is a Transaction?
A transaction consists of a series of operations
performed on a database. The important issue in
transaction management is that if a database was in a
consistent state prior to the initiation of a transaction,
then the database should return to a consistent state
after the transaction is completed. This should be done
irrespective of the fact that transactions were
successfully executed simultaneously or there were
failures during the execution, (Ozsu et al., 1991).
Thus, a transaction is a unit of consistency and
reliability. The properties of transactions will be
discussed later in the properties section.

Each transaction has to terminate. The outcome of the
termination depends on the success or failure of the
transaction. When a transaction starts executing, it
may terminate with one of two possibilities:
1. The transaction aborts if a failure occurred
during its execution
2. The transaction commits if it was completed
successfully.

Journal of Information Systems Education, Vol. 13(2)

 97

Figure 1a shows an example of a transaction that
aborts during process 2 (P2). On the other hand,
Figure 1b shows an example of a transaction that
commits, since all of its processes are successfully
completed.

2.1 Properties of Transactions

A Transaction has four properties that lead to
the consistency and reliability of a distributed data
base. These are Atomicity, Consistency, Isolation, and
Durability, (Ozsu et al., 1991).

Atomicity. This refers to the fact that a

transaction is treated as a unit of operation.
Consequently, it dictates that either all the actions
related to a transaction are completed or none of them
is carried out. For example, in the case of a crash, the
system should complete the remainder of the
transaction, or it will undo all the actions pertaining to
this transaction. The recovery of the transaction is
split into two types corresponding to the two types of
failures: the transaction recovery, which is due to the
system terminating one of the transactions because of
deadlock handling; and the crash recovery, which is
done after a system crash or a hardware failure.

Consistency. Referring to its correctness, this
property deals with maintaining consistent data in a
database system. Consistency falls under the subject
of concurrency control. For example, “dirty data” is
data that has been modified by a transaction that has
not yet committed. Thus, the job of concurrency
control is to be able to disallow transactions from
reading or updating “dirty data.”

Isolation. According to this property, each
transaction should see a consistent database at all
times. Consequently, no other transaction can read or

modify data that is being modified by another
transaction. If this property is not maintained, one of
two things could happen to the data base, as shown in
Figure 2:

a. Lost Updates: this occurs when another trans-
action (T2) updates the same data being modi-
fied by the first transaction (T1) in such a
manner that T2 reads the value prior to the
writing of T1 thus creating the problem of
loosing this update.

b. Cascading Aborts: this problem occurs when
the first transaction (T1) aborts, then the trans-
actions that had read or modified data that has
been used by T1 will also abort.

Time T1 T2
Time 1 Read x
Time 2 X=x*2 Read x
Time 3 Write x x=x+20
Time 4 Write x

Time T1 T2
Time 1 (…) (…)
Time 2 (…) (…)
Time 3 ABORT ABORT

Durability. This property ensures that once a
transaction commits, its results are permanent and
cannot be erased from the database. This means that
whatever happens after the COMMIT of a transaction,
whether it is a system crash or aborts of other
transactions, the results already committed are not
modified or undone.

3. TWO-PHASE COMMIT PROTOCOL

The Two-Phase Commit Protocol (2CP) has two types
of node to complete its processes: the coordinator and
the subordinate, (Mohan et al., 1986). The
coordinator’s process is attached to the user
application, and communication links are established
between the subordinates and the coordinator.

The two-Phase Commit protocol goes through, as its
name suggests, two phases. The first phase is a
PREPARE phase, whereby the coordinator of the
transaction sends a PREPARE message. The second
phase is decision-making phase, where the coordinator
issues a COMMIT message, if all the nodes can carry

Commit

P1 P2 P3

P1 P2 P3

Abort

(b) Committed Transaction

(a) Aborted Transaction

Figure 1: Aborted and Committed

 Figure 2: Isolation

(a) Lost Updates

(b) Cascading Abort

Journal of Information Systems Education, Vol. 13(2)

 98

Global
Commit

 . . . S1 S2 Sn

1.1

Si

C: Coordinator Subordinate Node i

Prepare

Vote Commit

Vote Abort

S1 S2 Sn

Acknowledge

Commit Abort

Global
Abort

Prepare

 Figure 3: Steps in Centralized Two-Phase Commit

 . . .

1

a. Step One in Centralized 2PC

b. Step Two in Centralized

out the transaction, or an abort message, if at least one
subordinate node cannot carry out the required
transaction. (Capitalization is used to distinguish
between technical and literal meanings of some
terminologies)

The 2PC may be carried out with one of the following
methods: Centralized 2PC, Linear 2PC, and
Distributed 2PC, (Ozsu et al., 1991).

3.1 The Centralized Two-Phase Commit Protocol
In the Centralized 2PC shown in Figure 3,
communication is done through the coordinator’s

process only, and thus no communication between
subordinates is allowed. The coordinator is
responsible for transmitting the PREPARE message to
the subordinates, and, when the votes of all the
subordinates are received and evaluated, the
coordinator decides on the course of action: either
abort or COMMIT. This method has two phases:

1. First Phase: In this phase, when a user wants to
COMMIT a transaction, the coordinator issues a
PREPARE message to all the subordinates, (Mohan et
al., 1986). When a subordinate receives the PREPARE
message, it writes a PREPARE log and, if that
subordinate is willing to COMMIT, sends a YES
VOTE, and enters the PREPARED state; or, it writes
an abort record and, if that subordinate is not willing
to COMMIT, sends a NO VOTE. A subordinate
sending a NO VOTE doesn’t need to enter a
PREPARED state since it knows that the coordinator
will issue an abort. In this case, the NO VOTE acts
like a veto in the sense that only one NO VOTE is
needed to abort the transaction. The following two
rules apply to the coordinator’s decision, (Ozsu et al.,
1991):

a. If even one participant votes to abort the
transaction, the coordinator has to reach a global
abort decision.
b. If all the participants vote to COMMIT, the
coordinator has to reach a global COMMIT deci-
sion.

2. Second Phase: After the coordinator reaches a vote,
it has to relay that vote to the subordinates. If the
decision is COMMIT, then the coordinator moves into
the committing state and sends a COMMIT message
to all the subordinates informing them of the
COMMIT. When the subordinates receive the
COMMIT message, they, in turn, move to the
committing state and send an acknowledge (ACK)
message to the coordinator. When the coordinator
receives the ACK messages, it ends the transaction.

If, on the other hand, the coordinator reaches an
ABORT decision, it sends an ABORT message to all
the subordinates. Here, the coordinator doesn’t need to
send an ABORT message to the subordinate(s) that
gave a NO VOTE.

3.2 The Linear Two-Phase Commit Protocol
In the linear 2PC, as depicted in Figure 4,
subordinates can communicate with each other. The
sites are labeled 1 to N, where the coordinator is
numbered as site 1. Accordingly, the propagation of
the PREPARE message is done serially. As such, the
time required to complete the transaction is longer
than centralized or distributed methods. Finally, node
N is the one that issues the Global COMMIT. The

Journal of Information Systems Education, Vol. 13(2)

 99

Coordinator

Subordinate 2

Subordinate 1

Subordinate 3

Subordinate N

Figure 5: Distributed Two-Phase Commit

. . 1 2 3 4 N

. . . 1 2 3 4 N

Prepare

Vote Commit Global Commit

Global Abort

(a) Linear 2PC Phase 1

(b) Linear 2PC Phase 2

Vote Abort

Figure 4: Linear Two-Phase Commit (2PC)

two phases are discussed below:

First Phase: The coordinator sends a PREPARE
message to participant 2. If participant 2 is not willing
to COMMIT, then it sends a VOTE ABORT (VA) to
participant 3 and the transaction is aborted at this
point. If participant 2, on the other hand, is willing to
commit, it sends a VOTE COMMIT (VC) to
participant 3 and enters a READY state. In turn,
participant 3 sends its vote till node N is reached and
issues its vote.

Second Phase: Node N issues either a GLOBAL
ABORT (GA) or a GLOBAL COMMIT (GC) and
sends it to node N-1. Subsequently, node N-1 will
enter an ABORT or COMMIT state. In turn, node N-1
will send the GA or GC to node N-2, until the final
vote to commit or abort reaches the coordinator, node

3.3 The Distributed Two-Phase Commit Protocol
In the distributed 2PC, all the nodes communicate
with each other. According to this protocol, as Figure
5 shows, the second phase is not needed as in other
2PC methods. Moreover, each node must have a list
of all the participating nodes in order to know that
each node has sent in its vote. The distributed 2PC
starts when the coordinator sends a PREPARE
message to all the participating nodes. When each
participant gets the PREPARE message, it sends its
vote to all the other participants. As such, each node
maintains a complete list of the participants in every
transaction.

Each participant has to wait and receive the vote from
all other participants. When a node receives all the
votes from all the participants, it can decide directly
on COMMIT or abort. There is no need to start the
second phase, since the coordinator does not have to
consolidate all the votes in order to arrive at the final
decision.

4. ORACLE DATABASE MANAGEMENT
SYSTEM: THE TWO-PHASE COMMIT

The Oracle database is a distributed database
management system, which employs the two-phase
commit to achieve and maintain data reliability.
The
following sections explain Oracle’s two-phase
implementation procedures.

4.1 The Session Tree
In each transaction, Oracle constructs a session tree
for the participating nodes. The session tree describes
the relations between the nodes participating in any
given transaction. Each node plays one or more of the
following roles:

1. Client: A client is a node that references data
from another node.

2. Database Server: A server is a node that is

being referenced by another node because it
has needed data. A database server is a server
that supports a local database.

3. Global Coordinator: The global coordinator is

the node that initiated the transaction, and thus,
is the root of the session tree. The operations
performed by the global coordinator are as fol-

Journal of Information Systems Education, Vol. 13(2)

 100

lows:
• In its role as a global coordinator and the

root of the session tree, all the SQL state-
ments, procedure calls, etc., are sent to the
referenced nodes by the global coordinator.
Instructs all the nodes, except the COMMIT
point site, to PREPARE

• If all sites PREPARE successfully, then the
global coordinator instructs the COMMIT
point site to initiate the commit phase

• If one or more of the nodes send an abort
message, then the global coordinator in-
structs all nodes to perform a rollback.

4. Local Coordinator: A local coordinator is a
node that must reference data on another node
in order to complete its part. The local coordi-
nator carries out the following functions (Ora-
cle8):
• Receiving and relaying status informa-

tion among the local nodes
• Passing queries to those nodes
• Receiving queries from those nodes

and passing them on to other nodes
• Returning the results of the queries to

the nodes that initiated them.

5. Commit Point Site: Before a COMMIT point
site can be designated, the COMMIT point
strength of each node must be determined.
The COMMIT point strength of each node of
the distributed database system is defined
when the initial connection is made between
the nodes. The COMMIT point site has to be a
reliable node because it has to take care of all
the messages. When the global coordinator ini-
tiates a transaction, it checks the direct refer-
ences to see which one is going to act as a
COMMIT point site. The COMMIT point site
cannot be a read-only site. If multiple nodes
have the same COMMIT point strength, then
the global coordinator selects one of them. In
case of a rollback, the PREPARE and
COMMIT phases are not needed and thus a
COMMIT point site is not selected. A transac-
tion is considered to be committed once the
COMMIT point site commits locally.

4.2 Two-Phase Commit and the Oracle Implemen-
tation
The transaction manager of the Oracle8 database
necessitates that the decision on what to do with a
transaction to be unanimous by all nodes. This
requires all concerned nodes to make one of two
decisions: commit and complete the transaction, or
abort and rollback the transaction (Oracle8). The
Oracle8 engine automatically takes care of the commit
or rollback of all transactions, thus, maintaining the

integrity of the database.

The following will describe the two phases of the
transaction manager.
1. PREPARE Phase (PP): The PP starts when a
node, the initiator, asks all participants, except the
commit point site, to PREPARE. In the PP, the
requested nodes have to record enough information to
enable them either to commit or abort the transaction.
The node, after replying to the requestor that it has
PREPARED, cannot unilaterally perform a COMMIT
or abort. Moreover, the data that is tied with the
COMMIT or abort is not available for other transac-
tions.

Each node may reply with one of three responses to
the initiator. These responses are defined below:
a. Prepared: the data has already been modified

and that the node is ready to COMMIT. All re-
sources affected by the transaction are locked.

b. Read-only: the data on the node has not been
modified. With this reply, the node does not
PREPARE and does not participate in the sec-
ond phase.

c. Abort: the data on the node could not be modi-
fied and thus the node frees any locked re-
sources for this transaction and sends an abort
message to the node that referenced it.

2. COMMIT Phase (CP): Before the CP begins, all
the referenced nodes need to have successfully
PREPARED. The COMMIT phase begins by the
global coordinator sending a message to all the nodes
instructing them to COMMIT. Thus, the databases
across all nodes are consistent.

4.3 Failure of the Two-Phase Commit
A major problem with the two-phase commit occurs
when one of the nodes participating in a distributed
transaction fails while the transaction is in the
PREPARED state. When the failure is for a prolonged
period of time, then the data locked on all the other
nodes won’t be available for other transactions. This
will cause a lot of transactions to rollback due to
deadlocks. Oracle DBMS, in a new version,
introduced an advanced queuing technique to deal
with the problem of deadlock. The authors hope to
address this technique in another paper in the near
future.

5. AN EXAMPLE OF A DISTRIBUTED
DATABASE SYSTEM

Figure 6 illustrates the steps Oracle8 performs in order
to PREPARE, Select the COMMIT Point Site, and
COMMIT. The example in the figure depicts a
company that has several branches located in different

Journal of Information Systems Education, Vol. 13(2)

 101

City 3
100

City 2
120

City 1
180

City 7
8

City 4
60

City 6
70

City 5
75

Figure 6: An Example of Distributed Databases
Over Several Sites (Drawn to Scale)

cities numbered 1 to 7. Each site has to have access to

most of the data in the company in order to check on
the status of purchase orders, material acquisition, and
several other issues.

Since new projects are awarded and older projects are
completed, project sites tend to change locations.
Also, depending on the size and duration of a project,
different COMMIT point strength can be assigned and
thus, in the same area, different COMMIT point sites
can be chosen, for a given location, over a period of
time. In this example, City 1 is the head office and
thus posses the highest COMMIT point strength. The
other sites are assigned the COMMIT point strength
based on the Dollar volume of the project. Higher
monetary value for a project requires more resource
allocation, and as such, will lead to more transactions
executed against the data for that project. Since the
amount of data involved is large, each site will have
the portion of the database pertaining to its operations
replicated and stored on a local server.

Any transaction will at least affect the database at the
head office and one of the sites. If, for example, a
material rate, description of an item, accomplished
progress, or purchase order is entered, a transaction is
initiated that will affect the database at the head office
and the database at the concerned site.

Other modifications, such as those involving

employee transfer or equipment transfer from one site
to another, will affect two or more sites. The
following discussion explains the steps that entail in
processing a distributed transaction:

An employee is to be transferred from City 2 to City
4. The transaction is initiated by City 1 by a personnel
employee. The affected sites need to participate in the
transaction. The processes that transfer one employee
from one site to another should be grouped under one
transaction so that either all or none of the processes
are carried out. Figures 7a-d depict the sequence of
these activities.

An explanation of these steps follows:
1. Since City 1 is initiating the transaction, it

becomes the root of the session tree, i.e. the
global coordinator. Since City 1 updates data in
City 2 and City 4, it becomes a client. Since City
1 updates data on City 2 and City 4, the two
nodes become database servers.

2. When the application issues the COMMIT
statement, the two-phase commit is started.

3. The global coordinator determines the COMMIT
point site.

4. The global coordinator issues the PREPARE
statement to all nodes except the COMMIT point
site. If any of the nodes cannot PREPARE, the
transaction is aborted; otherwise, a PREPARED
message is sent to the node that referenced it.

5. The global coordinator instructs the COMMIT
point site to COMMIT. The COMMIT point site
commits the transaction locally and records the
transaction in its local redo log.

6. The COMMIT point site informs the global
coordinator that it has committed and the global
coordinator informs the other nodes by sending
the COMMIT message.

7. When all the transactions have committed, the
global coordinator informs the COMMIT point
site to “forget” about the transaction. The
COMMIT point site, after “forgetting” about the
transaction, informs the global coordinator, and
the global coordinator, in turn, “forgets” about
the transaction.

6. USE OF THE TWO-PHASE COMMIT

EXAMPLE IN THE CLASSROOM

The authors hope that this paper will encourage
academicians to explain the concept of transaction
management in distributed databases in database
courses. The topic becomes particularly important
with the introduction of Oracle Academic Initiative,
where Oracle Corporation is donating its software to
selected universities in the US. The topic could be
introduced towards the end of the first undergraduate

Journal of Information Systems Education, Vol. 13(2)

 102

database course, or in a graduate database course,
where students had a first course in their
undergraduate study. The paper provide a starting
point with its complete coverage of transaction
management in distributed DBMS and the example on
how Oracle implements the two-phase commit
method.

7. CONCLUSIONS

Transaction management is an old concept in
distributed data base management systems (DDBMS)
research. However, Oracle was the first commercial
DBMS to implement a method of transaction
management: the two-phase commit. Though it was
very difficult to obtain information on Oracle’s
implementation of this method, the authors finally
were able to collect enough information to write this
paper. Many organizations do not implement
distributed databases because of its complexity. They
simply resort to centralized databases. However, with
global organizations and multi-tier network
architectures, distributed implementation becomes a
necessity. It is hoped that this paper to will assist
organization in the implementation of distributed
databases when installing Oracle DBMS, or encourage
organizations to migrate from centralized to
distributed DBMS. Universities could also contribute
to this process by having graduates with the
knowledge of Oracle DBMS capabilities. With Oracle
making so much effort on incorporating this and other
advanced features in its database software,
academicians should also play a major role in
exposing students to these advanced features. After
graduation, these students may assist organizations in
applying these techniques to the real world. When we
started this paper, we wanted it to be with practical
significance rather basic theoretical research. We
hope that we have accomplished this objective.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of
the Editor of the Journal and the reviewers, and the
editorial assistance of two faculty members in the
English program at Qatar College of Technology.

9. REFERENCES

Connolly, Thomas; Begg, Carolyn; and Strachan,

Anne [1997], Database Systems, A Practical
Approach to Design, Implementation and
Management, Addison-Wesley.

Mohan, C.; Lindsay, B.; and Obermarck, R. [1986],
“Transaction Management in the R* Distributed

Database Management System.” ACM Transactions
on Database Systems, Vol. 11, No. 4, December

1986, 379-395.
Oracle8 Server Distributed Database Systems, Oracle,

3-1 – 3-35

Ozsu, Tamer M., and Valduriez, Patrick [1991],

Principles of Distributed Database Systems,
Prentice Hall.

AUTHORS BIOGRAPHIES

With a Doctor of Business Administration degree

from Mississippi State Univer-
sity in 1984, Ghazi Alkhatib has
more than 20 years of experience
in teaching, training, consulting,
and research in the US and Gulf
nations in the area of
management information
systems. His publications
include several papers and many
conference proceedings in the

US and Gulf nations. His research interests include
systems analysis and design, database management
systems, software quality, and integrating MIS
technologies.

With a MBA from the Uversity of La Vern – Athens

Campus in year 2000 and a BS in
Computer and Communication
Engineering in 1995, Ronny
Labban worked as a Systems
Analyst for three years imple-
menting a major ERP in Saudi
Arabia. He then moved to Athens
and currently holds the position of
a Communication Engineer in
charge of evaluating different

networking and communication solutions and setting
up communication links between different worldwide-
locations and construction projects.

Journal of Information Systems Education, Vol. 13(2)

 103

City 2
120

City 1
180

City 4
60

City 2
120

City 1
180

City 4
60

Global Coordinator Commit Point

Database Server Client

City 2
120

City 1
180

City 4
60

Prepare
Prepared Prepared Commit

Update
employee.project =
‘City 4
Where
employee.id=1203
Commit;

City 1
180

City 4
60

City 2
120

Figure 7a-d. Steps in Two-phase Commit for the Example.

 Figure 7c Figure 7d

 Figure 7a Figure 7b

Journal of Information Systems Education, Vol. 13(2)

 104

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2002 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

