

Mobile App Development to Increase Student Engagement

and Problem Solving Skills

Sonal Dekhane

Xin Xu

Mai Yin Tsoi

School of Science and Technology

Georgia Gwinnett College

Lawrenceville, GA 30043, USA

sdekhane@ggc.edu, xxu@ggc.edu, mtsoi@ggc.edu

ABSTRACT

This paper describes a project designed to promote problem solving and critical thinking skills in a general education,

computing course at an open access institution. A visual programming tool, GameSalad, was used to enable students to create

educational apps for mobile platforms. The students worked on a game development project for the entire semester,

incorporating various skills learned throughout the semester. Pre and post quiz analysis showed a significant improvement in

students’ ability to design comprehensive solutions to a given problem. Survey results also showed increased student

engagement, high interest in computing and a “better” understanding of information technology.

Keywords: Creative problem solving, Critical thinking, General education, Mobile computing

1. INTRODUCTION

With the advancement of technology, computer hardware

and software have become essential tools not only for

science and engineering fields, but also for business and

liberal arts disciplines. For example, in physiology,

computers have been used to assist psychological assessment

(Fowler, 1985, p.748); in the business world, computers have

made e-commerce the norm; in biology, computer programs

have been developed to estimate gene genealogies (Clement,

2000, p.1657). To be successful in their academic studies

and in their future career, today’s students need to be able to

adapt to a dynamic environment surrounded by new

technologies. Thus, basic computer literacy is not enough to

stay competitive in the current workforce. It has become

essential that students develop a deeper understanding about

computing and adequately apply computing skills, such as

creating and manipulating digital graphics. More

importantly, the problem solving skills and critical thinking

ability developed and honed through the application of these

computing skills are crucial to a student’s future success in

the face of constantly evolving technology regardless of their

major. The traditional programming language courses are

usually considered to be effective in fostering these skills.

However, learning how to program in a language such as

Java or C++ has been proven to be difficult, even for

computing majors (Bennedsen & Caspersen, 2007, p.32)

(Dodds et al., 2008, p.266). As a result, enrollment and

retention rates in computer science (CS) and information

technology (IT) programs have suffered (Uludag et al, 2011,

p.183) (Computing Research Association, 2011) and

students therefore lose out on prime opportunities to develop

their problem solving skills and critical thinking ability.

Researchers have investigated and discovered that traditional

programming courses fail to connect programming and CS

concepts with students’ diverse interests and backgrounds

(Forte & Guzdial, 2005, p.248). The authors of this paper

also observed that the strict syntax of traditional

programming languages become the primary focus of the

course and as a result students are unintentionally

discouraged from solving problems and from expressing

their creativity. This phenomenon is even more prevalent

among students in programming courses that are not

majoring in CS. Various researchers have attempted to

develop different strategies to improve student performance

in introductory programming courses. These strategies

include:

a) Addressing the issue from the social aspect by applying

pair-programming (Nagappan et al., 2003, p359)

(Williams et al., 2000, p.98) (Carver et al., 2007, p.115)

(McDowell et. al, 2006, p.136) and collaborative

learning (Teague & Roe, 2008, p.147).

b) Increasing students’ interest in CS by using themes that

are attractive to students. Successful results have been

reported by using multimedia approach (Guzdial &

Ericson, 2007), game approach (Kölling & Herriksen,

2005, p59), and animation approach (Crawford &

Boese, 2006, p.156).

Journal of Information Systems Education, Vol. 24(4) Winter 2013

299

mailto:sdekhane@ggc.edu
mailto:xxu@ggc.edu
mailto:mtsoi@ggc.edu

c) Using visualized programming to introduce core

concepts before more advanced and in-depth courses

are offered (Johnsgard & McDonald 2008, p.129).

In support of this strategy, many visualized programming

tools have been developed. Popular ones include:

1. Scratch: This tool provides an environment where users

can create animations, games and music by dragging

and dropping the pre-defined programming blocks in

the right places. The original targeted audience was

young users aged 8 to 16 years (Malan & Leitner, 2007,

p.223). The use of Scratch (Rizvi et al., 2011, p.19) has

enabled the development of a successful CS curriculum

and an interdisciplinary course to promote

computational thinking (Ruthmann et al., 2010, p.351).

2. Alice: Alice provides 3-dimensional characters, scenes

and environments that users can manipulate and alter to

create their own interactive animated stories. This

creative activity teaches students basic programming

concepts without the frustration caused by the steep

learning curve of programming syntax. The Storytelling

Alice, a version of Alice, is considered appropriate for

middle school students (Kelleher et al., 2007, p.1455).

Overall, studies have shown that this strategy has been

successfully adopted at several college level CS0

courses (Dougherty, 2007, P.145) (Mullins, et al., 2009,

p.136) (Wellman et al., 2009, p.98).

3. Lego MindStorms: In this strategy, this tool provides

users with a kit that includes both software and

hardware. Students can create a robot and control it

through a visualized programming interface. The

original targeted users were students in grades K-12.

However, over the years, it has been successfully

adopted to introduce programming to college students

as well (Klassner & Aderson, 2003, p.12) (Lawhead et

al., 2002, p.191) (Cliburn, 2006, p.1)

4. Kodu: Kodu is a visual programming tool used to create

games for the PC and Xbox platforms. It is

recommended for students ages 8 and above. The Kodu

classroom kit for educators includes lesson plans and

activities (Microsoft Research FUSE LABS).

Introducing programming to students using visualized

tools is not a novel idea, but developing applications for

mobile devices is a relatively new concept. In the past, the

tools and environments for mobile app development required

a certain amount of software development expertise and

were usually considered as options only for professionals.

However, in recent years, visualized programming tools for

mobile devices have been created. Currently, the dominant

ones are GameSalad for Mac operating system and

AppInventor for the Android platform. GameSalad has also

been able to support the Windows and the Android platforms

since 2012. These tools effectively enabled non-professional,

general users to create animations, games and other apps

without extensive prior programming knowledge. This

software is robust as well; it is not only suitable for academic

purposes but also useful for professional animators and game

developers. While providing a welcomed opportunity for

users to express their creativity, these new strategies reduce

the required level of prior expertise in programming

language and effectively help shift the classroom’s focus

towards problem solving and critical thinking. Moreover, the

popularity of mobile devices and apps amongst students and

their ubiquity cannot be ignored; this only enhances the

students’ interest and engagement in the learning process.

Other benefits of developing animations and games for

mobile devices using visualized tools include a relatively

short learning curve and thus a decrease in frustration for the

students and immediate visual feedback to students. These

benefits have been found to positively help in engaging

students in the CS0 classroom (Wolber, 2011, p.601). As

students are increasingly finding success in the development

process, they inherently improve their computing skills and

therefore will hopefully become more productive as they

enter the workplace in this increasingly digital world.

The authors took into consideration the importance of

Information Technology (IT) fluency, the role of

programming in IT and the difficulty in learning

programming (especially for non-majors). These factors

drove the decision to address student problem-solving skills

in the general education course named Digital Media. In this

study, the intervention chosen was the visual programming

tool, GameSalad. The goal of this project was to provide an

active, engaging and exciting learning environment for

students not majoring in CS so they could gain intermediate

level computing skills and develop their problem solving

skills. The course project was designed to enable students to

develop apps and games for the iOS platform on Apple

devices, thus leveraging the increasing student interest in

mobile devices, such as the iPad, and mobile applications.

In summary, the goals for this project were to improve

student problem solving skills and critical thinking so our

future college graduates can productively contribute to

today’s technology-driven workplace. By providing an

engaging learning environment via iPad mobile game

development using a visual programming tool that bypasses

common introductory syntax issues, the authors aimed to

increase student interest in computing and to sustain student

engagement in the general education IT course Digital

Media.

2. BACKGROUND RESEARCH

Many IT/CS degree programs in colleges and universities

offer an introductory level IT course for major and non-

major students. Traditionally, this introductory course

teaches programming using programming languages such as

Java, C++ and Visual Basic. Over the years, these

introductory courses have been identified as obstacles for

student retention in computing majors (Turner et al., 2007,

p.24). The focused and linear approach of teaching each

student the complexities and vocabulary of the language’s

syntax does not often promote creativity and inquiry-based

learning. Due to the extensive amount of syntax required to

create a computer program, students are left to memorize and

accept traditional programming concepts without investment

or engagement in the topics. As a result, students often do

not recognize or appreciate the problem-solving

opportunities within the software development process;

students then become disengaged and thus tend to move

towards other areas of study, causing a depletion of brain

power and incoming fresh talent into the CS industry.

Journal of Information Systems Education, Vol. 24(4) Winter 2013

300

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1213611

In order to recruit and retain students, many efforts have

been put into designing an interesting and engaging

introductory course. Approaches such as implementing a

computer game theme into the course can motivate students

to a certain degree, since many students are somewhat

familiar with and interact with computer games in their lives

(Cliburn & Miller, 2008, p.138) (Leutenegger & Edgington,

2007, p.115). These efforts focus on increasing students’

interests in IT/CS and on attracting them into the IT/CS

programs. The authors’ goal is to promote problem solving

and critical thinking skills through this general education

course. The assessment and evaluation strategies are

therefore different than other similar studies. Other studies

usually use indicators such as enrollment improvement or

increased retention rate to assess the result. The authors

assessed students’ problem solving skills in addition to their

computing attitudes to evaluate the success of this project.

Students still have to eventually master the language

specific content and struggle with the syntax in order to

competently develop programs. Using visualized

programming is an engaging teaching methodology and does

not require prior programming knowledge, but the

shortcoming of the traditional visualized programming tools

such as Alice and Scratch is that it is hard to directly apply it

into the real world as the program usually only runs on a

computer. With mobile game development, students can test

their product on mobile devices and receive immediate

feedback, which relates the learning process to their real life.

With the explosive usage of mobile devices such as

smartphones and tablets, these handheld devices have been

portrayed in a positive light, even so far as to make them a

fashion element to generate enthusiasm from the students.

Visualized mobile game tools provide students the

opportunity to fully demonstrate their creativity in a

structured environment where they are not completely

hindered by their lack of programming knowledge. The

resulting mobile apps developed by the students relate

directly to their lives in that the final product can be directly

uploaded and shared with many other mobile device users.

All these characteristics make mobile game development

appealing for students. (Uludag et al., 2011, P.183) shared

their successful experience of using App Inventor to

motivate students by creating apps for Android system.

(Spertus et al., 2010, p.325) and (Wolber, 2011, p.601) also

piloted mobile development using App Inventor and found

the experience very rewarding in terms of student reaction

and learning outcomes.

In this paper, we present our experience of using

GameSalad to develop apps and mobile games for iOS and

our experience with testing those apps on the Apple iPad. In

the following sections, we will describe the institutional

context of the course that incorporated the mobile game

development component, the free visualized game

development tool GameSalad, the project implementation

details and the assessments. We will then share both student

and faculty perspectives on this project.

3. RESEARCH METHOD

3.1 Institutional Context

Georgia Gwinnett College (GGC) is a premier 21st century

liberal arts college that emphasizes graduating students with

strong technical skills. To this end, all GGC students are

required to take two information technology courses. The

first course in this sequence is an introductory computing

course (ITEC 1001) that focuses on both conceptual

knowledge and skills development. For the second course,

students may choose from either Introduction to

Programming (ITEC 2120) or Digital Media (ITEC 2110).

Our enrollment statistics indicate that most non-CS major

students prefer to take Digital Media over Introduction to

Programming. Introduction to Programming is currently

taught using the Java programming language and is widely

perceived among students as a difficult course. The Digital

Media course, on the other hand, focuses on the theoretical

concepts and practical aspects of working with various

digital media. The prevalence of digital media in the

everyday world of today’s students makes this course more

popular. Both of these courses are intended to improve the IT

fluency of our students, to inculcate logical thinking, and to

hone their problem solving skills. Digital Media was

designed to meet these goals and to clear some of the

common student misconceptions about the computing field

by leveraging the students’ interest in digital and social

media. Students worked on the Mac operating system in this

class.

At GGC, multi-section course instructors have some

flexibility in designing their courses. For the Digital Media

course all sections are required to cover theory and practice

of image editing, audio editing, video editing and animation.

Instructors are free to add topics of their choice to this list.

This is where GameSalad fit into our course. No changes

were made to the required modules.

3.2 GameSalad

GameSalad is a game development tool that is designed to

empower everyone to create games for various platforms

without regard to their proficiency in a specific programming

language. This tool is freely available online for download

and for use on Mac and Windows operating systems. The

tool provides easy “drag and drop” features that allow

individuals to create the games. Research indicates that a

better approach to introducing programming concepts to

students is to use such “drag and drop” tools that eliminate

the complexity of the syntax of a programming language and

resulting compilation errors, thus decreasing initial

frustration with the course. The immediate visual feedback

of such tools has also shown to be effective in engaging the

students in computing. The tools used in this study included

GameSalad Creator and GameSalad Viewer. GameSalad

Creator is a freely available tool that can be downloaded

from www.gamesalad.com to develop and preview the

application. GameSalad Viewer is another free tool that can

be downloaded and used to test GameSalad applications on

mobile devices such as iPhone and iPad. Currently, there are

two versions of the Viewer; iOS viewer and Android

Viewer.

3.3 Classroom Experience

GameSalad was introduced in the Digital Media course in

Fall 2011. During the first phase of the project (Fall 2011,

Spring 2012) data about students’ computing attitudes was

gathered. During the second phase of the project (Fall 2012,

Journal of Information Systems Education, Vol. 24(4) Winter 2013

301

Spring 2013) pre and post-tests were used to assess the

problem solving skills of the students in addition to

collecting data about their computing attitudes. The project

implementation itself did not change during the second phase

of the project. When integrating GameSalad into our Digital

Media course our goals were: 1) to leverage student interest

in mobile technology and apps to enhance problem-solving

skills and 2) to increase student engagement in a computing

course by providing an active learning environment. Also, as

part of our college’s commitment to undergraduate research

experience, we aimed to enable the students to work

collaboratively and to use library and online resources for

research purposes. The GameSalad component also afforded

an excellent opportunity to the students to integrate their

image editing and audio-editing skills gained throughout the

semester into their game.

During the class, students were given a simple game to

play on an iPad device provided to them. This game was

created using GameSalad and targeted specific computing

concepts, which were the learning outcomes for that day.

After playing the game the students were asked to identify

the objects, also called as actors in the game. For each actor

the students then had to identify the properties and the

various behaviors of the actors. Through this initial question-

and-answer session, students were led to discover the

common questions that developers ask when designing a

game. The instructors modeled the development process for

students. This process began with problem identification,

then moved to solution design and once the problem and

design were established, moved to the creation process.

Many students were eager to start working with the

GameSalad tools without thoroughly thinking through the

game’s objectives and design. As a result, these students

quickly realized that a lot more pre-planning is needed in

order to effectively create a working game. The students’

experiences reinforced the learning objectives and the

process for building effective computing solutions

The instructors helped students to explore and discover

various features of Game Salad. With the instructors’

guidance the students developed the game that they played at

the beginning of the session, thereby learning specific

computing concepts such as classes, objects, attributes,

methods, conditional statements, variables, etc. By following

this process, not only were the students encouraged to make

design decisions, but they were also required to test and

debug their games. By coupling interactivity, creativity, and

inquiry-based learning, instructors aimed to illustrate to the

students the process of determining the requisite factors that

needed to be addressed for their mobile app to effectively

work. This process was the cornerstone for solving Digital

Media project issues; by working through their individual

investigations, students were able to hone their critical

thinking skills. It was imperative that the instructors gave no

direct instructions on how to create the mobile apps, besides

the basic guidance on how to use GameSalad. Indeed,

students were asked to research answers to their own

questions or errors during the design and testing processes.

Not only did this encourage the Digital Media students to

become self-reliant and to collaborate with peers, but this

also modeled for the students how the outside world of

software development goes about creating mobile apps – in

an iterative, problem-solving cycle with lots of changes,

mistakes, and testing.

In this Digital Media course, the students also used

various image editing, audio editing, video editing and

animation applications. As part of their GameSalad project,

the students worked in pairs to create an educational

application based on a specific concept in their field of study.

They first conducted online research to investigate existing

educational applications available on the AppStore and

Android Market. The students also had an opportunity to test

apps of their choice on iPad devices provided by the college.

The next step was to research basic game and user interface

design principles for mobile platforms. Based on these

findings and guidance from the instructor, the teams created

a simple game design document that explained the main idea

and the game flow of their unique game. With feedback from

the instructor, the teams then created their games using

GameSalad and tested it on iPads. The teams used GIMP and

GarageBand to create images and the soundtrack for their

game.

The following figures depict different modes of a simple

biology game created by students, named “Cell Bio

Reference”. This game included the logic to detect touch and

drag events, collisions and to keep score. It begins by

showing instructions on app usage. The app has 3 different

modes. In the Study mode the users are shown labeled

diagrams accompanied by a list of terms. The user can tap

the terms to go to the Glossary mode for a definition of the

term. The Glossary has touch enabled navigation buttons to

go back or move on to other modes of the game. In the

Practice mode the user is taken through several review

questions and answers. The Practice mode also has a game

that has several objects floating on the scene. More objects

appear on the scene as the game continues. The user’s goal is

to drag all plant cells into the plant cell box, animal cell

objects on to the animal cell box and so on. This is a timed

game and the user scores points every time a correct match is

made. There are 3 types of cells to study along with 26

glossary terms and 20 review questions.

Figure 1 App Usage Instructions

Journal of Information Systems Education, Vol. 24(4) Winter 2013

302

Figure 2 Main Menu, Tap Enabled

Figure 3 Study Mode Linked to Glossary

Figure 4 Glossary

Figure 5 Review Mode

Figure 6 Practice Game

3.4 Data collection

To evaluate the impact of this project, we administered a

“Computing Attitudes” survey at the end of each semester.

We also administered a pre and post quiz to assess the

problem-solving skills of our students. In total, 70 students

participated in the survey during the Fall semester of 2011,

65 students in Spring semester of 2012 and 70 students in

Fall semester of 2012. In the second phase of the project, we

designed problem-solving assessments. The study had 29

students participate in the pre and post quiz in Fall 2012 and

28 students participate in Spring 2013.

In the survey, students were asked about their

background (gender, age, college year, major), computer

usage habits and previous experience with touchscreen

mobile devices (if any). The survey also included questions

about the students’ attitudes towards computing, which were

adapted from existing instruments. Student engagement was

assessed using questions based on (Garrison et al., 2008). A

sample statement read, “Compared to other courses the

amount of interaction I experienced with my ITEC 2110

instructor has increased”. Four such statements were used

to gather data about the perceived amount and quality of

student-student and student-faculty interaction. Finally, the

survey also gathered student feedback on the mobile game

development experience using GameSalad. The students

rated the survey statements on a Likert scale of 1-5, 1 being

“Strongly Disagree” and 5 being “Strongly Agree” with the

statement given.

Pre and post quizzes were designed to assess students’

problem-solving skills and were based on the assessment

method proposed by (Deek et al., 1999, p.317). For both pre

and post quiz the students were asked to play a simple game

on their iPad. They then had to answer questions that

required them to formulate the problem, design the solution

and plan test cases. The games that students used for the pre

and post quiz were similar in nature. A detailed list of

possible outcomes for each of the phases was developed and

used as a scoring rubric.

The semester long project had several intermediate

deliverables that provided additional insight into student

work. The research reports were used to evaluate the

achievement of our secondary goal of using online and

library resources for research. The educational apps

themselves were used to evaluate solution quality (reliability

and correctness), as suggested by (Deek et al., 1999, p.317).

Journal of Information Systems Education, Vol. 24(4) Winter 2013

303

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Fall 2011

Spring 2012

Fall 2012

4. RESULTS

4. 1 Quantitative Results

The background information of all the students that

participated in the end of semester survey is as shown in

figure 7. Gender distribution was almost equal and the

majority of the students were aged 17 to 21 years. Only 20%

of the students were computing majors; 52% of the students

were sophomores.

Figure 7 Participants’ Demographic Information

Figure 8 shows the computer usage distribution of the

participants. The majority of the students had never written

any type of computer program or created computer games

previously; however, most of them had used an

iPhone/iPod/iPad before. When asked about the apps used on

mobile devices, the participant responses showed a wide

range. Applications ranged from games such as “Angry

Birds” to popular social media apps and personal

organization apps. There was no mention of educational apps

used for studying.

Figure 8 Participants' computer usage information

The chart in figure 9 shows the average values of the student

computing attitudes. Student responses in all three semesters

overlapped considerably. Students strongly agreed with

statements indicating that computers are fun and useful and

that computing is a logical and creative activity. The survey

participants strongly disagreed with statements indicating

that computers are boring or that computer jobs are all about

programming. The participants’ confidence and willingness

to learn new software tools was also high.

As shown in figure 10 although most students agreed

that creating mobile games was a fun activity, they also

indicated that they perceived the project as difficult. Also,

although students responded very positively to wanting to

learn more about computing, the interest in computing

careers was average.

As shown in figure 11 students also indicated increased

amount and quality of interaction with faculty and other

students. Interestingly, pivot tables did not show any

significant impact of factors such as gender, age, major and

prior experience with mobile devices on students’ computing

attitudes.

2%
2%

6%
7%

80%

Daily
Weekly

Monthly
Few times a year

Never

Computer Usage - How often do you write

your own programs/games on your

computer?

Figure 9 Computing Attitudes

Journal of Information Systems Education, Vol. 24(4) Winter 2013

304

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Increased amount of

interaction with

instructor

Improved quality of

interaction with

instructor

Increased amount of

interaction with other

students

Improved quality of

interaction with other

students

Fall 2011

Spring 2012

Fall 2012

In the pre and post problem solving assessment results

students demonstrated significant improvement in the design

and test planning areas. In Fall 2012, the problem

formulation scores did not show any change, but in Spring

2013 problem formulation scores also improved along with

the others. Running paired samples t-tests confirmed our

findings, the results indicate (in the 95% confidence

interval):

 The mean difference between problem formulation pre

and post quiz scores is between 1.99% and 13.21%,

with the post quiz scores being higher.

 The mean difference between solution design pre and

post quiz scores is between 22.51% and 35.75%, with

the post quiz scores being higher.

 The mean difference between test planning pre and post

quiz scores is between 7.83% and 13.52%, with the post

quiz scores being higher.

These numbers are encouraging. Even though most of these

students will not take a programming course, they obtained

some of the benefits of such a course conducted in a non-

traditional manner, using inquiry and creativity to help them

learn problem-solving and critical thinking. The results of

the pre and post quiz in Fall 2012 and Spring 2013 are

shown in figures 12 and 13.

Students’ games were scored using a rubric adapted from

(Deek et.al. 1999) to evaluate solution quality. Of the

projects graded, 76.67% of games submitted were reliable,

working for all valid inputs and responding to all invalid

inputs. Out of all the projects, 83.33% of the games

submitted were consistent with their game designs and

worked correctly.

4.2 Qualitative Results

The open-ended questions in the survey gathered student

feedback about the strengths, challenges and

recommendations for this course. The most recurring idea

observed from the student responses was to spend more class

time on GameSalad. Following strengths were identified:

 Ability to use a wide variety of software

 Interaction with industry experts

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Creating games is

fun

Cretaing games is

hard

More

knowledgeable

about computing

More interested

in computing

Liked creating

games/apps using

GameSalad

Fall 2011

Spring 2012

Fall 2012

Figure 10 Game Creation Impact

Figure 11 Student Engagement

Journal of Information Systems Education, Vol. 24(4) Winter 2013

305

 Increased amount and quality of student-faculty

interaction

 Increased amount and quality of student-student

interaction

 Ability to create mobile games

Among the challenges, the amount of work done and amount

of time spent were the most common themes. Many students

indicated their desire to spend more class time on

Figure 12 Fall 2012 Average Scores on Problem Solving

Assessment

Figure 13 Spring 2013 Average Scores on Problem

Solving Assessments

GameSalad. They found the process of game creation

challenging, but fun. They also complained that they spent a

lot of time on the project, but indicated they were satisfied

with their accomplishment.

The pre and post quizzes included reflection questions to

gain insight into students’ problem solving processes. The

most significant difference we noticed in student responses

from pre to post quiz was their confidence. When asked

about their problem solving experience, most students

indicated they felt more knowledgeable and confident in

solving the problem on the post quiz. Even though the games

in the quizzes were unlike any of the games students created

or studied, they noted they applied the same problem-solving

process as they had learned in class. Reflection questions

suggested students understood the methodology of software

design and were able to apply it to different contexts.

Another significant difference from pre to post quiz was of

planning test cases. When asked to describe the solution

design process on the post quiz, many students described

various test cases they considered when designing the

solution. Finally, student responses also indicated that the

visual nature of the problem (ability to play the game) played

a key role in formulating the problem correctly. This may

explain the insignificant difference between the pre and post

problem formulation scores.

4.3 Faculty Perspectives

Faculty discussions were useful in identifying the strengths

and challenges of this approach. From faculty perspective

using mobile game development was an ideal way of

integrating logical thinking and problem solving in the

curriculum for students that opted out of the introductory

programming course. iPads were used in the class by

students to test the end result (game) they were expected to

create in class on that day. This provided an excellent way to

discuss how many actors were needed, what their attributes

would be and what their behaviors would be. This problem-

solving approach worked very well for small class activities,

which the students could complete in an hour and a half. It

allowed the instructors to demonstrate the problem-solving

process. For the larger project, the students sought

instructor’s assistance on specific issues. They were able to

use the problem-solving process to design their own game

and implement it. The hands-on active learning approach

also created an environment of high engagement among

students as well as between students and faculty.

Faculty also identified challenges with this approach,

mainly those of time constraints and compatibility. More

time could not be allotted to GameSalad activities in the

semester due to other course objectives and requirements

that had to be met. The unavailability of Mac operating

system at students’ home affected the amount of time

students spent on GameSalad outside of class. Constant

updates to both GameSalad and the Mac OS were also major

challenges that faculty faced. The process of preparing iPad

devices to test GameSalad apps on them is complex and

cannot be done in class with students. This had to be done

separately before the semester began. During the class

session student products were uploaded on the iPad devices.

Since this process requires Wi-Fi communication between

the iPad and the computer it might pose network security

challenges on some campuses.

An alternative to GameSalad is AppInventor, which was

formerly managed by Google. AppInventor is similar to

GameSalad and can be used to create mobile apps/games for

Android platform. It is important to note that AppInventor

has also gone through a few major changes and was

unavailable for some period of time as it switched hands

from Google to MIT. It seems to the authors that this is

cutting-edge technology, still in its infancy and constantly

evolving. But the ease of creation of mobile apps, the visual

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Pre Quiz

Post Quiz

0.00%
10.00%

20.00%

30.00%

40.00%

50.00%
60.00%

70.00%
80.00%

90.00%

Pre Quiz

Post Quiz

Journal of Information Systems Education, Vol. 24(4) Winter 2013

306

impact and student interest in mobile apps are too significant

for educators to ignore.

5. CONCLUSION

The popularity of mobile devices and mobile apps, the

interactive drag and drop game creation software and the

immediate visual feedback provided by them can be

leveraged to engage students in computing classes. A visual

game development tool can be used to inculcate problem-

solving and logical thinking skills among students. In this

project, students investigated existing educational mobile

apps, conducted research on mobile game development and

user interface design principles and created an educational

app in their area of academic interest using GameSalad. The

participants reported the game development experience to be

both challenging and fun. The participants’ self-reported

attitudes towards computing were positive. The student-

faculty and student-student engagement was reported higher

as compared to other classes. Finally, the pre and post

quizzes demonstrated significant improvement in students’

problem solving skills. The faculty expressed some concerns

regarding platform dependence and frequently updating

versions of the software. However, they also reported that

the positive results greatly outweighed the concerns

expressed. Moreover the availability of other applications

such as AppInventor and constantly improving mobile

platforms and game creation software make mobile app

development an attractive learning module to be included in

the introductory computing curriculum.

6. ACKNOWLEDGMENTS

The authors would like to thank Georgia Gwinnett College’s

STEM Mini Grant program for their funding. The authors

would also like to thank Mr. Richard Price for reviewing the

paper.

7. REFERENCES

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in

introductory programming. ACM SIGCSE Bulletin, 39(2),

32-36.

Carver, J. C., Henderson, L., He, L., Hodges, J., & Reese, D.

(2007, July). Increased retention of early computer science

and software engineering students using pair

programming. In Software Engineering Education &

Training, 2007. CSEET'07. 20th Conference on (pp. 115-

122). IEEE.

Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000).

TCS: a computer program to estimate gene genealogies.

Molecular ecology, 9(10), 1657-1659.

Cliburn, D. C. (2006, October). Experiences with the LEGO

Mindstorms throughout the undergraduate computer

science curriculum. In Frontiers in Education Conference,

36th Annual (pp. 1-6). IEEE.

Cliburn, D. C., & Miller, S. (2008, March). Games, stories,

or something more traditional: the types of assignments

college students prefer. In ACM SIGCSE Bulletin (Vol.

40, No. 1, pp. 138-142). ACM.

Computing Research Association. (2011). Taulbee Survey

2009-2010. Retrieved August 19, 2013 from http://www.

cra.org/resources/taulbee.

Crawford, S., & Boese, E. (2006). ActionScript: a gentle

introduction to programming. Journal of Computing

Sciences in Colleges, 21(3), 156-168.

Deek, F. P., Hiltz, S. R., Kimmel, H., & Rotter, N. (1999).

Cognitive assessment of students' problem solving and

program development skills. Journal of Engineering

Education, 88(3), 317-326.

Dodds, Z., Libeskind-Hadas, R., Alvarado, C., & Kuenning,

G. (2008, March). Evaluating a breadth-first CS1 for

scientists. In ACM SICSE Bulletin (Vol. 40, No. 1, pp.

266-270). ACM.

Dougherty, J. P. (2007). Concept visualization in CS0 using

ALICE. Journal of Computing Sciences in Colleges,

22(3), 145-152.

Forte, A., & Guzdial, M. (2005). Motivation and nonmajors

in computer science: identifying discrete audiences for

introductory courses. Education, IEEE Transactions on,

48(2), 248-253.

Fowler, R. D. (1985). Landmarks in computer-assisted

psychological assessment. Journal of Consulting and

Clinical Psychology, 53(6), 748.

Garrison, D.R. & Vaughan, N.D. (2008). Blended Learning

in Higher Education: Framework, Principles and

Guidelines. Jossey-Bass.

Guzdial, M., & Ericson, B. (2007). Introduction to

computing & programming in Java: a multimedia

approach. Pearson Prentice Hall.

Johnsgard, K., & McDonald, J. (2008, April). Using Alice in

overview courses to improve success rates in

programming. In Software Engineering Education and

Training, 2008. CSEET'08. IEEE 21st Conference on (pp.

129-136). IEEE.

Kelleher, C., Pausch, R., & Kiesler, S. (2007, April).

Storytelling Alice motivates middle school girls to learn

computer programming. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp.

1455-1464). ACM.

Klassner, F., & Anderson, S. D. (2003). Lego MindStorms:

Not just for K-12 anymore. Robotics & Automation

Magazine, IEEE, 10(2), 12-18.

Kölling, M., & Henriksen, P. (2005). Game programming in

introductory courses with direct state manipulation. ACM

SIGCSE Bulletin, 37(3), 59-63.

Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber,

M., Schep, M., Barnes, D. J., & Hollingsworth, R. G.

(2002, June). A road map for teaching introductory

programming using LEGO© mindstorms robots. In ACM

SIGCSE Bulletin (Vol. 35, No. 2, pp. 191-201). ACM.

Leutenegger, S., & Edgington, J. (2007, March). A games

first approach to teaching introductory programming. In

ACM SIGCSE Bulletin (Vol. 39, No. 1, pp. 115-118).

ACM.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding

computer scientists. ACM SIGCSE Bulletin, 39(1), 223-

227.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J.

(2006). Pair programming improves student retention,

Journal of Information Systems Education, Vol. 24(4) Winter 2013

307

confidence, and program quality. Communications of the

ACM, 49(8), 90-95.

Microsoft Research FUSE LABS (n.d.). Kodu. In Kody

Game Lab Community. Retrieved Dec 18, 2013, from

http://www.kodugamelab.com/.

Mullins, P., Whitfield, D., & Conlon, M. (2009). Using Alice

2.0 as a first language. Journal of Computing Sciences in

Colleges, 24(3), 136-143.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,

Miller, C., & Balik, S. (2003, February). Improving the

CS1 experience with pair programming. In ACM SIGCSE

Bulletin (Vol. 35, No. 1, pp. 359-362). ACM.

Rizvi, M., Humphries, T., Major, D., Jones, M., & Lauzun,

H. (2011). A CS0 course using scratch. Journal of

Computing Sciences in Colleges, 26(3), 19-27.

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., &

Saulters II, C. (2010). Teaching computational thinking

through musical live coding in scratch. In Proceedings of

the 41st ACM technical symposium on Computer Science

Education (pp. 351-355). ACM.

Spertus, E., Chang, M. L., Gestwicki, P., & Wolber, D.

(2010). Novel approaches to CS 0 with app inventor for

android. In Proceedings of the 41st ACM technical

symposium on Computer science education (pp. 325-326).

ACM.

Teague, D., & Roe, P. (2008). Collaborative learning:

towards a solution for novice programmers. In

Proceedings of the tenth conference on Australasian

computing education-Volume 78 (pp. 147-153).

Australian Computer Society, Inc.

Turner, E. H., Albert, E., Turner, R. M., & Latour, L. (2007).

Retaining majors through the introductory sequence. ACM

SIGCSE Bulletin, 39(1), 24-28.

Uludag, S., Karakus, M., & Turner, S. W. (2011).

Implementing IT0/CS0 with scratch, app inventor for

android, and lego mindstorms. In Proceedings of the 2011

conference on Information technology education (pp. 183-

190). ACM.

Wellman, B. L., Davis, J., & Anderson, M. (2009). Alice and

robotics in introductory CS courses. In The Fifth Richard

Tapia Celebration of Diversity in Computing Conference:

Intellect, Initiatives, Insight, and Innovations (pp. 98-102).

ACM.

Wolber, D. (2011, March). App inventor and real-world

motivation. In Proceedings of the 42nd ACM technical

symposium on Computer science education (pp. 601-606).

ACM.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R.

(2000). Strengthening the case for pair programming.

Software, IEEE, 17(4), 19-25.

AUTHOR BIOGRAPHIES

Sonal Dekhane is an Associate Professor of Information

Technology at Georgia Gwinnett

College (GGC). At GGC, Dr.

Dekhane contributed to

curriculum development and led

program assessment initiatives.

She is committed to increasing

student engagement in her

classroom and experiments with a variety of pedagogical

techniques to achieve this goal. She has successfully used

mobile technology to enhance students’ learning experience.

Her work has been presented at national and international

conferences and published in national and international

journals such as International Journal of Mobile and Blended

Learning. Dr. Dekhane is currently involved in projects

focusing on increasing women’s participation in computing

at GGC.

Xin Xu received her Ph.D. degree in Computational

Analysis and Modeling with a

concentration in network

analysis and modeling from

Louisiana Tech University. She

has been working as an Assistant

Professor of Information

Technology at Georgia Gwinnett

College since fall 2007. She

found her passion for teaching

while working as a graduate

teaching assistant. Her current

academic interests include researching the impact of using

multimedia on student learning outcomes and developing

web animations to assist STEM teaching and learning, as

well as researching and developing strategies to promote

technology in woman and underrepresented minorities.

Mai Yin Tsoi, a native of California, is an Associate

Professor who has been teaching

General and Organic Chemistry

since she joined the faculty at

Georgia Gwinnett College in

2007. She received a Bachelor's

in Chemistry from Vassar

College, NY, a Master's in

Organic Chemistry from the

Georgia Institute of Technology,

and a Doctorate of Philosophy in

Science Education from the

University of Georgia. She has conducted oceanographic

research at the Massachusetts Institute of Technology, Texas

A & M University, and the U.S. Naval Research Center in

San Diego, CA. Dr. Tsoi was named Gwinnett County

Teacher of the Year and was the 2nd finalist in the Georgia

State Teacher of the Year competition, both in 2006, for

excellence in teaching high school chemistry and physics.

Her published papers and current research center on the use

of technology in science teaching and learning, with a focus

on mobile learning and software development. Recently, her

scholarly work has garnered the 2011 Excalibur Award from

the Technology Association of Georgia and the 2012

Catalyst Award in Mobile Innovation from Blackboard, as

well as an honorary induction into the Golden Key

International Honor Society for her leadership and service.

Journal of Information Systems Education, Vol. 24(4) Winter 2013

308

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

