
Journal of Information Systems Education, Vol. 19(4)

379

Teaching Tip

Clarifying Normalization

Donald A. Carpenter
Department of Business

Mesa State College
Grand Junction, CO 81501 USA

dcarpent@mesastate.edu

ABSTRACT

Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should
aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student.
This author’s industry and classroom experiences indicate such simplification yields quicker learning and more complete
understanding by students.

Keywords: Normalization, Normal Forms, Database, Data Redundancy, Structure Redundancy

1. INTRODUCTION

A perusal of database textbooks exposes an obvious
disagreement as to how to teach database normalization.
Apparently, there are divided opinions as to what
normalization is supposed to accomplish. Similarly, there are
conflicting statements regarding which normal form (NF) a
database designer should aspire to reach. This paper attempts
to bring some resolution to both issues, in order to improve
the teaching and comprehension of database normalization.
 Conversely, it is not the intention of this paper to
explain database normalization in detail. However, it is this
author’s belief that clarification of the two above-noted
issues will improve the understanding of the nature of
normalization to the reader who does not have a strong grasp
of the topic. For readers’ reference, Table 1 lists the normal
forms that are presently known. Included is the zero normal
form (0NF), a device this author uses to help explain the
milieu to students. A table can be in the zero normal form
but, by definition, a relation cannot.

2. WHAT IS NORMALIZATION SUPPOSED TO
ACCOMPLISH?

E. F. Codd, the acknowledged father of relational database
and normalization, initially defined normalization as the
“very simple elimination procedure” to remove non-simple
domains from relations (Codd, 1970, p. 381). A relation with
simple domains is one whose elements are atomic or non-
decomposable (p. 380). In other words, the attributes in a
relation with simple domains are properly tied (i.e.,
dependent upon) only to the attribute(s) that uniquely
identifies all others (i.e., the primary key). Hoffer et al.,
(2007) state it well enough as “Normalization is the process
of successively reducing relations with anomalies to produce
small, well-structured relations” (p. 211). The reader should
note that “small” is a relative term. A properly normalized
relation with a couple dozen attributes is not as small as an
unnormalized relation with a half-dozen attributes. Both
large and small relations are a part of the reality in corporate
information structures.

Normal Form Defining Status

0NF A table that has not been normalized, i.e., not proven to be a true relation.
1NF A true relation (i.e., no repeating groups of attributes and each row is unique).
2NF A relation in 1NF + all non-key attributes are dependent on all of the primary key.
3NF A relation in 2NF + all non-key attributes are dependent only on the primary key.

BCNF* A relation in 3NF + there is only one primary key within the relation.
4NF A relation in BCNF + no multi-valued dependencies.

5NF, a.k.a. PJNF** A relation in 4NF + any join dependencies are based on candidate keys.
6NF A relation in 5NF + no non-trivial join dependencies, including temporal data.

DKNF*** A relation in which all constraints are functions of domains and primary keys.
* Boyce-Codd Normal Form ** Project-Join Normal Form *** Domain-Key Normal Form

Table 1. Normal Forms

mailto:dcarpent@mesastate.edu�

Journal of Information Systems Education, Vol. 19(4)

380

 However, Hoffer et al. (2007) go on to list as “some of
the main goals of normalization:
1. Minimize data redundancy, thereby avoiding anomalies

and conserving storage space.
2. Simplify the enforcement of referential integrity

constraints
3. Make is easier to maintain data (insert, update, and

delete)
4. Provide a better design that is an improved

representation of the real world and a stronger basis for
future growth” (p. 211).
Indeed, those might be outcomes and benefits, ones that

are achieved to varying degrees from one enterprise
information structure to the next. However, the real goal of
normalization remains as it was in 1970, to produce correctly
structured relations.

It is not this author’s intention to single out any author
for criticism. Rather, the hope is to clarify the purpose of
normalization, as lack of understanding of the goal often
leads to students’ lack of appreciation of the power of the
technique. It also can cause designers to turn to other
methods to achieve those goals. Still, there are others whose
incorrect statements add to the learning challenge.

For example, one textbook says “Normalization is the
process for evaluating and correcting table structures to
minimize data redundancies, thereby reducing the likelihood
of data anomalies” (Rob & Coronel, 2007, p. 148). First, we
analyze relations rather than “tables” as a table doesn’t
qualify to be a relation unless it is shown to be in at least the
first normal form. Second, we aim to eliminate modification
anomalies rather than reducing “data anomalies.” Those two
are admittedly somewhat nitpicky objections.

Third and more problematic, though, is the notion that
normalization is intended to “minimize data redundancies.”
Codd (1970) noted that “Redundancy in the named set of
relations must be distinguished from the redundancy in the
stored set of representations. We are primarily concerned
here with the former” (p. 385). It is the latter that is properly
referred to as “data redundancies,” while the former could be
better called “structure redundancies.”

Moreover, Codd (1970) went on to describe both strong
and weak redundancies. Again, it is not the purpose of this
paper to thoroughly explain those. Suffice it to again quote
Codd about the significance of each of those. “An important
reason for the existence of strong redundancies in the named
set of relationships is user convenience” (p. 386). “Generally
speaking, weak redundancies are inherent in the logical
needs of the community of users. They are not removable by
the system or data base administrator” (p. 386).

Thus, a certain amount of structure redundancy is
desirable. Normalization, if properly applied to relations,
will assure that structure redundancies are properly stated. A
common example of structure redundancy is the placement
of a foreign key into a relation. Since a foreign key is a
primary key and an attribute in some other relation, the
placement of a foreign key creates redundancy in the overall
database structure.

Thorough normalization also can minimize the chances
that unnecessary data redundancy might occur. Typically,
however, protection against data redundancy is enforced via
integrity controls imposed when relations are implemented

physically. Such protection notwithstanding, data
redundancies can be part of the physical design even in a
highly normalized set of relations. An example of beneficial
data redundancy results with replicated data bases, when data
is deliberately copied onto multiple platforms.
 It may well be a natural tendency of textbook authors to
expand on a concept to differentiate the coverage in one
book from its competitors. However, there are times when it
is best to stick with the simple historical definition. While
normalization might result in many more advantages, it
would be best for students if authors stuck to the sole goal of
normalization: to produce properly structured relations.

3. HOW FAR SHOULD ONE NORMALIZE?

Normal forms provide check points for normalization. Nine
normal forms are listed in Table 1. This author included his
own 0NF, which he has not found in print elsewhere.
However, not all textbook authors note the existence of the
other eight. Moreover, there is disagreement as to the point
where normalization should end.
 Rob & Coronel (2007) take the stance that “Almost all
business designs use 3NF as the ideal normal form” (p. 173).
Also, “Tables in 3NF will perform suitably in business
transactional databases. However, there are occasions when
higher normal forms are useful” (p. 163). Those authors do
go on to illustrate BKNF and 4NF.
 Similarly, Hoffer et al. (2007) state “Relationships in
third normal form (3NF) are sufficient for most practical
database applications” (p. 572). However, they do explain
BKNF and 4NF, although those are relegated to an appendix.
That textbook does not explain 5NF and 6NF.
 Pratt and Adamski (2005) state “The most common
normal forms are the first normal form (1NF), second normal
form (2NF), third normal form (3NF), and fourth normal
form (4NF)” (p. 140). They do not make a distinction
between the BKNF and 3NF but use the definition of BKNF
as the definition of 3NF (p. 153). They do not discuss
application of normal forms above BKNF, but suggest that
one can avoid the problem of multivalued dependencies
(4NF problems) by use of a design methodology (p. 166).
 According to Mannino (2004), “The normalization story
does not end with 4NF. Other normal forms have been
proposed, but their practicality has not been demonstrated”
(p 245). Consequently, he demonstrates normal forms only
through 4NF.
 Ulman & Widom (2008) set a different approach by
discussing only the Boyce-Codd Normal Form. “There is, it
turns out, a simple condition under which the anomalies
discussed above can be guaranteed not to exist. This
condition is called Boyce-Codd normal form, or BCNF” (p.
88).
 Kroenke (2006) takes an approach similar to Ulman &
Widom, although he goes one normal form higher in his
illustrations. First, though, he groups the normal forms into
three levels (see Table 2). Then he explains that one can
overcome all the problems addressed by the lower normal
forms simply by normalizing to 4NF. He also explains 5NF
and DKNF by stating “The third source of anomalies is
esoteric. These problems involve specific, rare, and even
strange data constraints” (p. 83).

Journal of Information Systems Education, Vol. 19(4)

381

Source of Anomaly Normal Forms Design Principles

Functional Dependencies 1NF, 2NF,
3NF, BCNF

BCNF: Design tables so that every determinant is a candidate
key

Multivalued Dependencies 4NF 4NF: Move each multivalued dependency to a table of its own
Data constraints and oddities 5NF, DK/NF DK/NF: Make every constraint a logical consequence candidate

keys and domains.
Table 2. Groupings of Normal Forms From Kroenke (2006, p. 83)

The disagreement among the authorities as to which

normal form is far enough is confusing for both students and
teachers. The concept put forth by both Ulman & Widom
and Kroenke that a database designer simply can use one
normal form (BCNF or 4NF, respectively) to eliminate all
lower level problems is attractive from a teaching
perspective. Certainly teaching one normal form could be
easier and less time consuming than teaching four or five.
Indeed, this author advocates the Kroenke approach as
classroom experience indicates faster learning and a deeper
levels of understanding.
 But how does one teach normalization by using only one
normal form? As stated previously, it is not the intention of
this paper to teach normalization. Nor is it an intention to
teach how to teach normalization. However, this author finds
it useful to instruct students to follow the wisdom of “the
anonymous ditty found in Kroenke (2006): ‘I swear to
construct my [relations] so that all non-key [attributes] are
dependent on the key, the whole key, and nothing but the
key, so help me Codd’” (p. 88).
 However, the question remains “Why not move on to
even higher normal forms?” Are the higher normal forms
impractical or esoteric, as suggested in textbooks? Should it
be sufficient to leave students with the impression that 3NF
relations are suitable for business or sufficient for most
applications? Whereas many installed databases might
indeed wind up with relations mostly in 3NF, it is misleading
to tell students that it is okay to stop with 3NF.

 There is a better business-oriented approach to the issue.
Figure 1 presents a stylized column chart based on this
author’s numerous experiences with live corporate
information structures. First, the horizontal axis shows that
reaching each normal form requires its own increment of
time. Experience with dozens of clients says, for example,
that reaching 5NF requires substantially more time than
reaching each of the other normal forms. The vertical axis
illustrates the relative amount of future anomalies removed
by moving to each higher normal form. The amount removed
by reaching 5NF is very low by comparison to the success
level of reaching the lower normal forms.
 What that chart shows is a simple business return on
investments model. The return (the reduction in future
anomalies) on investment (time spent on normalizing) from
striving for 5NF is simply not as great as it is for lower
normal forms. The problem of stopping short of achieving
higher normal forms is that the anomalies associated with
those normal forms are not removed. The good news is that
there is a different solution. If such 5NF anomalies are
encountered at a later date, software routines can be written
to work around them.
 Not normalizing to 6NF is a different matter than not
normalizing to 5NF. Date, et al., (2002) explain 6NF as
pertaining to temporal data. In this author’s experience,
temporal data with 6NF-type anomalies are much more
common in data warehousing installations than in databases
used primarily for daily operations. Therefore, the return on

 Large amount

Relative Amount of
Future Anomalies
That Are Removed

 Relatively few

Negative
 ROI

Anomalies are
introduced as
0NF tables are

initially created.

 Zero NF 1NF 2NF 3NF BK

NF
4NF 5NF 6NF DK

NF

 Relative Time Required to Reach Each Normal Form
Figure 1. Generalized Return on Investment of Normalization

Journal of Information Systems Education, Vol. 19(4)

382

investment might not be justified unless the firm is designing
a data warehouse. The good news here is that 6NF
normalization can be deferred to the time when such a data
warehouse is contemplated, in this author’s experience.
 Failure to normalize to DKNF is an oxymoron. No one
has experience with DKNF as it was a straw dog attempt to
define perfection without giving any method for getting there
or any precise description of what it looks like once one is
there. If a database designer was to spend time trying to
normalize to DKNF, the return on investment is predictably
zero.
 On the left end of the scale, the return (amount of future
anomalies removed) on investment (time) of reaching 0NF is
zero at best, but most likely negative. That is the nature of
0NF relations, which are the outcomes of the logical design
stage in which tables (not relations) are initially formed and,
therefore, the stage when future anomalies are introduced
into the database structure. Hence, one could argue that the
ROI is actually negative.
 It is important to deal with a related issue. Normalization
typically results in more and smaller relations. A substantial
number of small relations can result in lack of efficiency
within hardware storage subsystems, more software
overhead, lack of convenience for users, and lack of
managerial simplicity for database administrators.
 To address that situation, of course, there is the solution
of denormalization. However, that should be held in reserve
until after the database designers have proven the database
structure to be as sound as possible. Such denormalization
should be applied judiciously.
 If denormalization is used, does that mean time has been
wasted doing normalization? Not if normalization is
considered an insurance policy. It is better to remove as
many future anomalies as possible first. Then, reintroducing
potential problems by means of denormalization gives data
administrators a clear indication of exactly where those
future anomalies might occur.

4. SUMMARY

This article has pointed out the discrepancies among
textbooks regarding two important concepts of
normalization. First, the goal of normalization should be
standardized back to Codd’s original definition. The many
potential outcomes and benefits of normalization should not
be confused with the overriding goal, which is to create
properly structured relations, as those contain fewer future
anomalies. Focusing on benefits instead of the goal can
mislead one to bypass normalization altogether since there
are other ways to at least partially achieve some of those
same benefits that are misstated as being goals.
 The question of how far should a database be normalized
has been addressed by use of a simple return on investment
model. Stopping short of 4NF is not a wise business decision
as many anomalies might still exist. A designer should reach
the fourth normal form. Moving beyond the 4NF should be
examined in terms of ROI. In this author’s experiences,

striving for 5NF seldom produces significant results and
typically is not justified based on ROI. However, the sixth
normal form should be reached if temporal data is prevalent,
as in a data warehouse, which requires achieving 5NF first.

5. REFERENCES

Codd, E. F. (1970). “A relational model of data for large
shared data banks.” Communications of the ACM, Vol.
13 (6). 377-387.

Date, C. J., Darwen, H., & Lorentzos, N. A. (2002).
Temporal Data and the Relational Model: A Detailed
Investigation into the Application of Interval and
Relation Theory to the Problem of Temporal Database
Management. Amsterdam: Elsevier Science Ltd.

Hoffer, J. A., Prescott, M. B., & McFadden, F. R. (2007).
Modern Database Management, 8th ed. Upper Saddle
River, NJ: Pearson Prentice Hall.

Kroenke, D. M. (2006). Database Processing: Fundamentals,
Design, and Implementation, 10th ed. Upper Saddle
River, NJ: Pearson Prentice Hall.

Mannino, M. V. (2004). Database Design, Application
Development and Administration. Boston: McGraw
Hill Irwin.

Pratt, P. J., & Adamski, J. J. (2005). Concepts of Database
Management, 5th ed. Boston: Thompson Course
Technology.

Rob, P., & Coronel, C. (2007). Database Systems: Design,
Implementation, and Management, 7th ed. Boston:
Thompson Course Technology.

Ulman, J. D., & Widom, J. (2008). A First Course in
Database Systems, 3rd ed.

Donald A. Carpenter is a professor in the Department of
Business at Mesa State College,
primarily teaching computer
information systems courses. He
earned a Ph.D. in Management
Information Systems at the
University of Nebraska-Lincoln,
an MBA in Information Systems
at the University of Colorado in
Colorado Springs and a Bachelor
of Science in Business
Administration at Kearney State

College. He spent ten years marketing large systems in the
computer industry prior to becoming a college professor. He
has consulted extensively since then and has been involved
with the analysis, design and implementation of over 200
corporate databases. He is published in a variety of
information systems journals and conference proceedings.
His research interests are in information requirements
determination, information systems pedagogy, and program
assessment.

 Upper Saddle River, NJ:
Pearson Prentice Hall.

AUTHOR BIOGRAPHY

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2008 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

