CIS Educator Forum
Volume 1, Number 2

A PEDAGOGICAL COMPARISON OF TWO
DATABASE MANAGEMENT SYSTEMS

by George Wright

Laurette Poulos Simmons
Loyola College
4501 North Charles Street
Baltimore, MD 21210
301/323-1010

ABSTRACT: Database course objectives typically include introduction of the
major database models, logical and conceptual database design to meet management
needs, and various technical aspects involved in the database approach. In
selecting a database management system to meet these objectives, many factors
must be taken into consideration. Cost and popularity are important as is the ability
of the product to create structures and illustrate concepts that are in the course
textbook. In this research, we look at the functionality of dBase III+ and PC-
ORACLE. Their ability to illustrate concepts found in popular texts to meet course
objectives is examined.

Some of the important concepts that appear in database textbooks include data
dictionary, data independence, data manipulation language, display mechanisms,
high level language interface, data integrity, security and recovery, and structures or
organizational models: networks, hierarchies, and relations. Understanding of
these concepts and structures is enhanced by hands-on experience with them.

While no database product is an ideal pedagogical tool for all database courses,
some products have advantages over others.. This research compares dBase and
ORACLE. The result can be generalized to similar products.

KEYWORDS: Database, Database Management System, DBMS, dBaselll +, Database
Pedagogy, ORACLE, Relational DBMS

INTRODUCTION

In this paper we discuss a dozen major
database topics. For each, we state
definitions and importance in a database
course.

We then compare how well dBase II1+
and ORACLE accommodate or illustrate
the topic. Order is arbitrarily alphabetic.
Unless otherwise noted, statements about
dBase and ORACLE capabilities are taken
from the manuals that accompany the
products.

Our choice of dBase and ORACLE is

pragmatic. Both are available to us. There
are other reasons why treatment of these
two software products is worthwhile. In
spite of intense competition at the low
end of the microcomputer DBMS market,
dBase still retains about a 50% market
share. In the last half of 1987, dBase I1I +
was the fourth-largest selling program, in
dollars, through computer stores. (It was
bested by Lotus 1-2-3, Display-Write 4,
and WordPerfect.) [10,p. 95]

ORACLE is another interesting product.
Available in common format for the DOS,
Unix/Xenix, and VM operating systems,
ORACLE is being marketed aggressively.
Inexpensive DOS and Xenix versions are

available for micros. Free (albeit

unsupported) VM versions are often
donated to educational institutions.

In all that follows, we use the somewhat
idiosyncratic spelling used in both products’
documentation: “dBase” and
“ORACLE.”

DATA DICTIONARY

Marketing demands that all commercial
database products include -- or at Ieas’f
claim to include -- a “data dictionary.

And no wonder -- the data dictionary 15
the cornerstone of every modern DBMS.
[8, p- 382] The data dictionary is a sqfth.lrc
product that, at minimum, maintains

Page 28

CIS Educator Forum
Volume 1, Number 2

e

information about the database and its
contents. More elaborate data dictionaries
provide for automatic creation and
recompilation of schemas. [8, p.221] The
difference between dBase and ORACLE
dictionaries reflects their histories. DBase
descends from a single-user PC
environment. Consequently its files are
small and self-contained. Data dictionary
information is correspondingly sparse.
ORACLE comes from a multi-user
minicomputer environment. Its files are
contained in a single, large, contiguous,
master file. A more elaborate data
dictionary is therefore required.

We believe that ORACLE’s approach
comes closest to the active data dictionaries
that students will encounter in business
applications. DBase simply stores field
descriptors in its database files. ORACLE
presents an extensively documented, “full
service” data dictionary.

The DBase Data Dictionary

DBase stores database content information
in each of its .DBF files. Each .DBF file
contains a header having structure
information in binary format. Information
on the structure of each file and the number
of data records it contains as well as the
date of the last update is readily available
to the user. The dBase data dictionary
capability is rudimentary. The information
is there to support dBase functions, but
the data dictionary provides little insight
into the functionality offered by more
powerful dictionaries.

DBase also has a catalog feature. The
dBase .CAT file combines database files,
index files, format files, form files, and
label files into a related set. Insome ways,
this is analogous to the user views provided
by more sophisticated data dictionaries.
The catalog feature is invoked through
the SETCATALOG command. Once
the catalog is “on”, any requests for
database files, for example, result in access
to only those files that are within the
requested domain.

The ORACLE Data Dictionary

The ORACLE data dictionary capability
is closer to the concept as covered in
database texts. The ORACLE dictionary
is a set of tables and views, installed
during initial ORACLE initialization. The
ORACLE DD records the names and
descriptions of users, tables, and views. It
also stores information about user
privileges and data storage. ORACLE
Data Dictionary files can be queried
through regular SQL SELECT statements.

DATA INDEPENDENCE

Data independence is the separation of
data storage details from applications
programs that use the data. [9, p. 475] It
contributes to the maintainability of both
data and related applications.

Both dBase and ORACLE provide some
-- but not complete--data independence.
“Field type” is stored in the data dictionary
and is available to applications.
Applications can access fields without
worrying about whether they are character
strings, numerics, dates, etc. On the other
hand, elaborate, customized report routines
can be written which incorporate
knowledge of field type and format. If the
underlying data is changed, screens, report
generators, etc., must each be updated to
accommodate the change as required. In
this respect, neither dBase nor ORACLE
provides as much data independence
support as some large mainframe database
management systems.

DEADLOCK

Deadlock occurs when two or more
concurrently running programs need
exclusive control over the same file. [2, p.
228] This concept is important in any
discussion of shared and distributed
databases. Of course, both dBase and
ORACLE can avoid deadlock in a
networked environment. By write-
protecting the network file server, network
users are forced to use local disks for all
data storage. Only dBase or ORACLE
program files are available from the server.
Consequently deadlock on data files is
completely obviated while network
software handles contention for program

files.

When data files are available
simultaneously to multiple users, the
following may happen.

1. User U1 locks file F1.

2. User U2 locks file F2.

3. User U2triestolock F1 and waits,
pending a successful lock of F1.

4. User Ul triestolock F2 and waits,
pending a successful lock of F2.

This is deadlock or “deadly embrace.”

From a teaching point of view, both
dBase and ORACLE illustrate the
deadlock problem and approaches for
dealing with it. From a practical point of
view, multi-user configurations can be
arranged to obviate deadlock completely.
If such configuration limits are
undesirable, ORACLE’s automatic
approach to deadlock resolution is the
more practical.
D Deadlock-Avoidance Featur

DBase has all the features necessary to
produce the described deadlock situation
but leaves it to a programmer to make
sure that when multiple users are accessing
the same files, a file deadlock will not

occur. To quote from the dBase
documentation:
“It is the programmer’s

responsibility to make sure that,
when multiple users are serially
accessing the same files, a program
sequence that includes [code which
sets up a potential deadlock] will
not result in a file deadlock.” [1,
p- N4-9]

ORACLE Deadlock-Avoidance
Features

ORACLE contains a set of true locking
features which minimizes the likelihood
of conflicts and deadlocks, both at the
table and row levels (or the file and
record level, in dBase terminology). But,
these locking features, as with dBase,
still permit deadlocks. Unlike dBase,

Page 29

CIS Educator Forum
Volume 1, Number 2

detecting and resolving deadlocks. When a deadlock occurs, ORACLE aborts one of
the commands or command procedures that is causing the deadlock. (Which process
is aborted is unpredictable.)

ORACLE Lock Interaction

If one user has:

SHARE UPDATE EXCLUSIVE
Another user may: LOCK LOCK LOCK
Establish SHARE lock yes no no
Establish SHARE UPDATE lock no yes no
Establish EXCLUSIVE lock no no no
Query the table yes yes yes
Modify the table no yes* no

*Provided the other user places a SHARE UPDATE lock on a different row. Once
either user performs an update, the other cannot update any row until the first user
commits. [4, p.20-5

ORACLE has built-in provisions for
DISPLAY MECHANISMS

Current DBMSs feature various display mechanisms:

L. There is the interactive screen display, as if the screenwere a glass teletype.
This mechanism usually features the ability to echo the screen display to a
disk file for later display and modification.

2. There is a windowing display, as if the screen were a window into the
database file. The view may be restricted to certain subsets of the file.
Cursor motion keys function to page the viewing window over the database
contents.

3. There is the report generator. A facility is available to specify the contents of
a hardcopy report. The ultimate result is a printed report with little or no
corresponding screen display.

Both dBase and ORACLE offer all three of these display mechanisms. We prefer the
ORACLE interactive display because of its SQL compatibility. The dBase windowing
display is much more convenient because it is automatic, yet can be completely
customized if desired. There are some advantages to dBase report generation because
of the rich programming capabilities. Yet the reporting functions available through the
user interface (ASSIST) mode of dBase are not very powerful. After-market products
(such as R&R Relational Report Writer by Concentric Data Systems) exist to automate
the creation of customized reporting using dBase files.

Report generation under ORACLE is less automated than under dBase. E_mbedded
formatting commands must be placed in the data stream for later intergretatxon by the
ORACLE report formatter. The complexity of the output reports is limited by the user
or programmer’s SQL expertise and the capabilities of the formatter.

HIGH-LEVEL LANGUAGE INTERFACE

A high-levellanguage (HLL), also called a higher-order language, is any of the compiled

computer languages: FORTRAN

COBOL, C, Pascal, etc. A high-level
language interface (HLLI) allows
interaction between the database and
compiled code.

A full HLLI is a two-way street. First, to
the database the HLLI provides syntax
for accessing routines written by the user
in a high-level language. The object, of
course, is to deal with situations beyond
the capabilities of the native database
syntax. Second, to the HLL the HLLI
provides routines, usually in the form of
object libraries, allowing HLL calls to
database data and index files. The object
is to allow programmers to achieve highly
optimized or unusual access to the database
through the HLL.

Both dBase and ORACLE offer HLLI
features. The dBase interface is available
only in the DBMS-to-HLL direction;
ORACLE is available only for HLL-to-
DBMS. In practice, both ultimately offer
the same degree of practical functionality.

ORACLE’s HLLI will always require
more programming skill on the part of
the user, as well as the appropriate language
compiler environment. Clanguage object
libraries are bundled with PC-ORACLE.
Fortran, Pascal, PL/1 and Cobol pre-
compilers are also available.

INTEGRITY

There are several aspects of integrity
addressed in database texts.

1. Transaction integrity: ensuring that
operations of a transaction either
are performed in their entirety or
are not performed at all. [3, p.10].

We consider this aspect below under
the heading ROLLBACK/
RECOVERY.

2. Entity integrity: a constraint on a
database relation stating that
primary keys must be unique and
no part of a primary key can be
null.

3. Referential integrity: a constraint
on a database relation stating that
all attributes which refer to primary

Page 30

CIS Educator Forum
Volume 1, Number 2

keys in another relation (i.e. foreign
keys) must reference existing
primary key values in that other
relation or have null values.
[6,pp.354, 368]
The entity integrity constraint ensures
that we can’t insert a new record into a
relational database with the same primary
key value as an existing record. The
referential integrity constraint ensures that
there is a parent record for each child
record. [2, pp. 333]

ORACLE has facilities for ensuring entity
integrity. It refuses to accept a duplicate
entry (providing an index was created
with the ‘uNIQUE?’ operator). Neither
dBase nor ORACLE stores sufficient
information to allow automatic
enforcement of

referential integrity.

MANIPULATION LANGUAGE
(QUERY AND UPDATE)

Textbook discussions of data manipulation
languages (DMLs) consider animportant
aspect to be syntax used with HLLs for
data access and update. [5, p.9;9, p. 110]
We covered that aspect above under the
heading HIGH LEVEL LANGUAGE
INTERFACE. Here we consider
manipulation language (ML) capabilities
simply to be a non-procedural language
for data handling. The ML is meant to
provide ease of use and data independence.

The MLs of dBase and ORACLE are
quite different. The dBase ML is its own
command language, while ORACLE uses
SQL. DBase’s is record-oriented;
ORACLE's is table-oriented. ORACLE'’s
use of SQL as its ML makes it more
appealing to us for classroom use.

DBase Manipulation Language

DBase has a rich syntax of procedures,
functions, and programming constructs.
Its documentation is extensive, with
frequent examples of code. DBase’s ML
syntax has become a microcomputer
standard. Several competing database
products advertise dBase syntax
compatibility. Others claim to feature

supersets of the dBase ML. There is a
host of after-market

software products which assume the dBase
ML standard.

The only problem is that the dBase standard
is idiosyncratic. Its ML is similar to but
not exactly like other relational DBMS
programming languages. For example,
dBase applications can be ported to run
under Informix or Ingres, but only by
translation of the source code to the new
host’s syntax.

The new release of dBase even
includes SQL as a manipulation
option. However, our experience
with a Beta release of dBase IV
indicates that the SQL interface is
not smoothly integrated.

Manipulation Language Paradigms

dBase

DO WHILE .NOT. EOF()
*Process current record
SKIP

;ENDDO

ORACLE

SELECT FIELD FROM TABLE
WHERE FIELD = VALUE

ORACLE Manipulation Language

ORACLE uses SQL -- primarily a query
language -- as its manipulation language.
There are some advantages to this. SQL,
largely due to its IBM mainframe heritage,
is more standardized and widespread.
Students are far more likely to encounter
SQL in large or distributed, mainframe-
supported databases. Moreover, SQL
seems to be the “wave of the future.” The
new release of dBase even includes SQL
as a manipulation option. However, our
experience with a Beta release of dBase
IV indicates that the SQL interface is not
smoothly integrated.

There are differences between a record-

oriented ML, such as dBase, and a set
(SQL)-oriented ML, such as ORACLE.
The dBase ML is built on the single-
thread program paradigm. Itisrichwith
structured programming constructs. The
ORACLE ML is built on the table
paradigm. It is rich with data query and
selection functionality. It has few
programming constructs. A practical
implication is that conversion of dBase
applications to ORACLE applications is
not at all a straightforward translation
task. On the other hand, it may well be
that the tabular orientation is more
appealing to students more familiar with
spreadsheets than with programming.

MANY-TO-MANY/ONE-TO-MANY
RELATIONSHIPS

The many-to-many relationship is a
common one in database applications: a
part can be stored in many warchouses,
a

warehouse can stock many parts; an
engineer can work on many projects, a
project may occupy many engineers; a
student may attend many classes, a class
may contain many students; etc. Such
situations can be handled without
redundancy by means of a junction record.
The junction record contains a
concatenated key and the intersection
data of the records concerned.
Alternatively a foreign key and redundant
(non-normalized) data can be used to
reflect this many-to-many relationship.

Resolution of many-to-many relationships
into two one-to-many relationships by
means of junction records is a generic
topic. That is, it is addressed the same
way regardless of database model. Any
DBMS that caninterrelate files by means
of keys or pointers can illustrate the
concept. Both dBase and ORACLE
serve equally well.

NETWORK AND SECURITY
ACCOMMODATION

A common approach to campus
computing involves a network of individual
PCs, most often with one or more PCs
devoted to network management and

Page 31

CIS Educator Forum
Volume 1, Number 2

file service. Under networking, more
care must be paid to security and
concurrency. We've discussed concurrency
above under the heading DEADLOCK.

Both dBase and ORACLE serve to
illustrate the features a DBMS should
have in order to be secure in a multi-user
or distributed environment. Both feature
login security, file security, and field access
security. DBase additionally provides data
encryption and decryption.

ORGANIZATION MODELS
Standard DBMS models are the
hierarchical, the network, and the relational
models. Both dBase and ORACLE are
considered toberelational DBMSs. They
both serve to illustrate this model. Since
neither can accommodate explicit pointers,
neither can readily illustrate the network
or hierarchical models. We know of only
one PC-based network DBMS and one
PC-based hierarchical DBMS. PC-Focus,
an offspring of the Focus mainframe
DBMS, uses the hierarchical approach.
MDBS III, another PC DBMS, relies
completely on the network model. [10, p.
94]

RECORD RETRIEVAL METHODS

Several competing techniques for retrieving
records are usually covered in database
courses: [9, pp. 36-51]

1. Key transformation or hashing:
calculation of a record location on
a mass storage device from the
value of the data element used as
the access key.

2. The index approach: a cross-
reference list providing record
location of a direct access storage
device that has a specific value of a
data element used as the access
key.

3. The indexed sequential access
method: a specific indexing
technique providing some benefits
of both direct and sequential access
to records.

4. Binary search trees: storage method
supporting rapid search for a
specific record without use of an
index.

5. B-tree indexing: storage method
using a multi-way tree for record
storage.

6. List processing: storage of records
with embedded pointers to next,
prior, or owner records (the basis
of the network model).

DBase and ORACLE both employ only
the index approach to
record retrieval.

ORACLE far surpasses dBase in
facilities to support transactional

integrity.

ROLLBACK/RECOVERY

An important concept in any database
course is that of a transaction. [7, p.224]
A transaction is an atomic unit of work.
That is, it is a sequence of operations
cither all of which or none of which must
be performed. The standard example is a
transfer of funds from a savings account
to a checking account. Funds must first
be withdrawn from one account and then
added to the second. If only one of these
to components of the transaction occurs,
database integrity is lost.

ORACLE far surpasses dBase in facilities
to support transactional integrity.
ORACLE automatically provides the
buffers, audit trails, journaling, and rollback
characteristics required. [6,p. 164] DBase
provides none of these. Transactional
integrity enforcement is solely up to the
dBase applications programmer.

CONCLUSION

The choice of DBMS software for use in
a particular course depends on many things.
In this discussion, we have focused on
how two products accommodate topics

that appear in database texts, For the
range of topics discussed, ORACLE
emerges as our choice. The SQL interface
the extensive data dictionary, and thé
rollback/recovery provisions furnish
sufficient advantages to warrant serious
consideration of ORACLE over dBase
III+ as the software to be used to teach a
database course. Ashton-Tate has recently
released dBase IV, and Oracle Corporation
is currently beta-testing ORACLE release
6. Release of both these products, and
others, will ultimately require our re-
consideration. But until other DBMSs
achieve the market acceptance of the
current versions of dBase and ORACLE,
this comparison should prove useful.

REFERENCES

[1] Ashton_Tate. Programming with
dBase IIT Plus. Torrance, CA:
Ashton_Tate, 1986.

[2] Bradley, James. Introduction to

Data Base Management in
Businesss New York: Holt,
Rinehart and Winston, Inc., 1983.

[3] Ceri, Stefano, and Pelagatti,
Giuseppe. Distributed Databases:
Principles and Systems. New York:
McGraw-Hill Book Company,
1984,

[4] Dimmick, Shelley and Fachs,
Jonathan. ORACLE MANUALS.
Belmont, CA: Oracle Corporation,
1986.

[5] Gaydasch, Alexander, Jr. Effective
Database Management.
Englewood Cliffs, NJ: Prentice Hall,
Inc., 1988.

[6] Harrington, Jan L. Relational
Database Management for
Microcom rs: Design _an

Implementation. New York: Holt,
Rinehart and Winston, Inc., 1088.

[7] Kroenke, David M. and Do!an:
Kathleen A. Database P_rggg;_s ing:
Fundam ls. Design d

Implementation. Chicago: Science
Research Associates, Inc., 1988.

a—

Page 32

CIS Educator Forum
Volume 1, Number 2

(8] McFadden, Fred, and Hoffer, Jeffrey A. Database Management. Menlo Park, CA: Benjamin Cummings, 1938

[9] McNichols, Charles W., and Rushinek, Sara F. Data Base Management: A Microcomputer Approach. Englewood Cliffs,
NJ: Prentice Hall, Inc., 1988.

AUTHORS’ BIOGRAPHIES

An Assistant Professor of Management Information Systems at Loyola College
in Maryland, George Wright is new to academia. His fifteen years’ business
experience includes database design and implementation, computer systems
management, and operations research.

Laurette Poulos Simmons is an Assistant Professor of Management Information
Systems at Loyola College Maryland. She has worked extensively in end user
computing as a teacher, researcher, and consultant. Laurette’s articles appear
in a diverse range of journals including International Journal of Forecasting,
Journal of Computer Information Systems, Computers and Operations Research,
and Journal of Business Forecasting.

— Page 33

ISCCID EpsiG

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1988 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

