
Journal of Information Systems Education, Vol. 19(4) 
 

455 
 

Student Monks – Teaching Recursion in an IS or CS 
Programming Course Using the Towers of Hanoi 

 
 

Alan C. Benander 
Barbara A. Benander 

Computer and Information Science Department 
Cleveland State University 

Cleveland, Ohio, 44023, USA 
abenande@cis.csuohio.edu  

 
 
 

ABSTRACT 
 

Educators have been using the Towers of Hanoi problem for many years as an example of a problem that has a very elegant 
recursive solution. However, the elegance and conciseness of this solution can make it difficult for students to understand the 
amount of computer time required in the execution of this solution. And, like many recursive computer programs, students 
often find it difficult to follow a trace of the solution. Research in computer education has shown that active learning exercises 
achieve positive educational results. In line with this research, an active learning exercise was employed in the classroom to 
assist students in gaining a better understanding of the recursive solution to the Towers of Hanoi problem. This demonstration 
can be used in an introductory IS or CS programming class, independent of the language used. The demonstration involves 
using student volunteers, who, in the demonstration, are referred to as “monks”, a reference to the original problem that had 
monks moving the golden rings in the Towers of Hanoi. An anonymous student survey revealed that students felt strongly that 
the demonstration helped them better understand recursion, and that the demonstration was a good use of class time. In 
addition, an analysis of a small sample of students’ computer programs following the demonstration, suggests that there may 
be pedagogical benefits to use of the student monk demonstration.  

 
Keywords: Teaching Recursion, Active Learning, Computer Education, Towers of Hanoi 

 
 

1. INTRODUCTION 
 

1.1 Recursion and Related Research 
Recursion is a programming technique that involves a 
procedure/method/function calling itself either directly or 
indirectly through another procedure/method/function 
(Deitel and Deitel, 2005). The use of recursion has long been 
viewed as being fundamental to computer programming 
(McCracken, 1987). Today, recursion is typically found in 
most IS and CS curricula, in the latter part of the first 
programming course. Historically, programming instructors 
have had difficulty in explaining recursion to their students 
(Levy and Lapidot, 2000; Wiedenbeck, 1988), and 
researchers have attested to the difficulty that most students 
have in fully understanding recursion (Anderson, 1976; 
Henderson and Romero, 1989; Levy and Lapidot, 2000; 
Pirolli and Anderson, 1985; Turbak, Royden, Stephan, and 
Herbst, 1999; Wiedenbeck, 1988). It has been contended that 
the difficulty in understanding recursion stems from 
unfamiliarity with recursive activities, and that the mind, 
while able to deal with iteration, has difficulty in dealing 
with recursion (Anderson, Pirolli, and Farrell, 1988). It has 
also been proposed that recursion is difficult because it lacks 
everyday analogues (Pirolli and Anderson, 1985). 

Research (Gotschi, Sanders, and Galpin, 2003) has also 
found that that many first-year students have difficulty 
tracing recursive programs. This finding is consistent with 
results from a survey given in Section 4 in which students 
indicated that recursion is a difficult topic. A trace of a 
recursive program is defined as the “representation of the 
flow of control and the calculation of the solution of a 
recursive program” (Gotschi et al., 2003, pp.346). Ability to 
correctly trace a recursive program is essential in order to 
determine its computational time complexity. The 
computational time complexity of a program is the time that 
a program needs to execute, as a function of the input size. 
For example, the standard bubble sort program’s time 
complexity is a quadratic function of n, where n is the 
number of elements to sort. Even in an age of increasing 
clock speeds and bus widths, time complexity is a very 
important consideration when assessing program 
performance. For example, suppose a program has time 
complexity f(n) = n, a linear function of the size, n, of its 
input. If this program were to run on a processor that is 10 
times as fast, it could process a problem with 10 times 
greater size. In contrast to this, suppose a program has time 
complexity of f(n) = n2, a quadratic function of the size, n, of 
its input. If this program were to run on a processor that is 10 

mailto:abenande@cis.csuohio.edu�


Journal of Information Systems Education, Vol. 19(4) 
 

456 
 

times as fast, it could process a problem with only 3.16 times 
greater size. Aho, Hopcroft, and Ullman (1974) give an 
analysis showing the importance of the time complexity of 
an algorithm. 
  While recursive programming is often difficult for 
students to master, it can often be an elegant approach to 
solving certain problems that present themselves in database 
and data warehouse programming applications. In these 
types of applications, data and their indexes are stored in 
tree-like structures that can often best be traversed using 
recursive techniques. Indeed, recursion is quite useful in 
computer programs that use recursively defined data 
structures, such as linked lists and trees. The operations of 
traversal, retrieval, and searching through linked lists and 
trees, can be defined recursively, and thus lend themselves to 
a natural recursive programming implementation. A (non-
empty) linked list, for example, can be defined (informally) 
recursively; i.e., in terms of itself, in the following way. A 
non-empty linked list of size n consists of a single node if n 
= 1; and for n > 1, consists of a linked list of size n - 1 with 
an additional node attached. 

Figure 1 illustrates a linked list. Note that a linked list 
will have a “pointer” (denoted by “L” in Fig. 1) to the first 
item, which allows for traversal of the linked list. 

       

 
    Figure 1. Linked List 

 
Typically, recursion is introduced to IS and CS students 

only after they have been taught to use iterative constructs, 
such as for-loops and while-loops. While any recursive code 
can be written iteratively, it is often easier to write recursive 
solutions for certain programming problems. Recursive 
programming, and the differences between recursive and 
iterative programming, have been studied by various 
researchers (Benander, A., Benander, B., and Sang, 2000; 
Benander, A., Benander, B., and Pu, 1996; Danvy, 2002; 
Kessler and Anderson, 1986; Sinha and Vessey, 1992). A 
variety of studies have been performed comparing the use of 
recursion with iteration in computer programming. For 
example, Benander et al. (1996) reported on an empirical 
study of comprehension of iterative and recursive code 
which showed that beginning programmers were able to 
correctly comprehend certain recursive code involving 
linked lists faster than the iterative version. Benander et al. 
(2000) also conducted an empirical study showing that for 
certain small segments of code, subjects in an experiment 
were able to more successfully locate a bug in a recursive 
version of that code than in an iterative version. In another 
study, Wiedenbeck (1989) concluded in a study of novice 
Pascal programmers, that comprehension of an iterative 
program was not affected by prior experience with the 
recursive version of the same program, and that 
comprehension of the recursive version was only weakly 
affected by prior experience with the iterative version. 

Over the years, there has also been much research on 
various pedagogical approaches to the teaching of recursion 
(Bruce, Danyluk, and Murtagh, 2005; Ford, 1984; Henderson 
and Romero, 1989; Kruse, 1982; Tung, Chang, Wong, and 

Jehng, 2001; Turbak et al., 1999; Wiedenbeck, 1989; Wu, 
Dale, and Bethel, 1998). For example, Bruce et al. (2005) 
recommend teaching recursion before teaching arrays, while 
Turbak et al. (1999) recommend the uncommon approach of 
teaching recursion before teaching iterative techniques. Ford 
(1984) outlines the use of the principle of mathematical 
induction in arguing the correctness of a recursive algorithm. 
Kruse (1982) suggests the use of tree diagrams to illustrate 
recursion and explain its implementation. Wu et al. (1998) 
concluded that concrete conceptual models were better than 
abstract conceptual models in teaching recursion to novice 
programmers. Finally, the choice of a certain functional 
programming language, Standard ML, has been 
recommended as a tool for teaching recursion by Henderson 
and Romero (1989). A summary of this past research on 
pedagogical approaches to teaching recursion is given below 
in Table 1.  

  
 

Recommendation for 
Teaching Recursion 

 
Source of 

Recommendation 
Teach recursion before 

arrays 
Bruce, Danyluk and 

Murtagh, 2005 
Use visual representations Tung, Chang, Wong, and 

Jehng, 2001 
Teach recursion before 

iteration 
Turbak, Royden, Stephan 

and Herbst, 1999 
Use concrete conceptual 

models 
Wu, Dale, and Bethel, 

1998 
Use Standard ML 

programming language 
Henderson and Romero, 

1989 
Learning from examples Wiedenbeck, 1989 

Use math induction  Ford, 1984 
Use tree diagrams  Kruse, 1982 

Table 1. Summary of Past Research on Pedagogical 
Approaches to Teaching Recursion 

 
However, none of the approaches found in the research 

literature, or in computer programming textbooks, have 
suggested the use of human subjects in a demonstration of 
recursion. Everyone can relate to message passing among 
humans, and active learning exercises that augment passive 
lectures have been shown to have positive educational results 
(Cassel, 2002; Depradine and Gay, 2004; Massey, Brown, 
and Johnston, 2005; McConnell, 1996; Umble, M. and 
Umble, E., 2004; Walker, 2004). A summary of this research 
is found in Table 2.  

Motivated by this research, the authors have used an in-
class demonstration for teaching recursion that uses student 
volunteers to illustrate the recursive solution to a classical 
computer programming problem involving the Towers of 
Hanoi puzzle. This classroom demonstration is being 
proposed as an aid to teaching recursion in an introductory 
computer programming class for IS or CS students, 
independent of the programming language being used.  

 
1.2 The Towers of Hanoi Puzzle 
The Towers of Hanoi is a classical example of a problem that 
has a very difficult iterative solution, yet a relatively simple 
recursive one. The Towers of Hanoi problem has been  



Journal of Information Systems Education, Vol. 19(4) 
 

457 
 

 Table 2.  Summary of Active Learning Exercises That 
Augment Passive Lectures 

 
studied extensively by different educators (Anderson and 
Douglas, 2001; Birtwistle, 1985; Mayer and Perkins, 1984; 
Maziar, 1985; Noyes and Garland, 2003; Sapir, 2004). The 
actual Towers of Hanoi puzzle was invented by the French 
mathematician Edouard Lucas in 1883. The apocryphal story 
of the Towers of Hanoi is a narrative involving a task 
givento monks and the eventual end of our planet. According 
to a discussion of the history of the Towers of Hanoi, found 
at http://hanoitower.mkolar.org/HThistory.html, the Towers 
of Hanoi puzzle is probably not of ancient Indian origin, as 
many believe, but instead was probably invented “from 
scratch” by Lucas. The website also contends that there is no 
written record of the puzzle prior to 1883. The task given to 
the monks was to move 64 golden rings of varying diameter 
from one peg to another, following certain rules. When the 
monks finish the task, the world will end, according to the 
story. 

Initially, all 64 rings are placed on one of 3 pegs, 
referred to as the “source peg”, in order of decreasing 
diameter from bottom to top. All 64 rings are to be moved to 
one of the other two pegs, designated as the “destination 
peg” (Figure 2). The other peg can be used as a “temporary 
peg” in moving the rings. The rules for moving the rings are: 
i) only one ring may be moved at a time, and ii) a larger ring 
may not be moved on top of a smaller ring. With these rules, 
if the monks move 1 ring per second, it is estimated that our 
solar system will have been out of existence before the task 
is finished. Assuming one move per second, and no wrong 
moves, it would take approximately 590 billion years to 
complete.  

The short, elegant, recursive solution in pseudocode is 
given in Figure 3. The 3 steps in this pseudocode solution to 
the Towers of Hanoi can be explained in non-programming 
terms as: 1) Move N-1 rings from the “Source” peg to the 
“Temp” peg; 2) Move one ring (the last and largest one) 

from the “Source” peg to the “Dest” peg; 3) Move the N-1 
rings from the “Temp” peg to the “Dest” peg.  

 

 
 

Figure 2. The Towers of Hanoi with 4 rings 
 

As in the development of any recursive programming 
solution, it should be emphasized to students that: i) their 
solution should “work” for the “base case”; i.e., for Towers 
of Hanoi, the case where there is 1 ring (N = 1); ii) each 
recursive call should reduce the size of the problem; and iii) 
assuming that the solution “works” for the N - 1 case (N – 1 
rings in the Towers problem), then it works for the Nth case 
(N rings in the Towers problem). This last condition 
(condition iii) for a recursive solution often requires a “leap 
of faith” by the students since it is often difficult for students 
to accept this “inductive condition”. These three conditions 
form the basis of a “three-question method” (Dale, 2003) 
that programmers should use when attempting to verify the 
correctness of a recursive solution. 

 
Procedure Towers (N, Source, Temp, Dest) { 
  if N <= 0 exit; 
  else{ 
  Towers (N-1, Source, Dest, Temp); 
      Move ring from Source to Dest; 
   Towers(N-1, Temp, Source, Dest); 
  } 
} 

 Figure 3. Recursive Solution to the Towers of Hanoi 
 

 A Java applet illustrating the Towers of Hanoi puzzle 
can be found at www.cut-the-not.org/recurrence/hanoi.shtml, 
and can be useful for both teachers and students as an 
introduction to the solution of the puzzle. The applet shows 
rings being moved from one peg to another, but does not 
illustrate the many recursive calls being executed in the 
solution, nor does it lend itself to an easy trace of the 
solution. The next two sections discuss an active learning 
approach to help students in an introductory IS or CS 
programming course trace the recursive solution to the 
Towers of Hanoi, and to also help them understand its time 
complexity.  

 
2. PRE-DEMONSTRATION STUDENT MONK 

TRAINING 
 

One class period before the actual in-class demonstration, the 
Towers of Hanoi puzzle can be briefly introduced to all the 
students in the class. During that in-class introduction, the 
instructor asks for volunteers to help demonstrate the puzzle 
at the next classroom meeting. Experience has shown 
students to be eager to volunteer as “student monks”. Also, 
those students not chosen as volunteers showed no outward 

 
Active Learning Examples (E.g.) 

& Results (R) 

 
Source 

E.g.: Use of crossword puzzle and 
Jeopardy game    

R:  Student feedback very positive 

Massey, Brown 
and Johnston, 

2005 
E.g.: Playing cards in decision tree 

demo    
R:  Positive student results  

Umble, M. and 
Umble, E. 2004  

E.g.: Active-learning computer lab 
sessions 

R:  Positive student feedback, 
success on exams  

Walker, 2004 

E.g.: Interactive IDE for writing 
programs 

R:  Fewer coding mistakes on tests 

Depradine and 
Gay, 2003 

E.g.: Student role playing in network 
demo 

R:  Aided understanding of routing 
algorithm 

Cassell, 2002 

E.g.: Props/experiments/group 
exercises 

R:  Better exam performance 

McConnell, 1996 

http://hanoitower.mkolar.org/HThistory.html�
http://www.cut-the-not.org/recurrence/hanoi.shtml�


Journal of Information Systems Education, Vol. 19(4) 
 

458 
 

signs of disappointment. Since the student monks are to be 
trained by the instructor outside of class, it may not be 
feasible to have more than 5 “student monk” volunteers. To 
help students better understand the recursive solution found 
in Figure 3, a demonstration prop is used in a training 
session. This same prop will be used in the actual in-class 
demonstration. The prop consists of several wooden rings 
(painted gold for an added authentic touch) and 3 pegs, such 
as those pictured in Figure 2.  

The actual out-of-class training of the student monks 
should take no more than 30 minutes. The training session 
begins by labeling the pegs, A, B, and C, left to right. During 
the actual in-class demonstration, these pegs will be labeled 
in the same way. The 1-ring case is easily demonstrated by 
moving the ring from peg A to peg C. The 1-ring student 
monk is trained to move a ring from peg A to peg C 
whenever he/she is called with Towers(1, A, B, C). It must 
be made clear to the 1-ring monk that A, B, and C are actual 
arguments in the call, and that they must be substituted for 
the parameters Source, Temp, and Dest, respectively, in the 
code of the Towers procedure. After moving the ring, the 1-
ring monk is trained to tell the student who called him/her, 
that he/she is finished. 

The 2-ring student monk, when called with Towers (2, 
A, B, C), is taught to do the following: call the 1-ring monk 
with Towers (1, A, C, B); wait for the 1-ring monk to tell 
him/her that he/she is finished; when told by the 1-ring monk 
that he/she is finished, move a ring from peg A to peg C; call 
the one-ring monk with Towers (1, B, A, C); wait for the 1-
ring monk to tell him/her that he/she is finished; when told 
by the 1-ring monk that he/she is finished, tell the student 
who called him/her (i.e., the 3-ring monk) that he/she is 
finished. 

Similarly, 3-ring, 4-ring, and 5-ring student monks can 
be trained, depending on the number of rings to be used in 
the classroom demonstration. The task that requires the most 
emphasis in the student training session is the proper 
substitution of parameters in the Towers procedure itself 
with the arguments in the call to the Towers procedure. From 
experience, this is one of the biggest pitfalls for students, and 
failure to perform this task properly can nullify the benefits 
of the demonstration. Also, based on experience, it is best to 
train the student monks outside of class. In-class training of 
volunteer student monks can be tedious and time consuming, 
and detract from the lesson at hand. Indeed, when one of the 
authors first used this demonstration, training was done in an 
impromptu fashion, in class, without proper understanding 
by the student monks. The result was comedic, but not at all 
effective as a learning exercise. 

Also, in the first few minutes of the training session 
held outside of the class, the “dramatic” details (e.g. stepping 
forward, moving back, “shouting” out the call) of the 
demonstration need not be stressed. The basic activity of 
each student monk should be taught first. Detailed training 
instructions, found in Appendix A (“Training the 4 Student 
Monks”), should be given to the student monks after the 
training session in order to reinforce the roles of the different 
monks. These written instructions in Appendix A can be 
used by the student monks to study, if they wish, prior to the 
actual demonstration. Finally, it is suggested that the student 
monks meet with the instructor 10 or 15 minutes before the 

actual in-class demonstration, to do a quick rehearsal of the 
demonstration.  

 
3. THE IN-CLASS STUDENT MONK 

DEMONSTRATION 
 

For the actual classroom demonstration, the use of 4 rings is 
suggested. The solution to the 4-ring puzzle is non-trivial, 
involving 15 moves of the rings on the prop. This is enough 
moves to sufficiently demonstrate the complexity of the 
recursive solution. Yet, if the student monks have been 
properly trained, the demonstration using 4 rings should not 
take an excessive amount of classroom time, normally less 
than 15 minutes. The instructor choosing to employ this 
method of demonstration should note that use of each 
additional student monk in this demonstration requires twice 
as many moves of the rings. Also, of course, the use of more 
rings and more student monks increases the chances of a 
student monk failing to properly execute the task. Finally, 
the use of more than 4 rings (and 4 student monks) probably 
does not provide significant additional educational benefits. 

The 4-ring student monk demonstration begins with 
placement of 4 rings on the leftmost peg of the prop. The 4 
trained student monks line up next to each other in order, 
with the 1-ring monk next to the 2-ring monk, etc., in the 
front of the classroom, each with a sheet of paper reminding 
them of their tasks to perform when called. Also, on the 
sheet of paper, the student mark should keep track of the 
number of rings he/she moved. The prop with the rings and 
the pegs is placed on the desk in front of the room. The 
instructor labels the pegs A, B, C, left to right, and calls the 
4-ring student monk with Towers (4, A, B, C). The 4-ring 
monk then steps forward and makes the call audibly, 
“Towers (3, A, C, B)”. The 4-ring monk then steps back and 
waits for the 3-ring monk to finish. The demonstration is 
more effective when each student monk steps forward when 
making a call, and steps back in line when waiting.  

The rest of the students can see how relatively long the 
4-ring monk waits before being told by the 3-ring monk that 
he/she is finished. After the 3-ring monk is finished from the 
initial call made by the 4-ring monk, the 4-ring monk moves 
a single ring, and makes another call to the 3-ring monk. It 
becomes clear to the students that, at that time, the problem 
is only half-solved. It is also clear to the students in the class 
that the 1-ring monk moves twice as many rings as the 2-ring 
monk, the 2-ring monk moves twice as many rings as the 3-
ring monk, and that the 4-ring monk moves actually only 1 
ring. In practice, the demonstration with the 4 student monks 
is more effective if preceded by a 3-student monk 
demonstration. When the final ring is moved, each student 
monk marks on the blackboard the number of rings that 
he/she moved, and the numbers for each monk are summed, 
producing a total number of moves. Students can be asked to 
“guess” the formula for the number of moves needed to 
solve the N ring problem. This can be followed by a formal 
proof using mathematical induction or recurrence relations, 
if appropriate for the background and type of class being 
taught. The www.cut-the-knot.org/recurrence/hanoi.shtml, 
website has a formal proof that the number of moves needed 
to solve the N-ring puzzle is 2N-1 for N 1. Appendix B 

http://www.cut-the-knot.org/recurrence/hanoi.shtml�


Journal of Information Systems Education, Vol. 19(4) 
 

459 
 

(“Walkthrough of 4-Ring Demonstration”) contains a 
complete walkthrough of a 4-ring monk demonstration. 

 
4. STUDENT SURVEY AND PROGRAMMING 

ASSIGNMENT RESULTS 
 

4.1 The Survey 
In an introductory, undergraduate computer and information 
science Java programming course, the Towers of Hanoi 
student monk demonstration was given approximately 2 
weeks before the final exam. The instructor of this class was 
one of the authors. Shortly after final grades were submitted, 
an anonymous survey was given to the students to obtain 
their opinions regarding the benefits of the demonstration. 
The  survey and directions for completing it were sent via 
email to  the students by an assistant of the instructor. The 
survey was conducted after completion of the course to help 
eliminate bias in answering the questions. For this same 
reason, the survey was sent by the assistant, and not by the 
instructor, using the assistant’s email account. In the emails 
to the students, the assistant assured the students of 
anonymity, which was preserved by the assistant who gave 
responses without names or email addresses to the instructor 
of the course.  

A copy of the survey, with the directions that were 
given to the students, is given in Appendix C. The survey 
contained 6 questions. On the first 4 questions, students were 
asked their opinions related to their classroom experience 
with the demonstration. The 5th question asked their general 
opinion of using active participation in the classroom to 
demonstrate programming concepts. The 6th question asked 
them about their perception of the difficulty of learning 
recursion. Eleven  of the 12 students in the class completed 
the survey. The one student who did not complete the survey 
replied to the assistant that he/she was not in attendance on 
the day of the Towers of Hanoi demonstration. 

Table 3. Student Opinion of the Student Monk 
Demonstration (n = 11) 

Mean responses and standard deviations to the first 4 
survey questions are given in Table 3. These responses 
certainly indicate an overall perceived effectiveness of the 
student monk demonstration in terms of helping the students 
learn of the overhead involved in recursion, and about the 
solution to the Towers of Hanoi problem (questions 1 and 2). 
The survey also indicates that the students had an overall 
positive experience with the demonstration (questions 3 and 
4).  

Mean responses and standard deviations for Questions 
5 and 6 are given in Tables 4 and 5, respectively. The 
strongest opinion from the students in the survey came from 
question 5, where there was strong agreement with the 
statement that “involving of students in active participation 
in the classroom helps them to better understand 
programming concepts.” Indeed, 7 of 11 respondents 
indicated that they “strongly agreed” with that statement.  
 

Survey Question 
1 = Strongly Agree …. 5 = Strongly Disagree 

Mean Std.  
Dev. 

Question 5. 
“Involving students in active participation in 
the classroom helps them to better understand 
programming concepts.”  

 
1.45 

 
0.69 

Table 4. Student Opinion of Usefulness of Active 
Participation  (n = 11) 

 
The responses to question 6 (Table 5 below) support 

other research (Anderson, 1976; Henderson and Romero, 
1989; Levy and Lapidot, 2000; Pirolli and Anderson, 1985; 
Turbak et al., 1999; Wiedenbeck, 1988) indicating the 
difficulty that students have in learning recursion. The 
students in this survey reported that they did indeed find the 
topic of recursion to be difficult. Not a single respondent 
indicated that recursion was an easy or very easy topic 

 
Survey Question 

1 = Very Difficult …. 5 = Very Easy 
Mean Std   

Dev  
Question 6. 
“How difficult, in general, did you find the 
topic of recursion?”  

 
2.27 

 
0.65 

Table 5. Student Opinion of Difficulty of Recursion 
(n = 11) 

 
It is also notable that not a single student who 

participated in the survey strongly disagreed (response = 5) 
or disagreed (response = 4) with any of the statements 1 
through 5 in the survey. Also, among the 55 total responses 
to these 5 questions, only 9 were neutral (neither agreeing 
nor disagreeing). The other 46 responses were in agreement 
or strong agreement with the statements. This strongly 
suggests an overall positive experience with the student 
monk demonstration, and the use of active learning in the 
classroom, among the 11 student respondents. 

 
4.2 Programming Assignment Results 
In addition to the survey from students in the introductory 
programming class in which the student monk demonstration 
was given, there were some data, obtained from the same 
class, that suggest that the students may have benefited from 
the demonstration in regard to their ability to solve a 

Survey Questions 
1 = Strongly Agree  … 5 = Strongly Disagree 

Mean Std. 
 Dev. 

Question 1. 
“The Towers of Hanoi Monks demonstration 
helped me to understand the overhead 
involved in using recursive code (e.g., the 
many recursive calls that are actually made in 
a recursive solution).”  

 
2.00 

 
0.63 

Question 2. 
“The Towers of Hanoi Monks demonstration 
was more helpful to me in understanding the 
solution to the Towers of Hanoi problem than 
a classroom lecture alone would have been.” 

 
1.64 

 
0.67 

Question 3. 
“I paid more attention to the Towers of 
Hanoi Monks demonstration than I would 
have paid to a simple class lecture from the 
instructor explaining the Towers of Hanoi.” 

 
2.18 

 
0.75 

Question 4. 
“The Towers of Hanoi Monks demonstration 
was a good use of class time.” 

 
1.64 
 

 
0.81 



Journal of Information Systems Education, Vol. 19(4) 
 

460 
 

recursive programming problem. Shortly after the student 
monk demonstration, the students in the class were given an 
assignment consisting of two parts. Each part required 
students to code a programming solution to a problem. In 
Part 1 of the assignment, the problem involved reading 
several strings from a file and determining which strings 
were palindromes. It was required that this problem be 
solved recursively. In Part 2 of the assignment, the 
programming problem involved calculating the remaining 
balance owed on a loan after each monthly payment was 
made, using a graphical user interface (GUI) that included a 
button that was to be pressed after a monthly payment was 
made. Prior to receiving this two-part assignment, students 
had received 2 and one-half class lectures on event driven 
programming and GUI, 2 class lectures on recursion, and had 
experienced the student monk demonstration. Each of the 
two parts of the assignment was equally weighted in terms of 
grade on the assignment. The recursive programming 
problem in Part 1 was more difficult in terms of developing a 
solution to the problem. The solution to the GUI problem in 
Part 2 was more straightforward (the formula for computing 
remaining balance was given to the students as part of the 
problem statement from the textbook used in the class). The 
GUI requirements were minimal, requiring only a button and 
an output label. While the solution to the GUI problem was 
easier, it involved more coding because of the requirement of 
creating a graphical user interface. Both parts of the 
assignment were graded by the instructor of the class. 

It is interesting to compare the performance of the 
students on these 2 problems, because it does allow for 
comparison among the same group of students, who were at 
the same level of programming experience, and who were 
taught by the same instructor. Two students in the class of 12 
had not turned in the previous assignment, and were 
obviously falling behind in their coursework. Those 2 
students never did turn in any part of this two-part 
assignment. Among the remaining 10 students, 8 attempted 
Part 1, the recursive programming problem, and 10 
attempted Part 2, the GUI programming problem. Seven of 
the 8 students who attempted Part 1, the recursive 
programming problem, received full credit. Only 4 of 10 
students who attempted Part 2, the GUI problem, received 
full credit (Figure 4). Among the 8 students who attempted 
the recursive programming problem, the mean score was 
93.3%. Among the 10 students who attempted the GUI 
problem, the mean score was 81.3% (Figure 5). Also, it was 
noted that among all students who attempted both problems, 
all scored higher, or the same, on the recursive programming 
problem. Using all 12 students in the class for comparison, 4 
students received 0% for the recursive programming 
problem, and 2 students received 0% for the GUI problem, 
because no attempt was made by these students to solve 
those problems. Including all these scores of 0%, the mean 
score for the recursive programming problem was 62.3%, 
and the mean score for the GUI problem, was 67.8% (Figure 
5).  

From the authors’ many years of experience in teaching 
programming courses, and Java in particular, it wasn’t 
surprising to see more (however, only 2 more) students 
attempt the GUI problem than the recursive problem on the 
assignment. Most programming students are fascinated with 

writing a program that can produce a visually appealing 
windows interface that allows for interaction by the user of 
the program. On the other hand, in the past, students in a first 
course in programming have been observed to express 
uneasiness at having to solve recursive problems, perhaps 
due to students’ perception of recursion as being difficult. 
Indeed, in the class in which the demonstration was 
conducted, student response to Question 6 of the survey 
(Table 5) indicates that the students in this class perceived 
recursion as difficult. However, in this small sample, those 
students who did attempt the recursive programming 
problem did perform very well, and 8 of the 10 students who 
had been keeping up with the work in the class did at least 
attempt to solve the recursive programming problem.  

 

        

0
20
40
60
80

100

Only those
attempting

problem

All
Students
in Class

Recursive
Problem
GUI Problem

 
Figure 4. Percent of Students Receiving Full Credit on 

Problem 
 

0

20

40

60

80

100

Only those
attempting

problem

All
Students in

Class

Recursive
Problem
GUI Problem

Figure 5. Mean scores on programming problems 
 
  

The instructor of the class expected that the scores on 
the GUI problem would have been higher relative to the 
scores on the recursive programming problem. The reasons 
for this expectation included the fact that i) the GUI problem 
was a more straightforward, non-recursive problem, with the 
needed formula having been supplied in the problem 
statement from the textbook; and ii) students generally enjoy 
working on graphical user interface programs. Perhaps the 
student monk demonstration helped students understand 
recursion better, which in turn, may have helped students 
solve the recursive programming problem in the assignment. 

 
 



Journal of Information Systems Education, Vol. 19(4) 
 

461 
 

5. SUMMARY AND CONCLUSIONS 
 

A form of active learning that uses “student monk” 
volunteers in a classroom demonstration of the recursive 
Towers of Hanoi solution is proposed as a way to help 
instructors teach recursion in an introductory IS or CS 
programming class, independent of the programming 
language used. This proposal is made after a literature 
review of research on teaching recursion failed to reveal any 
studies or proposals that included an active learning 
approach using human subjects in a demonstration of 
recursion.  

The pedagogical benefits of active learning in the 
classroom have been shown (Cassel, 2002; Depradine and 
Gay, 2004; Massey et al., 2005; McConnell, 1996; Umble 
and Umble, 2004; Walker, 2004). Using student monk 
volunteers in the demonstration of the Towers of Hanoi 
recursive solution allows students to visualize the amount of 
work that is actually done in a single recursive call. During 
the demonstration, it was observed that the students 
participating in this demonstration, and the students who 
watched the demonstration in the classroom, thoroughly 
enjoyed the experience. Similar enthusiastic reaction from 
students during active learning exercises has been observed 
by others who have done research in active learning 
activities (Cassell, 2002; Massey et al., 2005; Umble, M. and 
Umble, E., 2004; Walker, 2004).  

A survey was completed anonymously by students who 
had experienced and participated in the Towers of Hanoi 
student monk demonstration. The survey results, found in 
Section 4, indicate an overall perceived effectiveness of the 
student monk demonstration in helping the students 
understand the overhead involved in recursion. Also, 
according to survey results, the demonstration helped 
students understand the recursive solution to the Towers of 
Hanoi problem. Results from the survey also indicate that the 
students believe that active participation helps them to better 
understand programming concepts. This student perception 
of the pedagogical benefits of active participation is in line 
with reported results found in previous research (Cassel, 
2002; Depradine and Gay, 2004; Massey, et al., 2005; 
McConnell, 1996; Umble, M. and Umble, E., 2004; Walker, 
2004). 

An analysis of a student programming assignment, 
given in Section 4, also suggests benefits of using the student 
monk demonstration. The programming assignment 
consisted of two parts -- a recursive programming problem, 
and a non-recursive programming problem that entailed 
creation of a graphical user interface (GUI). Results of this 
analysis showed a mean score of 93.3% on the recursion 
problem for those who attempted it, compared to a mean 
score of 81.3% on the GUI problem for those who attempted 
it. Also, among all students who attempted both parts 
(recursion part and GUI part), all scored higher, or the same, 
on the recursive programming problem. One possible reason 
for this level of student performance on the recursion 
program is use of the in-class student monk demonstration. It 
may be that the student demonstration created more interest 
in programming recursive solutions, and it may have helped 
students to better understand recursion.  

While the student performance on the recursion 
programming problem is suggestive of pedagogical benefits 
associated with the student monk demonstration, the size of 
the class was small. In a future study using a large 
introductory programming class, the class could be divided 
into two groups, each group having an equal number of 
students. The student monk demonstration would be given to 
only one of the groups. During the short period of time that 
the demonstration was being given to that group, the other 
group would not be in attendance. In this way, all students 
will have had the same instructor, the same programming 
background, the same lecture material, and the same 
programming learning experiences, except of course, for the 
Towers of Hanoi student monk demonstration. A carefully 
designed instrument of measurement would include 
questions on recursion that would be given to both groups of 
the class. Differences in measurements between the two 
groups of the class could then be statistically analyzed for 
significance.  

The Towers of Hanoi student monk demonstration is 
but one of many examples where active learning may be 
used in an information systems or computer science class. 
There are many different opportunities for instructors to use 
student volunteers in an active learning demonstration, as 
was done with the student monk demonstration. One such 
example would have students lining up in a row in the front 
of the classroom, each holding a shoe box, representing a 
memory location. Assignment statement execution could be 
illustrated by having a data value, written on an index card, 
placed in the appropriate shoe box. In an object-oriented 
programming (OOP) class, to illustrate the concept of an 
object, a demonstration would entail using students, each one 
representing an object and holding an index card with field 
names and method (function) names written on it. Using this 
model, various features of OOP can be demonstrated by 
developing appropriate activities. As a final example, a 
linked list (Figure 1) could be demonstrated by using 
students, each one representing a node in the list. Each 
student would hold an index card representing the data stored 
in the node, and an arrow pointing to the next student node in 
the list. It would seem that limits on the use of such active 
learning activities are set only by an instructor’s imagination. 
Computer programming, in particular, lends itself well to the 
use of such activities, because of the plethora of abstract 
concepts that can be demonstrated through the use of active 
learning exercises. 

It must be noted, however, that most active learning 
exercises to be used in the classroom will require a good 
deal of preparation on the part of the instructor, and possibly 
on the part of the students as well, depending on the nature 
of the activity. As reported in Section 2, lack of preparation 
for the active learning exercise can lead to an unsuccessful 
learning experience. In particular, it is important to note that 
for the Towers of Hanoi student monk demonstration, a 
well-planned training session of the student monks is 
necessary for an effective presentation. Also, of course, the 
instructor who explains the demonstration to the student 
monk volunteers must be ready to answer any questions 
regarding the presentation. Detailed directions (Appendix A) 
should be given to each student monk volunteer explaining 
his or her particular role in the demonstration. When proper 



Journal of Information Systems Education, Vol. 19(4) 
 

462 
 

training occurs, the use of student monks in a classroom 
demonstration is proposed as an excellent way to 
demonstrate the recursive solution to the classical Towers of 
Hanoi problem. 

 
6. REFERENCES 

 
Aho, A., Hopcroft, E., Ullman, J. (1974) The Design and 

Analysis of Computer Algorithms, Addison-Wesley, 
Reading, Massachusetts. 

Anderson, J., Douglass, S. (2001) “Tower of Hanoi: 
Evidence for the Cost of Goal Retrieval”, Journal of 
Experimental Psychology: Learning, Memory, and 
Cognition, Vol.27, No. 6, pp. 1331-1346. 

Anderson, J. R. (1976) Language, Memory, and Thought, 
Lawrence Erlbaum Associates, Hillsdale, NJ.   

Anderson, J.R., Pirolli, P., and Farrell, R. (1988) Learning to 
Program in Recursive Functions, in The Nature of 
Expertise, Lawrence Erlbaum Associates, Hillsdale, NJ. 

Benander, A., Benander, B., Pu, H. (1996) “Recursion vs. 
Iteration: An Empirical Study of Comprehension”, Journal 
of Systems and Software, Vol. 32, No. 1, pp. 73-82. 

Benander, A., Benander, B., Sang, J. (2000) “An Empirical 
Analysis of Debugging Performance – Differences 
Between Iterative and Recursive Constructs”, Journal of 
Systems and Software, Vol. 54, No. 1, pp. 17-28. 

Birtwistle, G. (1985) “The coroutines of Hanoi, SIGPLAN 
Notices, Vol. 20, No. 1, pp 9-10.  

Bruce, K., Danyluk, A. Murtagh, T. (2005) “Why Structural 
Recursion Should Be Taught Before Arrays in CS1”, ACM 
SIGCSE Bulletin, Vol. 37, No. 1, pp. 246-250. 

Cassell, L. (2002) “Very Active Learning of Network 
Protocol”, ACM SIGCSE Bulletin, Vol. 34, No. 3, p. 195. 

Dale, N. (2003) C++ Plus Data Structures, 3rd Edition, Jones 
and Bartlett, Sudbury, Massachusetts. 

Danvy, O. (2002) “There and Back Again”, ACM SIGPLAN 
Notices, Vol. 36, No. 9. pp. 230-234. 

Deitel, H. M., Deitel, P.J. (2005) Java How to Program, 6th 
Edition, Prentice Hall, Upper Saddle River, New Jersey. 

Depradine, C., Gay, G. (2004) “Active Participation of 
Integrated Development Environments in the Teaching of 
Object-Oriented Programming”, Computers and 
Education, Vol. 43, No. 3, pp. 291-298. 

Ford, G. (1984) “An Implementation-Independent Approach 
to Teaching Recursion”, ACM SIGCSE Bulletin, Vol. 16, 
No. 1, pp. 213-216.  

Gotschi, T., Sanders, I., and Galpin, V. (2003) “Mental Models of 
Recursion”, ACM SIGSCE Bulletin, Proceedings of the 34th 
SIGSCSE Technical Symposium on Computer Science 
Education, Vol. 35, No. 1, pp. 346-350. 

Henderson, P. B. and Romero, F. J. (1989) “Teaching 
Recursion as a Problem-Solving Tool Using Standard 
ML”, ACM SIGSCE Bulletin, Proceedings of the 20th 
SIGSCE Technical Symposium on Computer Science 
Education, Vol. 21, No. 1, pp. 17-31. 

Kessler, C. and Anderson, J. (1986) “Learning Flow of 
Control: Recursive and Iterative Procedures”, Human-
Computer Interaction, Vol. 2, No. 2, pp. 135-166. 

Kruse, R. (1982) “On Teaching Recursion”, ACM SIGCSE 
Bulletin, Vol. 14, No. 1, pp. 92-96. 

Levy, D., Lapidot, T. (2000) “Recursively Speaking: 
Analyzing Students’ Discourse of Recursive Phenomena”, 
ACM SIGSCE Bulletin, Proceedings of the 31st SIGSCE 
Technical Symposium on Computer Science Education, 
Vol. 32, No. 1, pp. 315-319. 

Massey, A., Brown, S., Johnston, A. (2005) “It’s All Fun 
and Games…Until Students Learn”, Journal of 
Information Systems Education, Vol. 16, No. 1, pp. 9-14. 

Mayer, H. and Perkins, D. (1984) “Towers of Hanoi 
Revisited: A Nonrecursive Surprise”, SIGPLAN Notices, 
Vol. 19, No. 2, pp. 80-84. 

Maziar, S. (1985) “Solution of the Towers of Hanoi Problem 
Using a Binary Tree”, SIGPLAN Notices, Vol. 20, No. 5, 
pp. 16-20. 

McConnell, J. (1996) “Active and Group Learning 
Techniques and Their Use in Graphics Education”, 
Computer & Graphics, Vol. 20, No. 1, pp. 177-180.  

McCracken, D. (1987) “Ruminations on Computer Science 
Curricula”, Communications of the ACM, Vol. 30, No. 1, 
pp. 3-5. 

Noyes, J., Garland, K. (2003) “Solving the Tower of Hanoi: 
Does Mode of Presentation Matter?”, Computers in 
Human Behavior, Vol. 19, No. 4, pp. 579-592. 

Pirolli, P. L., Anderson, J. R. (1985) “The Role of Learning 
from Examples in the Acquisition of Recursive 
Programming Skills”, Canadian Journal of Psychology, 
Vol. 39, No. 2, pp. 240-272.  

Sapir, A. (2004) “The Tower of Hanoi with Forbidden 
Moves”, The Computer Journal, Vol. 47, No. 1, pp. 20-24. 

Sinha, A. and Vessey, I. (1992) “Cognitive Fit: An Empirical 
Study of Recursion and Iteration”, IEEE Transactions on 
Software Engineering, Vol. 18, pp. 368-379. 

Tung, S., Chang, C., Wong, W., Jehng, J. (2001) “Visual 
Representations for Recursion”, International Journal of 
Human-Computer Studies, pp. 285-300. 

Turbak, F., Royden, C., Stephan, J., and Herbst, J. (1999) 
“Teaching Recursion Before Loops in CS1”, Journal of 
Computing in Small Colleges, Vol. 14, No. 4, pp. 86-101. 

Umble, M., Umble, E. (2004) “Using Active Learning to 
Transform the Monte Hall Problem into an Invaluable 
Classroom Exercise”, Decision Sciences Journal of 
Innovative Education, Vol. 2, No. 2, pp. 213-217. 

Walker, G.N. (2004) “Experimentation in the Computer 
Programming Lab”, SIGCSE Bulletin, Volume 35, No. 34, 
pp. 69-72. 

Wiedenbeck, S. (1988) “Learning Recursion as a Concept 
and as a Programming Technique”, ACM SIGSCE 
Bulletin, Proceedings of the19th SIGSCE Technical 
Symposium on Computer Science Education, Vol. 20, No. 
1, pp. 275-278. 

Wiedenbeck, S. (1989) “Learning Iteration and Recursion 
from Examples”, International Journal of Man-Machine 
Studies, Vol. 30, No. 1, pp. 1-22. 

Wu, C., Dale, N., Bethel, L. (1998) “Conceptual Models and 
Cognitive Learning Styles in Teaching Recursion”, ACM 
SIGCSE Bulletin, Vol. 30, No. 1, pp. 292-296. 

 
 
 
 
 



Journal of Information Systems Education, Vol. 19(4) 
 

463 
 

AUTHOR BIOGRAPHIES 
 

Dr. Alan Benander is a Professor in the Computer and 
Information Science Department at 
Cleveland State University. He teaches 
a variety of courses in CIS, including 
programming, databases and analysis of 
algorithms. His research interests are in 
the areas of software engineering and 
computer education.  

 

Dr. Barbara Benander is a Professor in the Computer and 
Information Science Department at 
Cleveland State University, where she 
teaches various CIS courses, including 
mobile computing and distributed 
application development. Her research 
areas include software metrics and the 
use of active learning in the classroom. 

  

 
 



Journal of Information Systems Education, Vol. 19(4) 
 

464 
 

APPENDIX A 
TRAINING THE 4 STUDENT MONKS 

 
I. Setup and General Training Instructions 

 
During the training session, (and in the actual demonstration) 4 Student Monks, facing their classmates, will stand behind the 

Towers of Hanoi prop which is in the front of the classroom. 
 

              4-Ring Monk                 3-Ring Monk                 2-Ring Monk                1-Ring Monk 
 

 

 

      

 

             
                            
                    
 

  
                  

  
                     

     
                    

Table with Prop in Front of Classroom 
4 Student Monks Standing Behind Table 

4 Rings Initially on Peg A to be moved to Peg C 
Diagram A. Initial Setup for 4-Ring Demonstration 

                   
 

All monks will have a pad of paper and pencil. On the top half of the paper they will mark letters corresponding to arguments 
with which they are called. On the bottom half they will make a mark every time they move a ring. The 4-ring monk will be 
called (once only) by the instructor, e.g., with the instructor saying, “Towers (4, A, B, C)”. The intent of this call is to 
(eventually) have all the 4 rings moved from Peg A to Peg C. The 3-ring monk will only be called by the 4-ring monk (the 3-
ring monk will be called twice by the 4-ring monk during the entire demonstration). The 2-ring monk will only be called by the 
3-ring monk (the 2-ring monk will be called a total of 4 times by the 3-ring monk during the entire demonstration). The 1-ring 
monk will only be called by the 2-ring monk (the 1-ring monk will be called a total of 8 times by the 2-ring monk during the 
entire demonstration). Whenever a monk makes a call, the monk takes one step forward, makes the call, steps back in line, and 
waits for the monk that was called to shout, “Finished!” 

 
II. Detailed Training Instructions for Each of the 4 Monks 

 
Training Instructions Given to the 4-Ring Monk 

You will only be called by the instructor. For this demonstration, initially, all the 4-rings will be placed on Peg A, and are to be 
(eventually) all moved to Peg C. When the instructor shouts, “Towers (4, A, B, C)”, jot the letters A, B, C on your paper to 
help you remember the order of the arguments. Then you step forward and make a call to the 3-ring monk by switching the 
order of the last 2 letters on your sheet, keeping the first letter in the first position. So, in this example, you would shout, 
“Towers (3, A, C, B)”. Notice that you simply switch the order of the last 2 letters on your paper when you make this first call 
to the 3-ring monk. After calling the 3-ring monk, take a step back, and wait for the 3-ring monk to shout, “Finished!” When 
that happens (it may take a few minutes), you step forward to the table and move a ring from the peg with the first letter on 
your paper, to the peg with the last letter on your paper (Peg A to Peg C, in this example demonstration). After moving the 
ring, make a mark on the bottom half of your paper (to keep track of number of rings you move), and make a call to the 3-ring 
monk by switching the order of the first 2 letters on your sheet. In this example, since you had written, A, B, C on your paper, 
you will shout out the call, “Towers(3, B, A, C).” After making this call, step back in line. When the 3-ring monk eventually 



Journal of Information Systems Education, Vol. 19(4) 
 

465 
 

shouts, “Finished!”, you step forward and shout “Finished”, also. Then step back in line, and cross out the letters on your 
sheet, since you are finished with your call from the instructor. 

 
Training Instructions Given to the 3-Ring Monk 

You will only be called by the 4-ring monk. You will be called twice by the 4-ring monk in this 4-ring demonstration. For this 
demonstration, you will initially be called by the 4-ring monk with the call, “Towers (3, A, C, B).” Whenever you are called 
by the 4-ring monk, jot down the order of the letters to help you remember the order of the arguments. So, in this first call 
from the 4-ring monk, you will jot down A, C, B. Then you step forward and make a call to the 2-ring monk by switching the 
order of the last 2 letters on your sheet, keeping the first letter in the first position. So, in this example, you would shout, 
“Towers (2, A, B, C).” Notice that you simply switch the order of the last 2 letters on your paper when you make this first call 
to the 2-ring monk. After making this first call to the 2-ring monk, take a step back, and wait for the 2-ring monk to shout, 
“Finished!” When that happens (it may take a minute or so), you step forward and move a ring from the peg with the first 
letter on your paper, to the peg with the last letter on your paper (Peg A to Peg B, in this example). After moving the ring, 
make a mark on the bottom half of your paper (to keep track of number of rings you move), make a call to the 2-ring monk by 
switching the order of the first 2 letters on your sheet. In this example, since you had written, A, C, B on your paper, you will 
shout out the call, “Towers(2, C, A, B).” When the 2-ring monk shouts, “Finished!”, you shout “Finished”, also. Cross out the 
letters on your sheet, since you are finished with your call from the 4-ring monk.  

  
 Remember, during the entire 4-ring demonstration, you will be called twice by the 4-ring monk – follow the same procedure 
outlined above each time you are called by the 4-ring monk: you should write letters on your sheet in the order they were 
given to you in the call, step forward and call the 2-ring monk by switching the order of the last 2 letters on your sheet, step 
back in line, wait for the 2-ring monk to shout, “Finished!”, then step forward and move a ring – from peg with 1st letter on 
sheet, to peg with last letter on your sheet, make a mark on the bottom half of your sheet—indicating another ring moved by 
you, call the 2-ring monk again by switching the order of the first 2 letters on your sheet, step back in line, and wait for the 2-
ring monk to shout “Finished!” When this occurs, step forward, and shout “Finished!”, step back in line, then cross out (or 
erase) the letters on your sheet.  

 
Training Instructions Given to the 2-Ring Monk 

You will only be called by the 3-ring monk. You will be called a total of 4 times by the 3-ring monk in this 4-ring 
demonstration. For this demonstration, the first time you are ever called by the 3-ring monk it will be with the call “Towers (2, 
A, B, C).” Whenever you are called by the 3-ring monk, jot down the order of the letters to help you remember the order of the 
arguments. So, in this very first call from the 3-ring monk, you will jot down A, B, C. Then you step forward and make a call 
to the 1-ring monk by switching the order of the last 2 letters on your sheet, keeping the first letter in the first position. So, in 
this example, you would shout, “Towers (1, A, C, B).” Notice that you simply switch the order of the last 2 letters on your 
paper when you make this first call to the 1-ring monk. After making this first call to the 1-ring monk, take a step back, and 
wait for the 1-ring monk to shout, “Finished!” When that happens (it should only take a few seconds), you step forward and 
move a ring from the peg with the first letter on your paper, to the peg with the last letter on your paper (Peg A to Peg C, in 
this example). After moving the ring, make a mark on the bottom half of your paper (to keep track of number of rings you 
move), make a call to the 1-ring monk by switching the order of the first 2 letters on your sheet. In this example, since you had 
written, A, B, C on your paper, you will shout out the call, “Towers(1, B, A, C).” When the 1-ring monk shouts, “Finished!”, 
you shout “Finished”, also. Cross out the letters on your sheet, since you are finished with your call from the 3-ring monk.  
 
 Remember, during the entire 4-ring demonstration, you will be called 4 times by the 3-ring monk – follow the same procedure 
outlined above each time you are called by the 3-ring monk: you should write letters on your sheet in the order they were 
given to you in the call, step forward and call the 1-ring monk by switching the order of the last 2 letters on your sheet, step 
back in line, wait for the 1-ring monk to shout, “Finished!”, then step forward and move a ring – from peg with 1st letter on 
sheet, to peg with last letter on your sheet, make a mark on the bottom half of your sheet—indicating another ring moved by 
you, call the 1-ring monk again by switching the order of the first 2 letters on your sheet, step back in line, and wait for the 1-
ring monk to shout “Finished!” When this occurs, step forward, and shout “Finished!”, step back in line, then cross out (or 
erase) the letters on your sheet. 

 
Training Instructions Given to the 1-Ring Monk 

You may have the easiest task of all the monks. But you will also be doing the most ring moves of any monk. You will only 
be called by the 2-ring monk. You will be called a total of 8 times by the 2-ring monk in this 4-ring demonstration. Whenever 
you are called by the 2-ring monk, step forward and move a ring from the peg having the 1st letter in the call to the peg with 
the last letter in the call. Make a mark on your paper whenever you move a ring to keep track of the number of rings that you 
move. After moving a ring, simply shout “Finished!” and move back in line. For example, the very first time that the 2-ring 
monk calls you, it will be with the call, “Towers(1,A, C, B).” When you hear this call you will step forward, move a ring from 
Peg A to Peg B, make a mark on your paper, shout “Finished!” and step back in line. 

 
 



Journal of Information Systems Education, Vol. 19(4) 
 

466 
 

APPENDIX B 
WALKTHROUGH OF 4-RING DEMONSTRATION 

  
See Appendix A for initial setup of students and prop, and for training of student monks.                
 

1. Instructor shouts, “Towers (4, A, B, C).” 
2. 4-ring monk marks letters: ABC on paper, steps forward and calls, “Towers(3, A, C, B)” and then steps back in line. 
3. 3-ring monk marks letters ACB on paper, steps forward and calls, “Towers(2, A, B, C)” and then steps back in line. 
4. 2-ring monk marks letters ABC on paper, steps forward and calls, “Towers(1, A, C, B)” and then steps back in line. 
5. 1-ring monk steps forward and moves ring from Peg A to Peg B, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
6. 2-ring monk steps forward and moves a ring from Peg A to Peg C, makes a mark on the sheet for counting rings 

moved, calls “Towers(1, B, A, C)”, and steps back in line. 
7. 1-ring monk steps forward and moves ring from Peg B to Peg C, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
8. 2-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
9. 3-ring monk steps forward and moves a ring from Peg A to Peg B, makes a mark on the sheet for counting rings 

moved, calls “Towers(2, C, A, B)”, and steps back in line. 
10. 2-ring monk marks letters CAB on paper, steps forward and calls, “Towers(1, C, B, A)” and then steps back in line. 
11. 1-ring monk steps forward and moves ring from Peg C to Peg A, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
12. 2-ring monk steps forward and moves a ring from Peg C to Peg B, makes a mark on the sheet for counting rings 

moved, calls “Towers(1, A, C, B)”, and steps back in line. 
13. 1-ring monk steps forward and moves ring from Peg A to Peg B, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
14. 2-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
15. 3-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
16. 4-ring monk steps forward and moves a ring from Peg A to Peg C, makes a mark on the sheet for counting rings 

moved, calls “Towers(3, B, A, C)”, and steps back in line. 
17. 3-ring monk marks letters BAC on paper, steps forward and calls, “Towers(2, B, C, A)” and then steps back in line. 
18. 2-ring monk marks letters BCA on paper, steps forward and calls, “Towers(1, B, A, C)” and then steps back in line. 
19. 1-ring monk steps forward and moves ring from Peg B to Peg C, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
20. 2-ring monk steps forward and moves a ring from Peg B to Peg A, makes a mark on the sheet for counting rings 

moved, calls “Towers(1, C, B, A)”, and steps back in line. 
21. 1-ring monk steps forward and moves ring from Peg C to Peg A, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
22. 2-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
23. 3-ring monk steps forward and moves a ring from Peg B to Peg C, makes a mark on the sheet for counting rings 

moved, calls “Towers(2, A, B, C)”, and steps back in line. 
24. 2-ring monk marks letters ABC on paper, steps forward and calls, “Towers(1, A, C, B)” and then steps back in line. 
25. 1-ring monk steps forward and moves ring from Peg A to Peg B, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
26. 2-ring monk steps forward and moves a ring from Peg A to Peg C, makes a mark on the sheet for counting rings 

moved, calls “Towers(1, B, A, C)”, and steps back in line. 
27. 1-ring monk steps forward and moves ring from Peg B to Peg C, makes a mark on the sheet for counting rings 

moved, shouts “Finished!”, and then steps back in line. 
28. 2-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
29. 3-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 
30. 4-ring monk steps forward, shouts “Finished!”, steps back in line, and crosses out letters on sheet. 

 
Instructor, proclaims, “Great work, Monks!” 

 
 
 
 
 
 
             



Journal of Information Systems Education, Vol. 19(4) 
 

467 
 

APPENDIX C 
STUDENT SURVEY OF STUDENT MONK DEMONSTRATION 

 
Recall the demonstration involving the 4 student monks that was used to demonstrate the recursive programming solution to the 
Towers of Hanoi problem. Please answer the following 6 questions. This survey should take approximately 5 minutes of your 
time. Do not put your name on this survey. Thank you! 
 
In order to be able to type your answers into the survey, you must click on the “Reply button” – you will then be able to type 
your answers directly into the survey. After you have completed the survey, click on the “Send” button to send it. 
 

1. Do you agree or disagree with the following statement?  
 

“The Towers of Hanoi Monks demonstration helped me to understand the overhead involved in using recursive code (e.g., the 
many recursive calls that are actually made in a recursive solution)”. 

 
1. Strongly Agree  2. Agree  3. Neither agree nor disagree  4. Disagree  5. Strongly disagree 

 
            1, 2, 3, 4 or 5? ____ 

 
 2. Do you agree or disagree with the following statement?  

 
“The Towers of Hanoi Monks demonstration was more helpful to me in understanding the solution to the Towers of Hanoi 

problem than a classroom lecture alone would have been.” 
 

1. Strongly Agree  2. Agree  3. Neither agree nor disagree  4. Disagree  5. Strongly disagree 
 

            1, 2, 3, 4 or 5? ____ 
 

3. Do you agree or disagree with the following statement?  
 

“I paid more attention to the Towers of Hanoi Monks demonstration than I would have paid to a simple class lecture from the 
instructor explaining the Towers of Hanoi.” 

 
1. Strongly Agree  2. Agree  3. Neither agree nor disagree  4. Disagree  5. Strongly disagree 

 
            1, 2, 3, 4 or 5? ____ 

 
4. Do you agree or disagree with the following statement?  

 
“The Towers of Hanoi Monks demonstration was a good use of class time.” 

 
1. Strongly Agree  2. Agree  3. Neither agree nor disagree  4. Disagree  5. Strongly disagree 

 
            1, 2, 3, 4 or 5? ____ 

 
5. Do you agree or disagree with the following statement?  

 
“Involving students in active participation in the classroom helps them to better understand programming concepts.” 

 
1. Strongly Agree  2. Agree  3. Neither agree nor disagree  4. Disagree  5. Strongly disagree 

 
            1, 2, 3, 4 or 5? ____ 

 
6. On a scale of 1 (very difficult) to 5 (very easy) how difficult, in general, did you find the topic of recursion? _______ 

 
 
 



 
 
 
 
 
 
 
 
 
 

 
 

 
Information Systems & Computing 

Academic Professionals 
 
 
 
 
 
 
 
 
 
 

STATEMENT OF PEER REVIEW INTEGRITY 
 

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an 
initial editor screening and double-blind refereeing by three or more expert referees. 

 
 
 
 
 
 

 
 
 
 
 

Copyright ©2008 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital 
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made 
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is 
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to 
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org. 
 
ISSN 1055-3096 




