CIS Educator Forum
Volume 1, Number 1

LOGO AS A LANGUAGE TO TEACH
NON-MAJORS THE ESSENTIALS
OF PROGRAMMING

by Gregg Brownell

Department of EDCI
Bowling Green State University
Bowling Green, Ohio 43403

Abstract: Departments of Computer Information Systems and Computer Science
frequently offer an introduction to computing course for non-majors. One compo-
nent of the course is usually an introduction to programming. The language choice
for this component is critical if instructional goals related to programming areto be
achieved. The course is often taught using either BASIC or Pascal. These lan-
guages may in fact be impediments to instructing this population of students in the
essentials of programming. Logo, as a dialect of LISP, is a modern, powerful, pro-
cedural language which is an attractive alternative for the course. It not only is easy
for students to begin using, but also offers capabilities such as list processing, recur-
sion and extensibility which can be used to illustrate modern programming prac-

tices.

INTRODUCTION

Many computing departments offer
an introduction to computing course for
non-majors. Such a course generally
consists of an introduction to each of the
following: computer terminology, basic
computer hardware, computer program-
ming, applications software, compuler use
in society, future trends, and implications
of current and projected computer use (3,
14). The course may serve a range of
majors from the humanities to sciences.
The need for the course stems from the
introduction of the computer Lo many
areas of 20th century life. For these
students the computer is a cultural object:
a dynamic development in their culture
which demands understanding. For many,
the computer will eventually be a tool on
the job for personal use. Few of these
students, however, will ever do any pro-
gramming beyond their experiences in
the introductory course. This paper will
focus specifically on the programming
component of such a course and the way
Logo may help achieve course goals re-
lated to programming.

Historically, programming is taught
to non-majors for several valid reasons,

as listed below.

* Engaging in programming
projects aids students in
understanding how the
computer works. Program-
ming a computer can make
abstract concepts about
computer hardware more
concrete.

* Solving problems on a com-
puter helps students to
understand the types of
problems to which computers
can be applicd.

* Through programming,
students can be introduced to
structured programming as
one of the important intellee-
tual concepts of this century.

* By actually creating programs,
students can be introduced to
a second important concept,
top-down design, as it relates
to problem solving in general

and to computer science in
particular.

* Students who may never deal
intimately with complex
technological projects can
gain an appreciation of the
resources, abilities and
training needed by those
who do. Such a realization
can aid students in their role
as informed citizens in a
participatory democracy.

LANGUAGE SELECTION

The programming component of
such a course is frequently implemented
in BASIC or Pascal. Unfortunately, these
languages may not best serve the in-
tended population. Although the first
programming experience for non-ma-
jors must be of substance, it should also
be engaging, inviting and designed to
illustrate important concepts about
computer programming, problem solv-
ing and computer use. The language
chosen to accomplish this must have
certain characteristics. It must, initially,

Page 13

CIS Educator Forum
Volume 1, Number 1

be easy to use. With little instruction,
students should be able to write interest-
ing, meaningful programs with the lan-
guage. In addition to ease of use, it must
be a powerful, modern, procedural lan-
guage capable of illustrating the essential
of programming a computer using up-to-
date techniques.

BASIC, especially in its most readily
available implementations, does not pos-
sess these characteristics. It is easy to
start using but it is not as powerful or
modern as other languages. It is not
procedural and lacks recursion. It is easy
for students to write poorly structured
programs in BASIC. Indeed, many col-
lege instructors spend a good deal of time
helping students unlearn bad habits picked
up in a poorly taught high school BASIC
course. There are, of curse, implementa-
tions of BASIC which address some of
these problems, but they are not as wide-
spread as some earlier versions which do
not. Also, a good instructor can attempt
to teach around such limitations, but usually
at a considerable cost of time and effort
both for the student and the instructor.
This time and effort can best be spent in
other ways.

Pascal, on the other hand, is a pow-
erful, procedural language, but is not easy
to begin using (12). Pascal is usually the
language of choice for introducing majors
to programming principles and is an ex-
cellent language for such a population. It
can, however, be confusing to non-majors
who tend to have varying levels of ability.
Such students, unlike majors, do not need
a subset of Pascal as a prerequisite to
more programming courses, since they
are quite likely to never program again!
What they need is a powerful, friendly
language that can serve as an invitation to
an understanding of some basic concepts
about programming.

LOGO - ANOTHER POSSIBILITY

Logo is a dialect of LISP developed
at the Artificial Intelligence Laboratory
at the Massachusetts Institute of Tech-
nology by Seymour Papert and his associ-
ates. It is a modern, powerful program-

ming language. It is perhaps best known
for its turtle graphics environment which
is often used to introduce young children
to the computer. Logo is, however, much
more than a language used with young
children. Infact, it is used to teach physics
and geometry at the college and high
school levels (6, 10). It has also been used
as the language of choice in introductory
computer science courses (5). Indeed, an
entire series of texts which use Logo to
illustrate computer science concepts has
been written by Harvey (7,8,9). Although
easy to begin using, it is a modern lan-
guage that offers, among other things,
sophisticated list handling capabilities and
recursion. Several of Logo’s important
characteristics are discussed below.

Students who may never deal
intimately with complex
technological projects can gain an
appreciation of the resources,
abilities and training needed by those
who do.

Logo is Powerful Yet Easy to Use

Logo offers a low threshold and a
high ceiling. This means that Logo is very
easy for students to get into, but that the
power of Logo allows students (and in-
structors) to go as far as they like with it.
Papert likens this to a native language
such as English, which is used by young
children, but is also used to produce liter-
ary masterpieces (13). Non-majors need
such experiences. They need immediate,
meaningful successes in programming,
but they also need those experiences tobe
in a language that allows them to grow
toward a more complex understanding of
programming.

Logo is Procedural and Extendable

Logo procedures maybe writtenand
debugged independently. Each proce-
dure may stand alone as a separate pro-
gram. Procedures can be used as subpro-
cedures within other procedures and within
superprocedures (a superprocedure makes
use of subprocedures and is the highest

level procedure in the program). A stu-
dent using Logo is guided toward seeing
complex problems as a series of smaller
modules by the verystructure of Logo. By
designing superprocedures, creating and
debugging subprocedures and then com-
bining the subprocedures to form fin-
ished programs, students become ac-
quainted with top-down design. Also,
procedures can be given meaningful names
and can be used to extend the language
beyond the Logo primitives contained in
the Logo interpreter. In this way, Logo is
extensible. The student extends the lan-
guage by creating new Logo commands.

Logo Offers Turtle Graphics

Turtle graphics is an environment
where students can program an object,
the turtle, to move across a screen and
draw geometric shapes. For many stu-
dents, initial programming principles can
be made concrete by directing the turtle
to create familiar objects and variations
of familiar objects. The fact that students
can generate geometric figures and even
act out, kinesthetically, the turtle’s mo-
tions, helps to make abstract program-
ming concepts concrete. This, in turn,
makes the abstract more understandable.
Introducing students to programming in
this way can lead to a sound understand-
ing of basic programming principles and
can be the groundwork for introducing
more advanced ideas.

Logo Offers List Processing

The major way that Logo groups
data objects together is through the use of
lists which, unlike arrays, are dynamic:
may get larger or smaller during program
execution, Additionally, lists offer greater
flexibility than arrays in handling data.
The elements of a list may be any Logo
object: a number, a word or another list.
Also, lists are a natural way of creating
hierarchical data structures. This allows
the creation of structures which are
comprised of objects which are them-
selves composed of objects (2). Logo’s
list handling ability allows students to
experiment with text manipulation in inter-
esting ways.

Page 14

CIS Educator Forum
Volume 1, Number 1

Logo s Recu rsIve

Recursion is an important concept
in computer science. Recursion is impor-
tant because it allows a problem to be
restated in terms of itself. This allows
compact solutions to complex problems.
Logo allows recursion and can be used to
illustrate this important concept. For an
example of Logo’s recursive capabilities
as used to solve the classic Tower of
Hanoi puzzle, see Harvey (6).

CONCLUSION

There is a real need to introduce
non-majors to the essentials of computer
programming. This introduction some-
times fails because students are presented
with an inappropriate computer language.
Such languages can act as impediments to
understanding the important aspects of
programming and top-down design. To
accomplish the necessary goals related to
programming when working with non-
majors, the instructor needs a relevant,
engaging, powerful tool. Logo is such a
tool. By providing all the essentials of a
modern programming language in a form
readily accessible to students, Logo is a
viable alternative in such a course. As
such it is a good match for students who

need to know about programming, but
who do not intend to work in the com-
puter field.

REFERENCES/FURTHER READING

1. Abelson, Harold and Andrea

diSessa. Turtle Geometry: The
Computer as a Medium for

Exploring Mathematics. Cambr-
idge, MA: MIT Press, 1981.

2. Abelson, Harold. “A Beginner’s
Guide to Logo.” Byte 7, no. 8
(1982): 88-112.

3. Bowling Green State University
1987-1989 Undergraduate Catalog,
Bowling Green, OH, 1987, p. 166.

4. billstein, rich, Shlomo Libeskind
and Johnny W. Lott. Logo. Menlo
Park, CA: The Benjamin Cum-
mings Publishing Company, 1985.

5. Giangrande, Ernie and Peter
Allmaker. “An Introductory
Computer Science Course Using
Logo: A Case Study.” Proceed-
ings of the National Educational
Computing conference 1988,
annual conference, Dallas, TExas.
Eugene, OR: International
Council on Computers for Educa-
tion, pp. 304-307.

6. Harvey, Brian, “Why Logo?” Byte
7, no 8. (1982): 163-193.

10.

11.

12,

14.

Harvey, Brian, Com ience
Logo Style Volume 1. Cambr-
idge, MA: MIT Press, 1985.
Harvey, Brian. Computer Science
Logo Style Volume 2. Cambr-
idge, MA: MIT Press, 1985.
Harvey, Brian. Computer Science
Logo Style Volume 3. Cambr-
idge, MA: MIT Press, 1985.
Lough, Tom. “Logo and Physics.’
in Cannings, Terence R. and
Stephen W. Brown. The Infor-

mation Age Classroom: Using

the Computer as a Tool. Irvine,
CA: Franklin, Beedle & Associ-

ates, 1986, pp. 200-206.
Lukas, George and Joan Lukas.
Logo: Principles, Programming

Projects.
Masterson, Fred A. “Languages

for Students.” Byte 9, no. 6
(1984): 233-238.

Papert, Seymour. Mindstorms:
Children, Computers and Power-
ful Ideas. New York: Basic
Books, 1980.

University of New Hampshire

Undergraduate Catalog 1986-
1987. Durham, New Hampshire,

1986.

$]

AUTHOR’S BIOGRAPHY

Gregg Brownell is an assistant professor of computer education at Bowling
Green State University in Bowling Green, Ohio. He has worked as a program-
mer, taught and designed CIS undergraduate curriculums and worked with
teachers on computer education in the schools. He is the author of Computers
and Teaching (West Publishing Company, 1987).

Page 15

ISCCID EpsiG

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1988 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

