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ABSTRACT 
 

Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should 
aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. 
This author’s industry and classroom experiences indicate such simplification yields quicker learning and more complete 
understanding by students. 
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1. INTRODUCTION 
 

A perusal of database textbooks exposes an obvious 
disagreement as to how to teach database normalization. 
Apparently, there are divided opinions as to what 
normalization is supposed to accomplish. Similarly, there are 
conflicting statements regarding which normal form (NF) a 
database designer should aspire to reach. This paper attempts 
to bring some resolution to both issues, in order to improve 
the teaching and comprehension of database normalization. 
 Conversely, it is not the intention of this paper to 
explain database normalization in detail. However, it is this 
author’s belief that clarification of the two above-noted 
issues will improve the understanding of the nature of 
normalization to the reader who does not have a strong grasp 
of the topic. For readers’ reference, Table 1 lists the normal 
forms that are presently known. Included is the zero normal 
form (0NF), a device this author uses to help explain the 
milieu to students. A table can be in the zero normal form 
but, by definition, a relation cannot. 
 

2. WHAT IS NORMALIZATION SUPPOSED TO 
ACCOMPLISH? 

 
E. F. Codd, the acknowledged father of relational database 
and normalization, initially defined normalization as the 
“very simple elimination procedure” to remove non-simple 
domains from relations (Codd, 1970, p. 381). A relation with 
simple domains is one whose elements are atomic or non-
decomposable (p. 380). In other words, the attributes in a 
relation with simple domains are properly tied (i.e., 
dependent upon) only to the attribute(s) that uniquely 
identifies all others (i.e., the primary key). Hoffer et al., 
(2007) state it well enough as “Normalization is the process 
of successively reducing relations with anomalies to produce 
small, well-structured relations” (p. 211). The reader should 
note that “small” is a relative term. A properly normalized 
relation with a couple dozen attributes is not as small as an 
unnormalized relation with a half-dozen attributes. Both 
large and small relations are a part of the reality in corporate 
information structures. 

 
Normal Form Defining Status 

0NF A table that has not been normalized, i.e., not proven to be a true relation. 
1NF A true relation (i.e., no repeating groups of attributes and each row is unique). 
2NF A relation in 1NF + all non-key attributes are dependent on all of the primary key. 
3NF A relation in 2NF + all non-key attributes are dependent only on the primary key. 

BCNF* A relation in 3NF + there is only one primary key within the relation. 
4NF A relation in BCNF + no multi-valued dependencies. 

5NF, a.k.a. PJNF** A relation in 4NF + any join dependencies are based on candidate keys. 
6NF A relation in 5NF + no non-trivial join dependencies, including temporal data.  

DKNF*** A relation in which all constraints are functions of domains and primary keys. 
* Boyce-Codd Normal Form    ** Project-Join Normal Form    *** Domain-Key Normal Form 

Table 1. Normal Forms 
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 However, Hoffer et al. (2007) go on to list as “some of 
the main goals of normalization: 
1. Minimize data redundancy, thereby avoiding anomalies 

and conserving storage space. 
2. Simplify the enforcement of referential integrity 

constraints 
3. Make is easier to maintain data (insert, update, and 

delete) 
4. Provide a better design that is an improved 

representation of the real world and a stronger basis for 
future growth” (p. 211). 
Indeed, those might be outcomes and benefits, ones that 

are achieved to varying degrees from one enterprise 
information structure to the next. However, the real goal of 
normalization remains as it was in 1970, to produce correctly 
structured relations. 

It is not this author’s intention to single out any author 
for criticism. Rather, the hope is to clarify the purpose of 
normalization, as lack of understanding of the goal often 
leads to students’ lack of appreciation of the power of the 
technique. It also can cause designers to turn to other 
methods to achieve those goals. Still, there are others whose 
incorrect statements add to the learning challenge.  

For example, one textbook says “Normalization is the 
process for evaluating and correcting table structures to 
minimize data redundancies, thereby reducing the likelihood 
of data anomalies” (Rob & Coronel, 2007, p. 148). First, we 
analyze relations rather than “tables” as a table doesn’t 
qualify to be a relation unless it is shown to be in at least the 
first normal form. Second, we aim to eliminate modification 
anomalies rather than reducing “data anomalies.” Those two 
are admittedly somewhat nitpicky objections. 

Third and more problematic, though, is the notion that 
normalization is intended to “minimize data redundancies.” 
Codd (1970) noted that “Redundancy in the named set of 
relations must be distinguished from the redundancy in the 
stored set of representations. We are primarily concerned 
here with the former” (p. 385). It is the latter that is properly 
referred to as “data redundancies,” while the former could be 
better called “structure redundancies.”    

Moreover, Codd (1970) went on to describe both strong 
and weak redundancies. Again, it is not the purpose of this 
paper to thoroughly explain those. Suffice it to again quote 
Codd about the significance of each of those. “An important 
reason for the existence of strong redundancies in the named 
set of relationships is user convenience” (p. 386). “Generally 
speaking, weak redundancies are inherent in the logical 
needs of the community of users. They are not removable by 
the system or data base administrator” (p. 386). 

Thus, a certain amount of structure redundancy is 
desirable. Normalization, if properly applied to relations, 
will assure that structure redundancies are properly stated. A 
common example of structure redundancy is the placement 
of a foreign key into a relation. Since a foreign key is a 
primary key and an attribute in some other relation, the 
placement of a foreign key creates redundancy in the overall 
database structure.  

Thorough normalization also can minimize the chances 
that unnecessary data redundancy might occur. Typically, 
however, protection against data redundancy is enforced via 
integrity controls imposed when relations are implemented 

physically. Such protection notwithstanding, data 
redundancies can be part of the physical design even in a 
highly normalized set of relations. An example of beneficial 
data redundancy results with replicated data bases, when data 
is deliberately copied onto multiple platforms. 
 It may well be a natural tendency of textbook authors to 
expand on a concept to differentiate the coverage in one 
book from its competitors. However, there are times when it 
is best to stick with the simple historical definition. While 
normalization might result in many more advantages, it 
would be best for students if authors stuck to the sole goal of 
normalization: to produce properly structured relations. 

 
3. HOW FAR SHOULD ONE NORMALIZE? 

 
Normal forms provide check points for normalization. Nine 
normal forms are listed in Table 1. This author included his 
own 0NF, which he has not found in print elsewhere. 
However, not all textbook authors note the existence of the 
other eight. Moreover, there is disagreement as to the point 
where normalization should end. 
 Rob & Coronel (2007) take the stance that “Almost all 
business designs use 3NF as the ideal normal form” (p. 173). 
Also, “Tables in 3NF will perform suitably in business 
transactional databases. However, there are occasions when 
higher normal forms are useful” (p. 163). Those authors do 
go on to illustrate BKNF and 4NF. 
 Similarly, Hoffer et al. (2007) state “Relationships in 
third normal form (3NF) are sufficient for most practical 
database applications” (p. 572). However, they do explain 
BKNF and 4NF, although those are relegated to an appendix. 
That textbook does not explain 5NF and 6NF.  
  Pratt and Adamski (2005) state “The most common 
normal forms are the first normal form (1NF), second normal 
form (2NF), third normal form (3NF), and fourth normal 
form (4NF)” (p. 140). They do not make a distinction 
between the BKNF and 3NF but use the definition of BKNF 
as the definition of 3NF (p. 153). They do not discuss 
application of normal forms above BKNF, but suggest that 
one can avoid the problem of multivalued dependencies 
(4NF problems) by use of a design methodology (p. 166). 
 According to Mannino (2004), “The normalization story 
does not end with 4NF. Other normal forms have been 
proposed, but their practicality has not been demonstrated” 
(p 245). Consequently, he demonstrates normal forms only 
through 4NF. 
 Ulman & Widom (2008) set a different approach by 
discussing only the Boyce-Codd Normal Form. “There is, it 
turns out, a simple condition under which the anomalies 
discussed above can be guaranteed not to exist. This 
condition is called Boyce-Codd normal form, or BCNF” (p. 
88). 
 Kroenke (2006) takes an approach similar to Ulman & 
Widom, although he goes one normal form higher in his 
illustrations. First, though, he groups the normal forms into 
three levels (see Table 2). Then he explains that one can 
overcome all the problems addressed by the lower normal 
forms simply by normalizing to 4NF. He also explains 5NF 
and DKNF by stating “The third source of anomalies is 
esoteric. These problems involve specific, rare, and even 
strange data constraints” (p. 83). 
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Source of Anomaly Normal Forms Design Principles 

Functional Dependencies 1NF, 2NF,  
3NF, BCNF 

BCNF: Design tables so that every determinant is a candidate 
key 

Multivalued Dependencies 4NF 4NF: Move each multivalued dependency to a table of its own 
Data constraints and oddities 5NF, DK/NF DK/NF: Make every constraint a logical consequence candidate 

keys and domains. 
Table 2. Groupings of Normal Forms From Kroenke (2006, p. 83) 

 
The disagreement among the authorities as to which 

normal form is far enough is confusing for both students and 
teachers. The concept put forth by both Ulman & Widom 
and Kroenke that a database designer simply can use one 
normal form (BCNF or 4NF, respectively) to eliminate all 
lower level problems is attractive from a teaching 
perspective. Certainly teaching one normal form could be 
easier and less time consuming than teaching four or five. 
Indeed, this author advocates the Kroenke approach as 
classroom experience indicates faster learning and a deeper 
levels of understanding. 
 But how does one teach normalization by using only one 
normal form? As stated previously, it is not the intention of 
this paper to teach normalization. Nor is it an intention to 
teach how to teach normalization. However, this author finds 
it useful to instruct students to follow the wisdom of “the 
anonymous ditty found in Kroenke (2006): ‘I swear to 
construct my [relations] so that all non-key [attributes] are 
dependent on the key, the whole key, and nothing but the 
key, so help me Codd’” (p. 88). 
 However, the question remains “Why not move on to 
even higher normal forms?” Are the higher normal forms 
impractical or esoteric, as suggested in textbooks? Should it 
be sufficient to leave students with the impression that 3NF 
relations are suitable for business or sufficient for most 
applications? Whereas many installed databases might 
indeed wind up with relations mostly in 3NF, it is misleading 
to tell students that it is okay to stop with 3NF. 

 There is a better business-oriented approach to the issue. 
Figure 1 presents a stylized column chart based on this 
author’s numerous experiences with live corporate 
information structures. First, the horizontal axis shows that 
reaching each normal form requires its own increment of 
time. Experience with dozens of clients says, for example, 
that reaching 5NF requires substantially more time than 
reaching each of the other normal forms. The vertical axis 
illustrates the relative amount of future anomalies removed 
by moving to each higher normal form. The amount removed 
by reaching 5NF is very low by comparison to the success 
level of reaching the lower normal forms. 
 What that chart shows is a simple business return on 
investments model. The return (the reduction in future 
anomalies) on investment (time spent on normalizing) from 
striving for 5NF is simply not as great as it is for lower 
normal forms. The problem of stopping short of achieving 
higher normal forms is that the anomalies associated with 
those normal forms are not removed. The good news is that 
there is a different solution. If such 5NF anomalies are 
encountered at a later date, software routines can be written 
to work around them. 
 Not normalizing to 6NF is a different matter than not 
normalizing to 5NF. Date, et al., (2002) explain 6NF as 
pertaining to temporal data. In this author’s experience, 
temporal data with 6NF-type anomalies are much more 
common in data warehousing installations than in databases 
used primarily for daily operations. Therefore, the return on
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Figure 1. Generalized Return on Investment of Normalization 
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investment might not be justified unless the firm is designing 
a data warehouse. The good news here is that 6NF 
normalization can be deferred to the time when such a data 
warehouse is contemplated, in this author’s experience.  
 Failure to normalize to DKNF is an oxymoron. No one 
has experience with DKNF as it was a straw dog attempt to 
define perfection without giving any method for getting there 
or any precise description of what it looks like once one is 
there. If a database designer was to spend time trying to 
normalize to DKNF, the return on investment is predictably 
zero.  
 On the left end of the scale, the return (amount of future 
anomalies removed) on investment (time) of reaching 0NF is 
zero at best, but most likely negative. That is the nature of 
0NF relations, which are the outcomes of the logical design 
stage in which tables (not relations) are initially formed and, 
therefore, the stage when future anomalies are introduced 
into the database structure. Hence, one could argue that the 
ROI is actually negative. 
 It is important to deal with a related issue. Normalization 
typically results in more and smaller relations. A substantial 
number of small relations can result in lack of efficiency 
within hardware storage subsystems, more software 
overhead, lack of convenience for users, and lack of 
managerial simplicity for database administrators. 
 To address that situation, of course, there is the solution 
of denormalization. However, that should be held in reserve 
until after the database designers have proven the database 
structure to be as sound as possible. Such denormalization 
should be applied judiciously. 
 If denormalization is used, does that mean time has been 
wasted doing normalization? Not if normalization is 
considered an insurance policy. It is better to remove as 
many future anomalies as possible first. Then, reintroducing 
potential problems by means of denormalization gives data 
administrators a clear indication of exactly where those 
future anomalies might occur. 
 

4. SUMMARY 
 
This article has pointed out the discrepancies among 
textbooks regarding two important concepts of 
normalization. First, the goal of normalization should be 
standardized back to Codd’s original definition. The many 
potential outcomes and benefits of normalization should not 
be confused with the overriding goal, which is to create 
properly structured relations, as those contain fewer future 
anomalies. Focusing on benefits instead of the goal can 
mislead one to bypass normalization altogether since there 
are other ways to at least partially achieve some of those 
same benefits that are misstated as being goals. 
 The question of how far should a database be normalized 
has been addressed by use of a simple return on investment 
model. Stopping short of 4NF is not a wise business decision 
as many anomalies might still exist. A designer should reach 
the fourth normal form. Moving beyond the 4NF should be 
examined in terms of ROI. In this author’s experiences, 

striving for 5NF seldom produces significant results and 
typically is not justified based on ROI. However, the sixth 
normal form should be reached if temporal data is prevalent, 
as in a data warehouse, which requires achieving 5NF first. 
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