
Journal of Information Systems Education, Vol 12(3)

 141

Reducing Effects of Plagiarism in Programming Classes

Kevin W. Bowyer
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, Indiana 46556-5637 USA

kwb@cse.nd.edu

and

Lawrence O. Hall
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida, 33620-5399 USA

hall@csee.usf.edu

ABSTRACT

Large programming classes are traditionally an area of concern for maintaining the integrity of the educational process.
 Systematic inspection of all program solutions for evidence of plagiarism can be done using an automated tool. The
``Measure Of Software Similarity'' tool developed by Alex Aiken at the University of California at Berkeley analyzes a
set of programs to detect evidence of “duplicates.” However, experience in applying this sort of plagiarism detection
in a large programming class indicates that the main long-term effect may be to simply shift the source of plagiarism.
This possibility leads to considering the reason for fighting plagiarism and then to exploring additional techniques
aimed at reducing the perceived motivation for plagiarism.

Keywords: computer programming, plagiarism, cheating, academic integrity, grading.

1. INTRODUCTION

Probably every faculty member who regularly teaches
a programming course encounters plagiarism.
Programming courses are often taught with a substan-
tial portion of the grade determined by the solutions
for programming assignments done as homework.
Plagiarism on assignments presents a serious problem
for the integrity of the educational process. In a
recent survey of 242 undergraduates at Duke Univer-
sity, nine percent revealed that they had copied
another student’s computer program at least once
while at Duke (Bliwise, 2001). Students appear to
take this type of cheating lightly, as only forty percent
of the respondents characterized it as “serious”
(Bliwise, 2001).

Instances of plagiarism are most often detected on an
ad hoc basis. The grader may notice that two pro-
grams have the same idiosyncrasy in their input/output
behavior, or the same pattern of failures for certain
test cases. With suspicions raised, the programs may
be examined further and the plagiarism discovered.
Obviously, this scenario leaves much to chance.
Especially in large classes, program solutions may be
graded by teaching assistants. The larger the class,
and the more graders involved, the lower the chance
that any given instance of plagiarism will be detected.
 For students in the class who are aware of various
instances of cheating, which instances are detected
and which are not may seem to be essentially random.
 Cheating that is widely known among the students
and yet not detected by the faculty can undermine the
good students’ confidence in the educational process.

Journal of Information Systems Education, Vol 12(3)

 142

The standard “brute force” attempt at cheating on a
program assignment is to obtain a copy of a working
program and then change statement spacing, variable
names, I/O prompts and comments. This type of
plagiarism can be detected through systematic
comparison of all pairs of program solutions. It is
possible to do this manually, but it requires an
impractical level of effort to be done routinely for
large classes. Also, more sophisticated plagiarism
efforts (e.g., rewrite main program and change the
order of appearance of the functions) may survive a
quick manual inspection. There is a clear need for an
automated tool for this task, and various such tools
have been developed (Joy 1999; Verco 1997; Wise
1996). We have used the Measure of Software
Similarity (MOSS) tool and feel that it offers an
excellent solution (Aiken 1995). Sections 2 and 3 of
this paper outline our experience using MOSS and
handling incidents of detected plagiarism (Bowyer
1999).

It is important to note that the type of evaluation done
with MOSS can only detect plagiarism that exists
among the set of program solutions. It cannot detect
the type of cheating where a student in the class gets a
student outside the class to supply the program
solution. Another approach to combating plagiarism
is to try to stop plagiarism incidents from occurring.
Plagiarism on program solutions is grade-motivated
and generally occurs outside of class. This suggests
basing the grade solely on programming efforts made
in-class under faculty supervision. Also, students
who commit plagiarism often were working on a
solution of their own, but perceived that they were
hopelessly behind schedule. Sections 4 through 6
describe our experience with alternative course
procedures based on these observations, with the goal
of minimizing the effects of plagiarism on the
integrity of the educational process.

The particular course that is the context for our
experiences reported here is named Program Design.
It is a required course for entry into the undergraduate
majors in Information Systems, Computer Science,
and Computer Engineering at the University of South
Florida. The language used in the course is C.
Course sections range in size from 80 to 120.
Department policy calls for an F in the course for a
first incident of academic dishonesty. A second
incident may result in dismissal from the Department.
 Students are typically informed of the policy both in
the syllabus and in a separate handout.

2. USING THE MOSS TOOL

The MOSS tool (Aiken 1995) makes it possible to
objectively and automatically check all program

solutions for evidence of plagiarism. It works with a
wide variety of languages, including C, C++, Java,
Pascal, ADA and others. The MOSS script for the
client end should run on UNIX systems that have perl,
uuencode, mail and either zip or tar. A comment in
the MOSS script states – “Feel free to share this script
with other instructors of programming classes, but
please do not place the script in a publicly accessible
place.” Accordingly, and in deference to possible
copyright issues, we do not reproduce any of the script
in this paper. Aiken does not supply explicit
information about the algorithm(s) used to detect
cheating. In keeping with his desire that the inner
workings be confidential, we do not speculate on the
algorithms involved.

Program files to be submitted to MOSS can be in any
subdirectory of the directory from which the MOSS
command is executed. For example, to compare all
programs in the current directory on a UNIX system,
assuming that the programs are written in C and that
MOSS is in the current directory, the following
simple command could be used:

moss -l c *.c

The system allows for a variety of more complicated
situations. For example, it allows for a “base file” that
contains a program outline or partial solution handed
out by the instructor. The degree of similarity between
programs that is traceable to this base file should be
factored out of similarity rankings of the programs.
Also, MOSS allows for the programs that are to be
compared to be composed of sets of files in different
directories.

The MOSS command results in the programs being
sent to a server at UC – Berkeley. The server sends
email sent back to the login name that invoked the
MOSS command, giving a web address for the results.
 In our experience, sending 75 to 120 C programs of a
few hundred lines each, the results are available the
same day. The return email from the server currently
states that the results are kept available for fourteen
days. Figure 1 shows the MOSS results page for
some program pairs in actual plagiarism incidents in a
section of our class. Program file names have been
changed to hide the individuals' identities. For each
listed program pair, the results summary lists number
of tokens matched, number of lines matched, and
percent of each program source found as overlap. A
“token” here is just a name or operator in the program,
as found by the early stage of a compiler. The degree
of program overlap is found in terms of the percentage
of tokens in the program. The percentage of overlap
may vary as measured for each program if one has
been altered in a way that changes its total number of

Journal of Information Systems Education, Vol 12(3)

 143

Moss Results

Sun Mar 14 15:24:02 PST 1999

Options -l c -m 10

[Text Report | How to Read the Results | Tips | FAQ | Contact Moss |
Submission Scripts | Credits]

 File 1 File 2 Tokens Matched Lines Matched
 mike_wolf.c (79%) mike_fox.c (80%) 463 139
 bill_smyth.c (86%) bill_smith.c (88%) 456 133
 jane_white.c (59%) jane_blanco.c (68%) 354 111
 john_doe.c (100%) john_deer.c (100%) 220 49
 --
Any errors encountered during this query are listed below.

Figure 1 – Example of MOSS Program Comparison Results.

tokens.

In our experience, anything over 50% mutual overlap
is highly suspicious. However, the threshold for
suspicion may depend on the size of the programming
problem, the amount of hints given in class, and many
other factors. We would strongly recommend that
accusations of plagiarism cannot be made purely on
the basis of MOSS ratings. It is essential for the
instructor to consider the similarities in the particular
pair of solutions in the context of how the course has
been taught before reaching a final decision

Clicking on a program pair listed in the results
summary brings up side-by-side frames for the two
programs, along with a list of ranges of lines of source
code that “pair up” in the two programs. The paired
sections of the programs are given color-coded
highlighting. The user can scroll through the pro-
grams, or click on a listed range of lines to jump
straight to that section.

Relatively sophisticated attempts at plagiarism are
readily detected using MOSS. Multiple similar
sections of code separated by sections with substantial
differences are still found and given color-coded
highlighting. Functions may be given different
names, and placed in a different order in the program
and they are still matched up. Students who have
changed all variable names, the statement spacing, the
comments, the function names and the order of
appearance of the functions stand out just as readily as
students who turn in exact duplicate programs!

To summarize, detection of possible program
plagiarism is made relatively simple using MOSS. In
our experience, the real difficulties for the faculty
member are now shifted to (1) processing the cases of

plagiarism through the grading and appeals process,
and (2) designing course policies and procedures that
reduce the students’ perceived pressure to cheat and to
make the learning process more effective.

3. HANDLING CASES OF PLAGIARISM

In the first semester that we used MOSS, in one
section of about 80 students, a total of ten received an
F for plagiarism! The incidents of suspected
plagiarism were handled as follows. First, an email
was sent to the students requesting (1) a written
summary of any information that might help in
understanding why the programs were rated as highly
similar, and (2) a time when the students could meet
with the professor. Importantly, no accusation of
plagiarism is made at this point. In perhaps 10% of
the incidents, this e-mail elicited a confession of
plagiarism from one of the students. In another
perhaps 20% of the incidents, the first response to the
e-mail was a denial, but then a confession came before
the scheduled meeting. The rest of the incidents
resulted in a meeting with the professor. In these
meetings, reviewing the program similarities resulted
in a confession in all but one case. In this one case,
the two students admitted talking about the program
and agreed that their programs were strikingly similar,
but insisted that there was no plagiarism, even when it
was pointed out that the programs contained identical
non-functional elements such as un-needed curly
brackets, const values passed to functions and not
used, and so on.

In cases where it appeared that one student copied
another’s program without their consent, only the one
student who plagiarized received an F. In cases where
it was clear that one student intentionally gave their

Journal of Information Systems Education, Vol 12(3)

 144

program to another, both received an F. In the one
case where both students denied the plagiarism after
meeting with the instructor, both students were
assigned an F. The university handbook provides for
several levels of appeal. In our experience, about half
the F grades due to plagiarism are appealed. Most
appeals are not on the basis of denying the plagiarism,
but arguing that the penalty of an F for the course is
too harsh. Additional premises sometimes offered
were that it would hurt the student’s GPA, chances of
getting into grad school, and/or chances of getting a
desired job. The first level of appeal is to the Director
of Undergraduate Studies in the Department. The next
level is a committee of students and faculty from
across the college. The final level is the university-
wide Dean of Undergraduate Studies. Only one of the
ten incidents mentioned earlier was appealed as far as
the University level. In all cases, the plagiarism
decision was upheld. One student who received an F
due to plagiarism in this section re-took the course the
next semester, plagiarized again, and was dismissed
from the Department. Some other students re-took the
course in subsequent semesters and did well.

Each plagiarism incident typically requires several
hours of the professor’s time. Examining the MOSS
comparison results is a small part of this. Additional
time is spent communicating with the students,
meeting with some of the students, documenting the
incident in memos to the various appeals groups, and
appearing before appeals committees to explain the
incidents.

One particular incident provides a strong caution
against jumping to a decision based solely on the
MOSS results. In this incident, two students had very
similar program solutions, well above the threshold
that would be suspicious. However, after investiga-
tion, it appears that both had discovered the same way
to adapt an example in the textbook into a solution for
the assignment. Thus, the two program solutions were
constrained to be highly similar by design. In this
incident, there was no plagiarism. The students had
simply utilized a novel observation from their as-
signed reading. If students re-use code from an
outside source, we would expect some standard form
of attribution in comments. However, we would not
be as critical when students adapt an example from
assigned reading or class discussions.

1. UNDETECTABLE PLAGIARISM

In the first semester we used MOSS, ten of approxi-
mately 80 students received an F for plagiarism.
However, in a section of over 140 students the next
semester, only nine received an F for plagiarism. The
rate of detected plagiarism decreased, presumably

indicating that the level of actual plagiarism de-
creased, as it became understood that all programs are
carefully checked. However, one incident suggested
another interpretation. Two students whose programs
were nearly identical insisted that they had not
cheated from each other. One student eventually
indicated that a friend who was not in the class had
written the program. This third person was not even
currently a student at the university. But this third
person had a second friend in the class, and had also
provided the program solution to that student! So we
detected the plagiarism only because two students
turned in the same program actually created by a third
person.

The “ghost author” phenomenon is likely to be more
widespread than just the incidents we have
� ccidenttally discovered. We have noted the phe-
nomenon of students who consistently receive near-
perfect scores on program assignments yet also
consistently receive substantially lower scores on in-
class quizzes which require writing short program
segments. Of course, some students may have “test
anxiety” and naturally perform below their “true”
level on in-class quizzes. Also, some students may be
getting help or coaching at a level that is not plagia-
rism, but that does pre-empt some of the learning
experience for them. But we suspect that some are
regularly getting “help” at a level that constitutes
plagiarism.

It is helpful to consider this problem in the context of
the purpose of grading in the course. A student’s final
grade should reflect their programming ability relative
to some objective standard. It certainly should not
reflect the ability of someone from whom they have
plagiarized. But it also should not reflect the degree
or quality of outside help that they have received.
Students may get many innocent explanations of “this
is how you write a loop” or “this is how you do a
selection sort” from friends and acquaintances. Some
of these explanations may apply fairly directly to the
homework solutions. The problem occurs when the
learning has not occurred; that is, when the student
does not understand the help that they have received
well enough to generalize to their own independent
solution of similar problems.

2. EXPERIENCE WITH UN-GRADED

PROGRAM ASSIGNMENTS

In a recent semester, the course was taught with the
homework program solutions having zero weight in
the course grade. The course operated as follows. We
gave the same number (six) of program assignments
as in previous course offerings. These assignments
start out fairly simple and increase in difficulty.

Journal of Information Systems Education, Vol 12(3)

 145

Example question from first quiz:
 Write a program that will read in 20 integer values, compute
 the average, and print an appropriate message giving the
 average value. Use a for loop.

Example question from second quiz:
 Write the function definition for the prototype
 float find_max (float data[], int N);
 The function should return the maximum value in the N items in
 the data array.

Example question from third quiz:
 Write a function for the prototype
 int above_thresh (float data[], float threshold, int size);
 The int value returned is the number of items in data that are
 greater than the value of threshold, and the size parameter
 gives the number of values in the data array.

Example question from fourth quiz:
 Write the function for the prototype
 int binary_search (int data[], int lo, int hi, int look_for);
 The function should return the index of the value look_for in
 data, or -1 if look_for is not found. The function should
 operate recursively. Assume data is in ascending order.

Example question from fifth quiz:
 Write the recursive function for the prototype
 int number_of_nodes (node *front);
 The parameter front points to a singly-linked list with nodes:
 typedef struct node_tag {
 char name[80]; float rating; struct node_tag *next;} node;
 The list is kept without a dummy header node. The function
 returns a count of the number of nodes currently in the list.

Figure 2 – Example Programming Questions from the In-Class Quizzes.

Solutions to the first assignment might require 30-40
lines of code, and the last assignment 150-300 lines of
code. While the solutions were not “graded” in the
sense of counting in the final grade, they were
“evaluated.” Students invoke a “hand-in” script that
compiles their program, runs it with test data sets
created by the instructor and teaching assistants, and
then sends an email back to the student. The email

contains (1) while the solutions were not “graded” in
the sense of counting in the final grade, they were
“evaluated.” Students invoke a “hand-in” script that
compiles their program, runs it with test data sets
created by the instructor and teaching assistants, and
then sends an email back to the student. The email
contains (1) output from compiling their program, (2)
the program’s output for each test case, and (3) a
specification of the preferred output for each test case.
 Students can invoke the hand-in script as often as
they want. Thus they can incrementally develop and
or debug their program against the standard embedded
in the script.

Along with the program assignments, there were five
quizzes and a final exam. Questions on the quiz are

correlated to the material covered in the class and
applied in the program assignments. Thus the stu-
dents saw loops on the quiz after they used loops in
the program assignment, arrays after they used arrays,
and so on. Quiz questions were of the form – “write a
function to do the following task.” Example quiz
questions are listed in Figure 2. Thus the students
were graded on their programming ability, but as

demonstrated on in-class quizzes rather than out-of-
class program assignments.

This experience with un-graded program assignments
turned out quite pleasant, but was ultimately regarded
(by the professor) as a failure. One the positive side,
it eliminated many elements of the class that tend to
frustrate students. If a program was not working
“perfectly” by the submission deadline, there was no
penalty. There were no “gotcha” test cases that the
student failed to anticipate and resulted in a lower
grade. Also, the number of programming questions
brought to faculty and teaching assistant office hours
greatly decreased.

Judging from the professor’s perspective, students

Journal of Information Systems Education, Vol 12(3)

 146

seemed quite happy with the course run in this
manner. And, not surprisingly, there were no
incidents of plagiarism. The failing of this approach
was that because the programs did not count in the
final grade, many students simply did not work
seriously on the programs. For example, only about
ten percent of the class used the hand-in script
available for self-evaluation on the last program
assignment in the semester.

3. EXPERIENCE WITH “LADDER” GRADING

Positive aspects of having the programs not count in
the final grade and providing a hand-in script for the
students to use in self-evaluation of their program
solutions were (1) removing the influence of “outside
programming help” on the course grade, and (2)
allowing the students to stay focused on developing
their solution to a well-defined standard. The
problem was that without the program assignments
concretely linked to the course grade, too many
students opted not to work on the programs. Thus in
the following semester, a “ladder” grading system was
used. Students could still run the hand-in script for an
assignment as many times as desired. The result of
the last run before the assignment deadline was the
basis of an S/U grade for the assignment; in general,
more than one test case not working meant a U. The
course grade was then determined using a ladder
based on quiz averages and number of S program
assignments: A = 90+ quiz average and S on all
programs, b = 80 to 89 quiz average and S on 5 of 6
programs, C = 70 to 79 quiz average and S on 4 of 6
programs, and so on.

This approach to the course seems the best of those
tried. Students are motivated to work on each
assignment. At the same time, “outside help” on
assignments cannot distort the class grades, since the
letter grade is based on the students’ programming
ability as demonstrated on in-class quizzes. The
ability to run the hand-in script as many times as
desired before the deadline seems to have reduced
motivation for plagiarism; through the first four
assignments in a class of 80 students no plagiarism
has been detected.

3. SUMMARY AND DISCUSSION

MOSS is a major innovation for identifying possible
plagiarism in programming courses. Regardless of
other course policies and procedures, we recommend
routine use of MOSS to screen for evidence of
plagiarism. The use of a hand-in script that can be run

as often as liked before the assignment deadline is also
an unqualified positive. It eliminates student
resentment over “gotcha” test cases and encourages
them to focus on creating a solution to a given
specification. It also appears to reduce the frequency
of plagiarism. This might be the result of helping to
keep students focused on the problem, and so reducing
the frequency of students finding themselves at a
hopeless dead end in their programming efforts. As a
final element, the use of a “ladder” approach to course
grading eliminates the influence of outside help on the
final grades in the course.

Most programming courses are organized on the
premise that students should work individually on the
programming assignments. Williams discusses an
approach to teaching programming classes that
actually requires students to collaborate (Williams,
1999). The approach is related to what is called the
“Extreme Programming” methodology, which
incorporates elements of what Weinberg called “ego-
less programming” (Weinberg, 1971). Williams
describes an approach to teaching programming
classes in which students are paired together for the
entire semester for purposes of completing the
program assignments, but take the exams individually.
 The students were instructed to meet together to
design, implement, and test the program assignment.
Williams reports subjective evidence for students
learning faster and implementing higher quality
programs in this approach. The approach of course
runs into the problem of how to assign credit when the
two students do not contribute equally, as well as
other administrative and organizational issues. We
plan to experiment with some variant of this approach
in a future semester.

8. REFERENCES

Aiken, Alex, 1995.
 www.cs.berkeley.edu/~aiken/MOSS.html
Bliwise, Robert .J., 2001. “A matter of honor.” Duke

Magazine, May-June 2001, pp. 2-7.
Bowyer, Kevin and L.awrence Hall, 1999.

“Experience using MOSS to detect cheating
on program assignments,” Frontiers in
Education, 13b3, 18-22.

Bowyer, Kevin, 2001. Ethics and Computing: Living
Responsibly In a Computerized World
(second edition), John Wiley / IEEE Press.

Joy, M. and M. Luck, 1999. Plagiarism in
Programming Assignments, IEEE
Transactions on Education 42 (2), 129-133.

Verco, K.L. and M. J. Wise, 1997. Plagiarism a la
Mode: A Comparison of Automated
Systems for Detecting Suspected
Plagiarism, Computer Journal 39 (9), 741-

Journal of Information Systems Education, Vol 12(3)

 147

750.
Weinberg, Gerald, 1971. The Psychology of

Computer Programming. Dorset House.
Williams, Laurie, 1999. “But isn’t that cheating,”

Frontiers in Education, 12b9, 26-27.
Wise, M.J., 1996. YAP3: Improved Detection of

Similarities in Computer Programs and
Other Text, SIGCSE Bulletin 28 (1), 130-
134.

Kevin Bowyer is the Schubmehl-Prein Professor and
chairman of the Department of Computer Science and
Engineering. He received an Outstanding Under-
graduate Teaching award from the USF College of
Engineering in 1991, and Teaching Incentive Program
awards in 1994 and 1997. He has served as Editor-In-
Chief of the IEEE Transactions on Pattern Analysis

and Machine
Intelligence, and as
North American
Editor of the Image
and Vision
Computing Journal.
He was elected as a
Fellow of the
Institute of Electrical
and Electronics
Engineers in 1998.

Lawrence Hall is a professor in the Department of

Computer Science
and Engineering.
He has taught

programming
classes for over 15
years. He is the
electronic editor
for the IEEE
Transactions on
Systems, Man,
and Cybernetics
Part B and on the
editorial boards of

the IEEE Transactions on Fuzzy Systems, and the
International Journal of Data Analysis. He has
published a number of papers in the fields of artificial
intelligence, machine learning, and soft computing.

 148

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2001 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

